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Abstract—Nonlinear hysteretic phenomena occur in many 
physical systems, such as electronic throttle and solenoid valves 
in automobiles, piezoelectric sensors, and many other 
mechanical actuators. In order to handle the nonlinear 
properties of hysteretic systems, an indirect adaptive fuzzy 
controller (IAFC) is proposed in this paper. However, it is a 
hard task to directly identify unknown hysteretic effects. 
Firstly, to overcome this problem, a hysteretic function is 
employed to construct the nonlinear properties of backlash-
like hysteretic systems. Then the existence of an indirect 
adaptive controller (IAFC) is derived in this paper. Unlike the 
existing fuzzy control methods, our proposed IAFC can deal 
with different kinds of hysteretic problems with adaptive and 
control laws. Based on the learning algorithm, the adaptive 
and control laws not only can be derived but the stability of the 
closed-loop system can also be guaranteed by the Lyapunov 
stability criterion. Finally, MATLAB software is used for 
simulations, and the results show that our proposed IAFC can 
effectively handle the nonlinear properties in some unknown 
hysteretic systems. 

Keywords—hysteretic effect; backlash-like hysteretic system; 
indirect adaptive fuzzy controller 

I. INTRODUCTION 
Nonlinear hysteretic phenomena exist in many physical 

systems and materials, such as ferroelectric and 
ferromagnetic materials, mechanical actuators, electronic 
throttles, and other related fields [1]-[5]. In fact, different 
types of hysteresis have totally different nonlinear 
properties. Thus, in this paper, we focus mainly on the 
hysteresis model called “backlash-like hysteresis.” 
Backlash-like hysteresis is usually found in mechanical 
systems, which causes a delay between the input force and 
output response. To control the systems with unknown 
backlash-like hysteresis is quite important but typically 
challenging. Incidentally, conventional control methods are 
insufficient to deal with nonlinear systems with these non-
smooth nonlinearities [6]. For simplicity, the hysteresis is 
sometimes ignored in the design of control systems. 
However, ignorance of nonlinear hysteresis will lead to 
obviously steady-state error, oscillation, and even 
instability. Hence, the development of alternate effective 
approaches is required and urging. 

For research purpose, the foremost task is to find a model 
to describe the hysteretic nonlinearities, which helps us to 
design a proper controller. Until now the research on 
mathematical models for unknown hysteresis is still an on-
going research topic. Thus, there are various models being 
proposed in past decades, and different hysteresis models 
will affect the effectiveness of the control algorithms. 
Generally, the existing hysteresis model can be roughly 
categorized into two types [7]: operator-based hysteresis 
models and differential equation-based hysteresis models. 
The operator-based models use integral equations which 
contain numerous hysteresis operators and can describe the 
shapes of hysteresis curves accurately. The popular operator-
based models are Preisach model [8], Prandtl-Ishlinskii (PI) 
model [9], etc. For differential equation-based models, they 
have finite dimensions and can be extended to continuous 
inputs by using an approximation [7], which can reduce the 
computational complexity effectively. This kind of models 
like Bouc-Wen model [10], Duhem model [7], and Backlash-
like model [17] are used widely in the controller design for 
hysteresis problem. Due to nonlinear hysteretic properties in 
our benchmark problems, the backlash-like model proposed 
in [17] is adopted throughout this paper to model our 
benchmark problems. 

Based on the mathematical models, several alternate 
approaches have been proposed in [11]-[19] in past decades. 
The above methods used the adaptive control schemes to 
mitigate the nonlinear effects of hysteresis. In [11]-[13], an 
adaptive inverse operator was constructed to cancel the 
backlash nonlinearity, but the strict initial conditions were 
required. In [19], a smooth inverse function combined with 
backstepping technique was utilized to compensate the 
nonlinear effects of the backlash. Using the intelligent 
control schemes like fuzzy logic control (FLC) or neural 
network (NN) has been depicted in [14]-[16]. Those 
intelligent control methods have the advantage of excellent 
nonlinearity approximation, which can eliminate the 
inversion error [14]-[16]. Some experimental applications 
showed that backlash inverters would degrade the system 
control performance [20], [21]. Hence, a controller design 
scheme without constructing the inverse operator has been 
proposed in [15], [17], [18]. In [15], [17], a continuous 
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dynamic backlash-like hysteresis model is defined. However, 
the backlash-like term multiplying the control in [15], [17] 
must be bounded, and the uncertain parameters must also be 
within known intervals . The backstepping adaptive control 
methods proposed in [18] strived to eliminate the above 
restrictions. 

To propose a new way to mitigate the nonlinear 
properties of hysteretic phenomenon without the above 
restrictions, an indirect adaptive fuzzy controller (IAFC), 
which serves as a feedback controller in a “feedback + feed-
forward” scheme, is proposed in this paper. Besides, a 
dynamic backlash-like hysteresis model is utilized in the 
nonlinear system with unknown nonlinear control gain 
which is more general than that in [17]. The existence of the 
IAFC for the unknown hysteretic system is first shown in 
Theorem 1 in this paper. The adaptive laws of IAFC are 
constructed based on the Lyapunov stability theory; and the 
IAFC control law guarantees that all the signals of the 
closed-loop system are stable with excellent tracking 
performance. Two popular benchmark examples are adopted 
in this paper. The first one is the example widely used in 
[15], [17]-[20] and the other is the hysteretic Inverted 
Pendulum System (IPS) in [22]. Excellent tracking results 
are illustrated from these two examples via the proposed 
IAFC. It is noted that all the previous methods in [15], [17]-
[20] cannot deal with these two benchmark examples with 
unknown nonlinear control gain. 

This paper is organized as follows: Section II states the 
problem of this paper, where the nonlinear backlash-like 
model is introduced. In Section III, the proposed IAFC 
scheme is presented. In Section IV, the simulation results are 
presented to illustrate the effectiveness of the proposed 
approach. Finally, in Section V, conclusions are drawn. 

II. PROBLEM SPECIFICATION 

A. System Model 
We consider the following nth-order SISO nonlinear 

system described by the differential equation, which is more 
general than that in [17], [18]:  
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and ( )f x and control gain ( )g x are unknown nonlinear 
functions. Parameters ia are unknown but bounded 
constants. The function ( )uω is the nonlinear hysteretic 
function modeled by [17]. (1) has to be controllable so we 
require that the control gain ( ) 0g ≠x . Besides, without 
losing generality, it is assumed that ( ) 0g >x . In [17], the 

control gain g  is simply an unknown constant and 
functions if  have to be known linear or nonlinear functions. 

The control objective is to design a control law for ( )u t  
in (1) and an adaptive law for adjusting the parameter vector, 
such that the system output x can track the reference 
signal my , i.e. mx y→ as t → ∞ . Note that the reference 

signal my  is assumed to be (n 1)th− differentiable. 

B. Backlash Model and its Characteristics 
A continuous dynamic model to simulate hysteresis 

phenomenon defined by [17] can be described by: 

( )d du ducu B
dt dt dt
ω α ω= − +  (2) 

where , ,B cα  are constants and 0B c> > ; ( )u t is the 
control signal and the input of ( ( ))u tω . Then, the solution of 
(2) can be solved explicitly: 

( ) ( ) ( )( )u t cu t d uω = +  (3) 
and 

( ) [ ] ( ) ( )
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where 0u  and ( )0 0uω ω= are initial conditions, which 
are set as 0 0 0u ω= = in this paper. The relationship between 
ω  and u  are illustrated in Fig. 1. In Fig. 1, the sign of α  in 
(4) determines the direction of the curves. When  0α > , the 
hysteresis loop will be in clockwise direction. Similarly, 
when 0α < , the hysteresis loop will be in counterclockwise 
direction. In this paper, we only take  0α >  into 
consideration.  
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Fig. 1. The hysteretic illustrations: (a) α 0> ; (b) α 0<  
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Fig. 2.   Hysteresis curve 

Solving for (3) and (4), we can get an explicit solution of 
backlash-like hysteretic function ( ( ))u tω as follows:   

When 0u ≥ , 
0

0
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and when 0u < , 
0
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where su is a positive value and the upper bound of u , i.e. 

su u≤ . As mentioned previously, we set 0 0 0u ω = = , and 
(5) and (6) can be rewritten as follows: 
When 0u ≥ , 

2 ( ( ))

( ) ( )
( ) [1 (2 ) ]s su u u t
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B c e e eα α α

ω
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and when 0u < , 
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ω
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− −
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A demonstrative nonlinear hysteretic curve generated 
from (7) and (8) is shown in Fig. 2, where 1α = , 0.345c = , 

3.1635B = , ( ) 2.5sin(2.3 )u t t=  and, 2.5su = .  

III. DESIGN OF INDIRECT ADAPTIVE FUZZY CONTROLLER  

my ,e e Δ ( )u t

my

u

ω
ω y

 
Fig. 3. The control strategy to control the Nonlinear Hysteretic System 

 To properly control the nonlinear systems with 
hysteresis phenomenon, we propose a feedback plus feed-
forward closed loop configuration which is used widely in 
numerous industrial applications and is shown in Fig. 3. 

In Fig. 3, my  is input signal to the system and, in this 
paper, the feed-forward controller is only a transducer to 
convert the reference signal to our control signal, 
i.e.   forward mu y= . Then, the feedback controller is the 
proposed indirect adaptive fuzzy controller which is 
presented step by step below. 

A. Ideal Hysteresis Controller 
Before presenting the indirect adaptive fuzzy controller 

(IAFC), the following Lemma must be proven: 

Lemma 1:  

In (3) and (4), the term ( )d u is bounded, i.e. ( )d u ρ< . 

Proof: 
In the equation (4), if 0u >  (with ( ) 1sgn u = ) 

and u ∞→ , then 

( ) 1 2lim
u

d u T T
→∞

= +  
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[ ] ( )0
1 0 0lim u u

u
T cu e αω − −

→∞
= − and

0

( )
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u
u

u
u

T B c e dα ξ ξ−
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 = −∫ . 

Obviously, 1 0T =  and ( ) 0( )
2 lim[( )( )]u u u u

u

B cT e eα α

α
− −

→∞

−= − . 

Thus, 

lim ( )
u

B cd u
α→∞

−=  (9) 

Similarly, if 0u <  (with ( ) 1sgn u = − ) and u ∞→ − , then 

lim ( )
u

c Bd u
α→∞

−=  (10) 

From (9) and (10), we can imply that there exists a 
uniform bound ρ such that 

( )d u ρ<  (11) 
For the development of control law, the following 

assumptions are made. 

Assumption 1: 

For all n∈Rx , there exist unknown bound functions 
( )g x and ( )g x  such that 0 ( ) ( ) ( )g g g < ≤ ≤x x x . 

Assumption 2: 

By (9), (10), and our experiments, we can assume 
that  ( )d u is not only a bound function but also a uniform 

constant; thus, in the controller design, assume ( )d u d= , 
where d is a constant. 
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With Lemma 1 and Assumption 1 and Assumption 2, the 
following Theorem 1 can be presented: 

Theorem 1:  

Consider the system in (1) with hysteretic functions (5) 
and (6). There exists an ideal controller  idealu  such that the 
system output 1x  can track the reference signal my  as close 
as possible. 

Proof: 

Let ( 1)[ , , , ]n Ty y y − =y , and 
( 1)[ , , , ]m
n T

m m my y y −=y denotes a bounded reference input 
which has the nth-order derivative. 

Define the output tracking error as me y y= − and the 
error vector as 1 2[ , , , ]T

ne e e= − =me y y  ( 1)[ , , , ]n Te e e −= . 
Choose a vector 1[ , , ]nk k=k such that all roots of the 
polynomial 1

1
n n

ns k s k−+ + + are in the left-half complex 
plane, and the polynomial is called Hurwitz polynomial [22, 
23].  

Then, apply (4) into (1), and we can get the following 
equation: 

( ) ( ) ( ) ( )( )  nx F dg cg u t= + +x x x  (12) 

where ( ) ( )
1

r

i i
i

F a f
=

 = −∑x x . 

From (12), if ( )F x and ( )g x are known, we can assume 
that there exists an ideal controller shown as below: 

( ) ( )1
( )

n T
ideal m

du F y
cg c

⎡ ⎤= − + + −⎣ ⎦x
x

k e  (13) 

Then, we have to prove that (13) can control the 
output 1x  to track the reference signal my . Substitute (13) 
into (12), we can obtain the closed-loop system as: 

( ) ( 1)
1e 0n n

nk e k e−+ + + =  (14) 
With the Routh-Hurwitz stability criterion, via properly 
choosing the vector k , we can acquire that ( )lim 0

t
e t

→∞
 = , 

which proves the theorem. 

B. Indirect Adaptive Fuzzy Controller 
Although we can prove the existence of the ideal 

hysteresis controller, ( )F x and ( )g x  are usually unknown 
and we cannot actually derive the ideal controller. Hence, 
utilizing the adaptive fuzzy control strategy, the ideal 
controller can be approximated by an adaptive controller. 

In order to design the indirect adaptive fuzzy controller, 
firstly, we have to construct the fuzzy logic system which 
can be expressed through singleton fuzzifier, center average 
defuzzifier, and product inference [22, 23]: 

( ) 1 1

1 1
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x xθ  (15) 

where   ( )l
i

iF
xμ  are the fuzzy input membership 

functions,  ly  is the maximum point (or called center) of the 
output membership function ( )lG

yμ , and, without lose 

generality, we assume that ( )  1l
l

G
yμ = . 1 [ , , ]M Ty y=θ  

is an adaptive parameter vector 
and ( ) ( ) ( )1 [ , , ]M Tξ ξ ξ=x x x  is a input fuzzy basis 

function and ( )lξ x  can be defined as 
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Since ( )F x and ( )g x are unknown, we replace them by 

fuzzy systems ˆ ( | )ff x θ  and ˆ( | )gg x θ , respectively, which 
are in the form of (15) [22]. Then, the resulting control law 
is 

( ) ( )1 |
( |

ˆ
ˆ )

n T
IAFC f m

g

u u f y
cg

θ
θ

⎡ ⎤= = − + +⎣ ⎦x
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where ( ) )ˆ | (T
f ff x θ θ ξ = x and ( )g| ( )ˆ T

gg x θ θ η = x  ( ( )η x is 
another basis function with the same form in (16).) 

Applying (17) to (1), we can obtain the error equation in the 
vector form [23]: 
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In [23], a minimum approximation error is defined as 

( ) ( ) ( ) ( ) ( )* *ˆ |ˆ | f g IAFCw f F g g cu dθ θ⎡ ⎤ ⎡ ⎤= − + − +⎣ ⎦⎣ ⎦x x x x

 (19) 
and optimal parameters * fθ  and *  gθ  are also defined in [23]. 
Using (19), we can rewrite (18) as 
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The adaptive laws are defined to minimize the tracking 
error   e , *  f fθ θ− , and *  g gθ θ− , and are shown in   
Theorem 2. 

Theorem 2: Consider the backlash-like system (1) satisfying 
Assumption 1 and 2. The control law is designed in (18), and 
the adaptive laws are  

( )1
T

f e Pθ γ ξ= − xb  (22) 

( )2 )(T
g IAFCP de cuθ γ η += − xb  (23) 

where 1  γ  and 2  γ  are learning rate parameters and P is 
a positive definite matrix satisfying the following Lyapunov 
algebraic equation: 

Λ Λ QT P P+ = −  (24) 
Proof: 

Define a Lyapunov equation  

( ) ( )
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* *

2

1 1V
2 2

1
2

TT
f f f f
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g g g g

P θ θ θ θ
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θ θ θ θ
γ

= + − −

                   + − −

ee
 (25) 

Then, differentiate (25), and we can get 

( ) ( )

( ) ( )( )

*
1

1

*
2

2

1 1
2
1

TT T T
f f f

T T
g g g IAFC

V Q P w P

P cu d
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θ θ θ γ η
γ
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x

x

e e e b e b

e b

 (26) 
In order to minimize  e , * f fθ θ− , and * g gθ θ− , we have 

to make 0V < . The first term 
1 0
2

T Q− <e e . In the second 

term, the minimum approximation error w  can be small 
enough by designing the fuzzy systems. If we 
choose ( )1

T
f e Pθ γ ξ = − xb , the third term becomes zero. 

However, if we choose ( )2 )(T
g IAFCe P cu dθ γ η + = − xb , the 

fourth term can also be zero. Hence substituting (23) into 
(26), the final term becomes negative. This completes the 
proof. 

Finally, for industrial applications, the overall control 
signal with feed-forward signal in Fig. 3 can be shown as 
below 

IAFC mu u y= +  (27) 

IV. SIMULATION STUDIES 
In this section, two benchmark hysteretic examples 

controlled by the proposed IAFC are presented and 
compared to the backstepping adaptive control method in 
[18]. Example 1 uses the hysteresis example in [15, 17-20] 
with little modification: the control gain in Example 1 is an 
unknown nonlinear function; however, the control gain in 
[15, 17-20] is just an unknown constant. Example 2 is an 
Inverted Pendulum System (IPS) [22] with hysteresis, which 

is a standard benchmark used in numerous researches. These 
two examples, which are simulated based on MATLAB 
platform, can fully examine the effectiveness of our novel 
indirect adaptive fuzzy controller, and the results are shown 
below: 

Example 1: Consider the following second-order backlash-
like hysteresis nonlinear system: 

2

2

1 2

2 1 2

1

1 ( , ) ( )
1

x

x

x x
ex a g x x u
e

y x

ω
−

−

=                                    ⎧
⎪ −⎪ = +⎨ +⎪
⎪ =                                   ⎩

 (28) 

where ω  represents the output of the hysteresis 
nonlinearity as in (7) and (8), the actual parameter 1a = and, 
for simulation purpose, ( ) ( )1 2 1 2, 2 sin 0g x x x x= + > . 

Without control, i.e. ( ) ( )  ( ) 0u t u tω= = , the system (28) is 
unstable. The control objective is to control the system 
output 1y x=  with initial state 0 [0.3,0]=x  to follow a 
desired trajectory 0.5 (2.3 )my sin t= . 

The backlash-like hysteresis is described by (7) and (8) with 
parameters 1, 0.345, 3.1635, 10sc B and uα =  =  =   = . 

The initial 25 values of vector (0)fθ  and the initial 9 values 

of vector (0)gθ can be randomly chosen in [ ]0 1 . 

Construct the IAFC for the nonlinear system: 

Step 1: Select the design parameters: the learning 
rates 1 35γ = and 2 1γ =  for (22) and (23) respectively; 
control parameters 1 2 [ , ] [10 1]T Tk k= =k , positive definite 

matrix
255 25
25 5

⎡ ⎤
 = ⎢ ⎥

⎣ ⎦
P , and [0 0 1]T=b . 

Step 2: The adaptive fuzzy membership function can be 
defined as Gaussian functions as follows 

( )
2( )

( )
2 , 1,2; 1, 2, ,5

i fl

l
i

x c

iF
for i lx eμ

−
−

  = ==   

( )
2( )

( )
2 , 1, 2; 1,2,3

i g

m

l

i

x c

iG
f me ix orμ

−
−

   = ==  

where 1 2 3 4 5[ , , , , ] [ 10, 5,0,5,10]f f f f fc c c c c = − − and

1 2 3[ , , ] [1,1.5, 3]g g gc c c =   . Then, compute the fuzzy basis 
functions. 

Step 3: Compute the adaptive laws in (22), (23) and control 
law in (17), and then obtain the IAFC control signal in (27). 

The simulation results are shown in Figs. 4 - 6. The 
system output 1x  tracks the desired reference signal my  is 
shown in Fig. 4. The control input ( )u t is shown in Fig. 5 
and tracking error 1( )e t  is shown in Fig. 6.  
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Fig. 4.  Output y  tracks reference signal my  (red solid line) 
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Fig. 5.   Control input ( )u t  
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Fig. 6. Tracking error e 

The system reaches the steady state at about 1 second by 
using proposed IAFC. In Fig. 6, it states that the steady-state 
error of IAFC is smaller than the error of the traditional 
adaptive backstepping approach. 

Example 2: Consider a second-order inverted pendulum 
system with hysteresis, which is shown in below: 

1 2
2
2 1 1 1

1

2 2 2
1 1

1

cos sin cossin
( )

(cos ) (cos )4 4( ) ( )
3 3

c c

c c

x x
mlx x x xg x

m m m m
x u

m x m xl l
m m m m

y x

ω

=                                       ⎧
⎪
⎪ −
⎪ + +⎪ = +⎨
⎪ − −
⎪ + +
⎪

=                                      ⎪⎩

 (29) 

where 1 x  is the angular position of the pendulum, 2x  is the 
angular velocity of the pendulum, 29.8 /g m s =   is the 
gravitational acceleration, 1cm kg=  is the mass of the 
cart, 0.1m kg=  is the mass of the pole, 0.5l m =   is the half-
length of the pendulum. The control objective is to ensure 
the system output 1x  with initial state 0 [ 12,0]π=x  can 

track the desired reference signal ( )30 sin( )my tπ= . The 
backlash-like hysteresis parameters are the same as the 
previous example.  

The initial values of (0)fθ and (0)gθ  are shown in 
TABLE I and TABLE II. 

Construct the IAFC for the nonlinear system: 

Step 1: Select the design parameters: the learning rates 
1 50γ =  and 2 0.1γ = for (22) and (23) respectively; control 

parameters are the same as in the previous example. 

Step 2: Compute the fuzzy basis functions with the adaptive 
fuzzy membership function as below 

( ) ( )
2( )

( )
2 , 1, 2; 1, 2, ,5

i l

l l
i i

x c

i iF G
for i lx x eμ μ

−
−

 = == =   

where 1 2 3 4 5[ , , , , ] [ , , 0, , ]
6 12 12 6

c c c c c π π π π= − − . 

Step 3: Compute the adaptive laws in (22), (23) and control 
law in (17), and then obtain the IAFC control signal in (27). 

The simulation results are shown in Fig. 7 and Fig. 8. 
The system output 1x  tracks the desired reference signal my  
is shown in Fig. 7. The tracking error 1( )e t  is shown in Fig. 
8. As we can see, with faster rise time and smaller steady-
state error, the proposed IAFC outperforms the traditional 
adaptive backstepping approach. 

TABLE I.  INITIAL VALUE OF (0)fθ   

 6π− 12π−  0  12π 6π
6π− -5 -1 0 1 5 

12π− -5 -1 0 1 5 

0 -5 -1 0 1 5 
12π -5 -1 0 1 5 

6π -5 -1 0 1 5 

 

 

 

1Fμ
2Fμ  

2003



TABLE II.  INITIAL VALUE OF (0)gθ   

 6π−  12π−  0  12π 6π
6π−  0.126 0.136 0.146 0.136 0.126 

12π−  0.126 0.136 0.146 0.136 0.126 

0  0.126 0.136 0.146 0.136 0.126 
12π  0.126 0.136 0.146 0.136 0.126 

6π  0.126 0.136 0.146 0.136 0.126 
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Fig. 7. Output y  tracks reference signal my (red solid line) 
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Fig. 8.  Tracking error e 

V. CONCLUSIONS 
In this paper, a new “feedback + feed-forward” control 

strategy for real applications is presented to deal with 
nonlinear hysteresis problem. The existence of an ideal 
controller for unknown backlash-like hysteresis system is 
proposed and proven. However, ideal controller cannot be 
derived directly; hence, an indirect adaptive fuzzy controller 
(IAFC) is proposed to approximate the ideal controller. 
Then, by using Lyapunov theory, the stability of the closed-
loop system and the tracking performance can be guaranteed. 
Finally, the simulation results demonstrated that the 
proposed approach can achieve excellent tracking 
performance for the hysteretic IPS with unknown nonlinear 
gain, which cannot be handled by previous approach. Further 

studies would focus on real industrial applications to verify 
the effectiveness of our proposed approach. 
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