
 
 

 

  

Abstract—The focus of this paper is on handling 
non-monotone information in the modelling process of a 
single-input target monotone system.  On one hand, the 
monotonicity property is a piece of useful prior (or additional) 
information which can be exploited for modelling of a monotone 
target system.  On the other hand, it is difficult to model a 
monotone system if the available information is not 
monotonically-ordered.  In this paper, an interval-based method 
for analysing non-monotonically ordered information is 
proposed.  The applicability of the proposed method to handling 
a non-monotone function, a non-monotone data set, and an 
incomplete and/or non-monotone fuzzy rule base is presented.  
The upper and lower bounds of the interval are firstly defined.  
The region governed by the interval is explained as a coverage 
measure.  The coverage size represents uncertainty pertaining 
to the available information.  The proposed approach 
constitutes a new method to transform non-monotonic 
information to interval-valued monotone system.  The proposed 
interval-based method to handle an incomplete and/or 
non-monotone fuzzy rule base constitutes a new fuzzy reasoning 
approach. 

 
Keywords: Fuzzy ordering, monotonicity property, 

interval-valued, coverage measure, fuzzy sets, fuzzy reasoning 

I. INTRODUCTION 
A common problem in modelling a target monotone 

system is to approximate an unknown monotone function 
based on the available information.  Examples of information 
include a set of experimental data, a mathematical model, or a 
set of fuzzy rules for a Fuzzy Inference System (FIS). It 
should be noted that the available information may not always 
satisfy the monotonicity property.  Examples include 
non-monotonically ordered experimental data, non-monotone 
mathematical model, and non-monotonically ordered fuzzy 
rules for a target monotone system.  The monotonicity 
property has been shown to be useful prior (or additional) 
information which can be exploited for modelling a 
monotone target system.  However, exploitation of the 
monotonicity property in modelling is difficult, if the 
provided information does not conform to the monotonicity 
property.  Therefore, it is important to represent 
non-monotone information as a monotone system to ensure 
the usefulness of the resulting model. 

 
  

A search in the literature reveals that techniques to handle 
such information are available.  As an example, noise was 
defined in the form of non-monotonicity, and a method to 
relabel non-monotone data set was proposed [1].  In [2], an 
original estimate (in the form of a non-monotone 
mathematical function) was considered.  A method to 
re-arrange and transform the original estimates into a 
monotone form of estimates was proposed.  In [3-4], methods 
to re-label non-monotone fuzzy rules were also proposed. 

Three potential options for handling non-monotone 
experimental data have been discussed in [1]: (i) keep the data 
samples as they are; (2) identify noisy data samples and 
remove them; (3) identify noisy data samples and re-label 
them.  In this paper, we argue that these options may also be 
applicable to non-monotone functions and non-monotone 
fuzzy rules.  As a result, three potential options for handling 
non-monotone information are: (1) keep the information as it 
is; (2) identify and remove noisy information; and (3) identify 
and modify noisy information.  Examples of the third option 
include the re-labeling techniques for non-monotone 
experimental data [1], the re-arrangement techniques to 
monotonize a non-monotone original function [2], and the 
development of fuzzy rule re-labeling techniques to re-label 
non-monotone fuzzy rules of an FIS [3-4]. 

The focus of this paper is on the first option, i.e., keep the 
information as it is, and the focus is on fuzzy modeling.  
While this option has been discussed [1], it is not clear how it 
can be implemented practically.  In this paper, non-monotone 
information that describes a target monotone system is 
defined as a form of noise.  The monotonicity property is 
exploited as a piece of useful prior (or additional) information 
for modelling a monotone system.  An interval-based method 
to analyze noisy information is further suggested.  The idea is 
to keep the original noisy information as it is, and represent 
the noisy information as an interval.  As such, the upper and 
lower bounds of the interval are firstly defined.  The region 
governed by the interval is explained as a coverage measure, 
and the coverage size represents the degree of uncertainty of 
the information.  It is important to represent non-monotone 
information as an interval because it provides the lower and 
upper limits of the output for a particular input point of a 
monotone system. 

In this paper, the use of the proposed interval-based 
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method for handling a non-monotone function, a 
non-monotone data set, and an incomplete and/or 
non-monotone fuzzy rule base is examined.  The 
interval-based method for handling a non-monotone function 
can be perceived as an alternative to the re-arrangement 
technique [2] in processing a non-monotone function.  The 
non-monotone function can be a non-monotone FIS model.  
The non-monotone function is represented as a set of lower 
and upper bounds, instead of being modified by the 
re-arrangement technique.  The region governed by the 
interval is explained as a coverage measure, and the coverage 
size represents the degree of uncertainty of the information. 

For the case of non-monotone data, the original 
non-monotone experimental data are considered.  The 
intervals of the dependent variables of a data sample in the 
independent variable space are obtained.  Using such method, 
none of the data samples need to be removed or re-labeled.  
Such method offers an alternative to the relabeling technique 
for processing a non-monotone function. 

The proposed interval-based method for handling a 
non-monotone data set is further extended to fuzzy modeling.  
The idea of fuzzy ordering [5] is adopted.  Instead of 
interpolating fuzzy rules (i.e., fuzzy rule interpolation (FRI) 
[6]), the lower of upper bounds of a conclusion are obtained.  
We argue that if fuzzy ordering exists, and a set of 
monotonically-ordered fuzzy rules is necessary, it is possible 
to deduce the lower and upper bounds of the conclusion; 
therefore an alternative fuzzy reasoning approach.  If the 
original fuzzy rule base is non-monotone, it is possible to 
represent the fuzzy rule consequence as an interval too, 
instead of re-labelling them [3-4].  This extension serves as an 
alternative solution to our previous works on fuzzy rule 
re-labeling and optimization-based similarity reasoning 
methods [3]. 

This paper is organized as follows.  In Section II, the 
proposed interval-based method for handling non-monotone 
original estimates is presented.  In Section III, an 
interval-based method for handling a set of non-monotone 
data is presented.  In Section IV, FRI is firstly presented, 
which is followed by our proposed method.  A method for 
handling non-monotone fuzzy rule is further presented.  
Finally, concluding remarks are presented in Section V. 

 

II. A NON-MONOTONE ESTIMATE 

A. A non-monotone estimate 
The definitions of the input and output spaces of a target 

monotone function are presented as Definitions 1 and 2, as 
follows. 

 
Definition 1: Consider an input space, ܺ, and an output 

space, ܻ .  Variables ݔ  and ݕ  are the elements of ܺ  and ܻ , 
respectively, i.e., ݔ א ܺ, and ݕ א ܻ.  The lower and upper 
bounds of ܺ  are represented by ݔ  and ݔ , respectively.  

Similarly, the lower and upper bounds of ܻ are represented by ݕ and ݕ, respectively.   
 

Definition 2: Consider a target monotone system ݕ ൌ݂ሺݔሻ,  ݂: ܺ ՜ ܻ .  For all ݔ  and ݕ , ݂ሺݔଶሻ  ݂ሺݔଵሻ , where ݔଶ  ଵݔ א ܺ, is always true. 
 A mathematical model, ݕ ൌ ݃ሺݔሻ, i.e., ݃: ܺ ՜ ܻ , which 
attempts to approximate the target monotone system, is 
considered.  Note that ݃ is obtained through an identification, 
regression, or interpolation process.  As the monotonicity 
relationship is not adopted as the prior information during 
modelling, ݕ ൌ ݃ሺݔሻ  may not be monotone. As a result, ݕ ൌ ݃ሺݔሻ  is considered as the available information 
pertaining to the target monotone system.  The uncertainty of ݃ሺݔሻ can be represented as an interval-valued mathematical 
model (i.e., ݕෞ ൌ ො݃ሺݔ)), as defined in Definition 3.  The lower 
and upper bounds of ො݃ሺݔଵሻ, where ݔଵ א ܺ, are obtained using 
Equations 1 and 2, respectively. 
 

Definition 3: An interval-valued mathematical model, ݕෞ ൌ ො݃ሺݔሻ , is considered.  For all ݔ ෞݕ ,  exists, where ݕሺݔሻ ൌ ቂݕሺݔሻ, ሻݔሺݕ ሻቃ andݔሺݕ   .ሻݔሺݕ
ݔଵሻ ൌmin(݃ሺݔሺݕ   ଵሻݔሺݕ ଵሻ). (1)ݔ ൌmax(݃ሺݔ   ଵሻ) (2)ݔ

 
The size of ො݃ሺݔሻ and its coverage are obtained using 

Equations 3 and 4, respectively. ݁ݖ݅ݏሺݔଵሻ ൌ ଵሻݔሺݕ െ ଵݔ , ଵሻݔሺݕ א ݁݃ܽݎ݁ݒܿ (3) ܺ ൌ න ቀݕሺݔሻ െ ݔݔሻቁݔሺݕ  ݔ݀
(4) 

  
Theorem 1 indicates a number of properties of ݃ሺݔሻ that 

satisfy the monotonicity property. 
 

Theorem 1: If ݃ሺݔሻ satisfies the monotonicity property, 
i.e., ݃ሺݔଶሻ  ݃ሺݔଵሻ, where ݔଶ  ଵݔ א ܺ, is always true, then,  
ሻ ൌݔሺݕ 1.1 ݃ሺݔሻ, ݔ 

ሻݔሺݕ 1.2 ൌ ݃ሺݔሻ, ݔ 
ሻݔሺ݁ݖ݅ݏ 1.3 ൌ  ݔ ,0
ൌ ݁݃ܽݎ݁ݒܿ 1.4 0 

 

As an example, consider domain, ܺ , where ݔ ൌ 0  and ݔ ൌ 12.  An original estimate, ݃ሺݔሻ ൌ ሺݔ െ 1ሻ ൈ ሺݔ െ 7ሻ ൈሺݔ െ 9ሻ is available.  Figure 1 illustrates ݃ሺݔሻ , its ݕෞ  and 
size. Its coverage is shaded, and the area is estimated to be 
448 in unit of ܺ ൈ ܻ.  
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Figure 1. An illustrative example 

III. DATA-DRIVEN MODELLING 

A. A data set 
Definitions 1 and 2 are considered.  A data set in the input 

and output spaces is further defined, as follows. 
 

Definition 4: A data set with ݉ data samples is considered.  
Each data sample is denoted as ݀തതത ൌ ሾݔ,  ܻ ሿ in the ܺ andݕ
spaces (Definition 1), ݇ ൌ 1,2,3, … , ݉ .  To simplify the 
notation, ݕ  of ݔ is denoted as ݕሺݔሻ. 
 

Definition 5 is considered.  Note that ݕ  and ݕ  are 
obtained using Equations (5) and (6), respectively. 
 

Definition 5: A list of identical ݔ samples is written ݔ , 
where ݈ ൌ 1,2, … , ݊  ݉ .  Each ݔ  is associated with an 
interval in space ܻ (Definition 1), i.e., ቂݕ,  ቃ.  To simplifyݕ
the notation, the lower and upper bounds of the interval at ݔ  
are denoted as ݕሺݔሻ and ݕሺݔሻ, respectively. ݕሺݔሻ ൌ ݉݅݊ሺݕሺݔ  ሻݔሺݕ ሻ (5)ݔ ൌ ݔሺݕሺݔܽ݉   ሻ (6)ݔ

 

B. Simulated examples 
As an example, consider two data sets with ݇ ൌ 7, and ݈ ൌ 6 , as shown in Table 1.  Data set 1 satisfies the 

monotonicity property, while data set 2 does not satisfy the 
property.  Based on Equations (5) and (6), the results shown 
in Table 2 can be obtained.  With data set 1, there are two data 
samples for ݔ=5, i.e., ݕ ൌ 5,6, as shaded in Table 1.  With 
the proposed method, ݔ =5 is mapped to an interval, i.e.. ሾ5,6ሿ, as listed in Table 2.  With data set 2, there are two 
non-monotone data samples for ݔ ݔ ,4= =5, as shaded in 
Table 1.  With the proposed method, ݔ =4 and ݔ =5 are 
mapped to ሾ4,5ሿ and ሾ4,6ሿ, respectively, as in Table 2. 

 
 
 
 
 
 
 

 
Table 1 Data set for experiments ݇ ݔ ݕ ݕ

Data set 1 Data set 2 
1 1 1 1 
2 2 2 2 
3 3 3 3 
4 4 4 5 
5 5 5 4 
6 5 6 6 
7 6 7 7 

 
 
 

Table 2 Experimental results ݈ ݔ ݕ ൌ ቂݕ, ݕ ቃݕ ൌ ቂݕ,  ቃݕ
Data set 1 Data set 2 

1 1 ሾ1,1ሿ ሾ1,1ሿ
2 2 ሾ2,2ሿ ሾ2,2ሿ
3 3 ሾ3,3ሿ ሾ3,3ሿ
4 4 ሾ4,4ሿ ሾ4,5ሿ
5 5 ሾ5,6ሿ ሾ4,6ሿ
6 6 ሾ7,7ሿ ሾ7,7ሿ
IV. AN EXTENSION TO FUZZY REASONING 

A. The zero-order Sugeno Fuzzy Inference System 
The focus of this study is on the zero-order Sugeno FIS 

model.  Definitions 1 and 2 are considered.  The fuzzy 
If-Then rules for a single input zero-order Sugeno FIS model 
(hereafter refer to as the FIS model) with ܯ fuzzy rules, is 
represented as follows. ܴ , ൯ܣ ݏ݅ ൫݂ܺܫ      ܾ൯, 1 ݏ݅ ൫ܻܰܧܪܶ  ݆   ܯ

The fuzzy membership functions (MFs) are written as  
µሺݔሻ for linguistic term ܣ.  The output is obtained by using 
the weighted average of the representative value, ܾ , with 
respect to its compatibility grade, i.e., µሺݔሻ, as shown in 
Equation (7). 

ݕ ൌ ∑ ൫ ஜೕሺ௫ሻൈೕ൯ೕసಾೕసభ∑ ቀ ஜೕሺ௫ሻቁೕసಾೕసభ                                                          
(7) 

Using the findings in [7-9], the following theorem is 
formulated for the FIS model. 

 
Theorem 2.  The FIS model (i.e., Equation (7)) fulfills the 

monotonicity property between ݕ  and ݔ , if the following 
conditions are satisfied. 

2.1 At the rule consequent part,ܾାଵ  ܾ , where  ,ሾ1,2,3א … ,  .ሿܯ
2.2 At the rule antecedent part, ൫݀μାଵሺݔሻ ⁄ݔ݀ ൯ μାଵሺݔሻൗ ൫݀μሺݔሻ ⁄ݔ݀ ൯ μሺݔሻൗ , where  א ሾ1,2,3, … ,    .ሿܯ
 
Note that ሺ݀ߤሺݔሻ ⁄ݔ݀ ሻ ⁄ሻݔሺߤ  is the ratio between the rate 

of change of the membership degree and the membership 
degree itself.  A Gaussian MF is written as ீߤሺݔ: ܿ, ሻߪ ൌ݁ିሾ௫ିሿమ ଶఙమ⁄ , where ܿ  is the center of the MF, and ߪ 
parameterizes the width of the MF.  Note that  ሺ݀ீߤሺݔሻ ⁄ݔ݀ ሻ ⁄ሻݔሺீߤ  for the Gaussian MF return a linear 
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function, i.e, ሻݔሺܧ ൌ  ሺ݀ீߤሺݔሻ ⁄ݔ݀ ሻ ⁄ሻݔሺீߤ ൌ െሺ1/ߪଶሻݔ ሺܿ/ߪଶሻ [9]. 
 

B. Monotone Fuzzy Rule Interpolation 
Suppose a set of fuzzy variables and fuzzy rules is given, as 

defined in Definitions 6 and 7, respectively.  
 

Definition 6: Fuzzy variables of the input space, i.e., ܺ, are 
denoted as ܣ, and partial ordering among fuzzy variables at ܺ 
exists, i.e.. ܣାଵ غ ܣ .  In this study, ܣାଵ غ ܣ  is true, if 
Theorem 2.2 is satisfied.  Fuzzy singletons of the output 
space, i.e., ܻ, are denoted as ܤ, and ordering among fuzzy 
singletons at ܻ exists, i.e.. ܤାଵ  ܤ , respectively. 
 

Definition 7. A set of original fuzzy rules, i.e.,  ܴ: ܣ ՜  , is fuzzy singletons ofܤ ,, is provided.  Note thatܤ
the output space, i.e., ܻ .  To simplify the notation, ܴ: ܣ ՜ ,ܤ  is denoted as ܤ,ሺܣሻ .  If the rule base is 
incomplete, some ܤ,  are unknown, and fuzzy rules with 
unknown ܤ, are labelled as ܴכ כܣ :  ՜ כ,ܤ . 
 

 
The general idea of FRI is explained in Fig. 2.  As can be 

seen in Fig. 2, partial ordering among fuzzy variables in space ܺ  exists, i.e., ܣ غ כହܣ غ ସܣ غ כଷܣ غ כଶܣ غ ଵܣ .  Fuzzy 
variables in space ܺ satisfy Theorem 2.2.  Ordering among 
fuzzy singletons in space ܻ also exists, i.e., ܤ  כହܤ  ସܤ ܤଷכ  כଶܤ  ଵܤ .  Three fuzzy rules are provided, i.e., ܴଵ: ଵܣ ՜ ଵܤ , ܴସ: ସܣ ՜ ସܤ , and ܴ: ܣ ՜ ܤ .  Interpolation 
between two fuzzy rules is possible [6].  As an example, from ܴଵ  and ܴସ , ܴଶכ  and ܴଷכ  can be interpolated with linear 
interpolation.  Other polynomial functions can also be used 
for estimating ܴଶכ and ܴଷכ  [6].  Such method is called fuzzy 
interpolative reasoning [6]. 

 

 
Figure 2. Interpolation of fuzzy rules 

C. An alternative approach to fuzzy reasoning 
Definitions 1, 6, and 7, are considered, and additional 

information is available, i.e., the monotonicity property 
(Definition 2).  Based on the monotone ordering conditions of 
fuzzy rules (i.e., Theorem 2), it is known that ܤାଵ,    .,ܤ
Some of ܤ, (Definition 7) are unknown, and those known ܤ, satisfy the monotone ordering conditions of fuzzy rules.  
Instead of interpolating the fuzzy rules [6], it is possible to 
represent ܤ,כ  as an interval.  To simplify the notation,  ܴכ כܣ :  ՜ כ,ܤ  is denoted as ܤ,כ ሺܣכ ሻ , and the interval of ܤ,כ ሺܣכ ሻ is denoted as ቂܤ,כ ሺܣכ ሻ  , כ,ܤ ሺܣכ ሻ  ቃ.  The lower and 
upper bounds of ܤ,כ ሺܣכ ሻ can be obtained using Equations 8 
and 9, respectively. 

כ,ܤ  ሺܣכ ሻ ൌ ܣ,ሺܤሺݔܽ݉ ع כܣ ሻሻ (8) ܤ,כ ሺܣכ ሻ ൌ ݉݅݊ ሺܤ,ሺܣ غ כܣ ሻሻ (9) 
 
The lower and uppers bounds result in an interval-valued 

FIS model.  The size and coverage of the resulting 
interval-valued FIS model are obtained using Equations 3 and 
4, respectively.  Based on the example in Figure 2, ܤଶ,כ ሺܣଶכ ሻ ൌ ଵሻሻܣଵ,ሺܤሺݔܽ݉  and ܤଶ,כ ሺܣଶכ ሻ ൌ ݉݅݊ ሺܤସ,ሺܣସሻ,  .ሻሻܣ,ሺܤ

An illustrative example with six fuzzy rules is further 
exemplified.  Note that ܣ  is a Gaussian MF, which is 
specified by two parameters, i.e., ܿ and ߪ , where ݕ ൌ݁ିభమ൫ሺ௫ିೝሻ/ఙೝ൯మ

.  Referring to Rule Set 1 in Table 3, a 
monotone but incomplete fuzzy rule base is formed, whereby ܤଶ,ሺܣଶ ሻ, ܤଷ,ሺܣଷ ሻ, and ܤହ,ሺܣହ ሻ are unknown.  With FRI, ܤଶ,ሺܣଶ ሻ=2.  Using the proposed interval-based method, the 
results in Table 4 are obtained.  As an example, with ݎ ൌ 2, 
the interval obtained is ܤଶ,൫ܣଶ ൯ ൌ ሾ1,4ሿ.   

 
 
 

Table 3 Fuzzy rules set for experiments ܣ ݎ ܣ,ሺܤ  ሻ ܤ,ሺܣ ሻ ܤ,ሺܣ ሻ 
[ܿ,  Rules set 1 [ߪ

(monotone 
but 

incomplete) 

Rules set 2 
(non- 

monotone) 

Rules set 3 
(incomplete 

and non- 
monotone) 

1 ሾ1,0.3] 1 1 1 
2 ሾ2,0.3] 2כ 3  
3 ሾ3,0.3] 34 2 כ 
4 ሾ4,0.3] 4 4 3 
5 ሾ5,0.3] 5כ 2  
6 ሾ6,0.3] 6 6 6 
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Table 4 Experimental results ܤ ݎ,ሺܣ ሻ ܤ,ሺܣ ሻ ܤ,ሺܣ ሻ 
Rules set 1 

(  monotone but 
incomplete) 

Rules set 2 
(non-monotone) 

Rules set 3 
(incomplete 

and 
non-monotone) 

1 ሾ1,1ሿ ሾ1,1ሿ [1,1] 
2 ሾ1,4ሿ* ሾ2,3ሿ [1,4]* 
3 ሾ1,4ሿ* ሾ2,3ሿ [3,4] 
4 ሾ4,4ሿ ሾ2,4ሿ [3, 4] 
5 ሾ4,6ሿ  *ሾ2,4ሿ [3,6] כ
6 ሾ6,6ሿ ሾ6,6ሿ [6, 6] 

 
Figure 3 shows the resulting FIS models from FRI as 

well as our proposed method.  With ݔ ൌ 1 and ݔ ൌ 6, the 
estimated coverage of the our proposed interval-valued FIS 
model is 7.99. 

 
 

 
Figure 3. The FIS models from FRI and our proposed method 

 
 

D. Handling of a non-monotone fuzzy rule base 
In this section, Definitions 1, 6, and 7 are considered, and 

additional information is available, i.e., the monotonicity 
property (Definition 2) is satisfied.  It is known that ܤାଵ, ܤ,.   All ܤ,  (Definition 7) are known, but, they do not 
follow a monotone order. 

Again, each ܤ,  is denoted as an interval, i.e., ቂܤ,ሺܣ ሻ  , ܣ,ሺܤ ሻ  ቃ.  Following Equations 5 and 6, the 

lower and upper bounds of ܤ,ሺܣ ሻ can be obtained using 
Equations (10) and (11), respectively. ܤ,ሺܣ ሻ  ൌ ݉݅݊ሺܤ,ሺܣ غ ܣ,ሺܤ ሻሻ (10)ܣ ሻ  ൌ ܣ,ሺܤሺ ݔܽ݉ ع  ሻሻ (11)ܣ

 
Again, the lower and uppers bounds result in an 

interval-valued FIS model.   The size and coverage of the 
resulting interval-valued FIS model are obtained using 
Equations (3) and (4), respectively. 

An illustrative example with 6=ݎ is examined, and Rule set 
2 in Table 3 is considered.  It is a non-monotone and complete 
fuzzy rule base.  With the proposed method, the results in 
Table 4 are obtained.  Figure 4 shows the FIS models.  The 
resulting FIS model with the non-monotone and complete 
fuzzy rule base does not satisfy Definition 2.  The 
interval-valued FIS model from our proposed method is also 
plotted, and its coverage is 5.99. 

 

 
Figure 4. The FIS models from FRI and our proposed method 

 

E. Handling of a non-monotone and incomplete fuzzy rule 
base 

The findings in Sections IV(C) and IV(D) can be combined 
to handle a non-monotone and incomplete fuzzy rule base.  
The original fuzzy rules from experts are incomplete and 
non-monotone.  As such, the method in Section IV(D) is used 
to identify the interval of ܤ,ሺܣ ሻ  .  Then, the interval of ܤ,כ ሺܣכ ሻ  is obtained with Equations (12) and (13), 
respectively. ܤ,כ ሺܣכ ሻ ൌ ܣ,ሺܤሺݔܽ݉ ع כܣ ሻሻ (12) ܤ,כ ሺܣכ ሻ ൌ ݉݅݊ ሺܤ,ሺܣ غ  ሻሻ (13)כܣ

 
Again, an illustrative example with 6=ݎ is studied, and 

Rule set 3 in Table 3 is considered.  It is a non-monotone and 
incomplete fuzzy rule base.  With the proposed method, the 
results in Table 4 are obtained.  Figure 5 shows the resulting 
interval-valued FIS model with our proposed method.  Its 
coverage is 7.99. 

 

 
Figure 5. The resulting interval-valued FIS model 

 

F. Remarks 
The proposed interval approach to handling non-monotone 

information in the modelling process of single-input target 
monotone systems can be extended to multi-input target 
monotone systems.  Besides, the proposed approach in 
Section IV can be extended to Mamdani [10] and SIRM [11] 
FIS models, in which the monotonicity property is of 
importance.  In practice, the proposed approach is useful for 
assessment and decision making problems [12-13], in which 
the available fuzzy rules can be incomplete and/or 
non-monotone. 

 

2182



 
 

 

V. CONCLUSIONS 
In this paper, a new direction to solve problems relating to 

modelling of monotonicity-preserving models is described.  
The rationale is to keep the original information as it is, and to 
represent the information as an interval.  The upper and lower 
bounds of the interval are defined.  The region governed by 
the interval is explained as a coverage, and the size of the 
coverage is a measure of uncertainty.  The usefulness of the 
proposed method for handling a non-monotone original 
estimate (i.e., a mathematical function) and a non-monotone 
data set has been evaluated using simulated examples. 

The proposed interval-based method for handling a 
non-monotone data set is further extended to fuzzy modeling, 
for solving problems related to incomplete and non-monotone 
fuzzy rules.  Simulation examples have been further 
demonstrated.  The outcomes indicate that the proposed 
method constitutes an alternative to monotone fuzzy 
reasoning.  For future research, the proposed method for 
undertaking interval-valued functions and fuzzy functions 
will be studied. 
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