
Specialized Software for Fuzzy Natural Logic and Fuzzy Transform
Applications

Vilém Novák, Viktor Pavliska and Radek Valášek

Abstract—In this paper, three special soft computing software
systems are presented. The systems are based on the original
results in two areas: fuzzy natural logic and fuzzy transform.

The first software is LFL Controller that is a universal SW
system that can be used in fuzzy or linguistic control, and in
decision-making. The system implements results of fuzzy natural
logic, namely the theory of evaluative linguistic expressions
and perception-based logical deduction. This means the control
or decision strategy are defined directly in natural language.
Additionally, it can also realize classical fuzzy control on the
basis of relational interpretation of fuzzy IF-THEN rules. This
system has wide range of applications and was already applied
in control of real plants.

The second system is LFL Forecaster that is a specialized
SW for analysis and forecasting of time series. The analysis is
realized using F-transform and forecasting using results of fuzzy
natural logic.

The third system is FT-Studio that is a specialized SW for
computation of fuzzy transform of functions that can be defined
either using a formula, or given by data.

I. INTRODUCTION

IN this paper we describe three special software systems:
LFL-Controller, LFL-Forecaster and FT-studio that im-

plement original results of the theoretical research in fuzzy
natural logic and fuzzy transform (F-transform). The first two
systems are the main representatives of a class of Linguistic
Fuzzy Logic software systems developed in our institute. The
name, shortened to LFL, means that results of the mathe-
matical theory of fuzzy natural logic are implemented in the
software. These systems have many kinds of applications.
The LFL-Controller has applications in control and decision-
making, and the LFL-Forecaster is devoted to the analysis and
forecasting of time series.

The FT-studio is a specialized software whose aim is to
enable the user to learn the method and technique of fuzzy
transform and to make various kinds of experiments with it.
The system works with several possibilities how the input
function can be specified.

Below, we will briefly outline the main principles of the
theories implemented in the software and then describe func-
tioning of the considered software systems. Demo versions
of all three systems can be downloaded from our WEB page
http://irafm.osu.cz/ .

Vilém Novák, Viktor Pavliska and Radek Valášek are with the University of
Ostrava, Institute for Research and Applications of Fuzzy Modeling, Center of
Excellence IT4Innovations, 30. dubna 22, 701 03 Ostrava 1, Czech Republic
(email: fVilem.Novak,Viktor.Pavliska,Radek.Valasekg@osu.cz).

The paper has been supported by the European Regional Development Fund
in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070).

II. ELEMENTS OF FUZZY NATURAL LOGIC

The fuzzy natural logic�) is a formal mathematical theory
that consists of:
(a) A formal theory of evaluative linguistic expressions ex-

plained in detail in [1] (see also [2]).
(b) A formal theory of fuzzy IF-THEN rules and approximate

reasoning presented in [3], [4], [5], [6], [7].
(c) A formal theory of intermediate and generalized fuzzy

quantifiers, presented in [8], [9], [10].
So far, the theories (a) and (b) are implemented in the

LFL software systems. The central role is there played by
the theory of evaluative linguistic expressions. These are
expressions with the general form

hlinguistic modifierihTE-adjectivei (1)

where hTE-adjectivei is one of the adjectives “small, medium,
big” (and possibly other, so called gradable, specific adjec-
tives), or “zero” as well as arbitrary symmetric fuzzy number.
The hlinguistic modifieri is an intensifying adverb such as
“very, roughly, approximately, significantly”, etc. Since these
expressions characterize values in an ordered scale, they may
have also a sign (“positive–negative”).

Simple evaluative expressions of the form (1) can be
combined using logical connectives (usually “and” and “or”)
to obtain compound ones. At the same time, a limited usage
of the particle “not” is also possible. Recall that there are
limitations in natural language when using such connectives.
It should be noted that compound evaluative expressions do
not form a boolean algebra.

The linguistic modifiers in (1) belong to a wider linguistic
phenomenon called hedging that is represented by a class of
linguistic expressions specifying more closely the topic of
utterance. In (1) are considered mostly special adverbs.

The modifiers can have narrowing and extending effect.
Narrowing modifiers are “extremely, significantly, very, typ-
ically” and widening ones are “more or less, roughly, quite
roughly, very roughly”. Note that narrowing modifiers make
the meaning of the whole expression more precise while
widening ones do the opposite. Thus, “very small” is more
precise than “small”, which, on the other hand, is more precise
(more specific) than “roughly small”.

It should be noted that the case when hlinguistic hedgei is
not present (expressions such as “weak, large”, etc.) is dealt

�)In older author’s publications, this logic is called fuzzy logic in broader
sense.

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 2337

with as a presence of empty linguistic hedge. Thus, all the
simple evaluative expressions have the same form (1).

We distinguish evaluative expressions and evaluative pred-
ications. The latter are expressions of natural language of the
form ‘X is A’. The A is an evaluative expression and X is
a variable which stands for objects, for example “degrees
of temperature, height, length, speed”, etc. Examples are
“temperature is high”, “speed is extremely low”, “quality is
very high”, etc. In general, the variable X represents certain
features of objects such as “size, volume, force, strength,” etc.
and so, its values are usually real numbers.

Important notion is that of linguistic context. In our theory
this is a triple of numbers hvL; vS ; vRi where vL is the
leftmost typically small value, vS is typically medium value
and vR is the rightmost typically big value. The concept of
context turned out to be very powerful in applications.

The evaluative linguistic predications are basic constituents
of fuzzy/linguistic IF-THEN rules that are special conditional
clauses of natural language. A set of such rules is called
linguistic description, that is, a finite set of fuzzy/linguistic
IF-THEN rules

R1 = IF X is A1 THEN Y is B1;
R2 = IF X is A2 THEN Y is B2;

. (2)
Rm = IF X is Am THEN Y is Bm

where “X is Aj”, “Bj is Y ”, j = 1; : : : ;m are evaluative
linguistic predications. The linguistic description can be un-
derstood as a specific kind of a (structured) text which can be
used for description of various situations or processes, or for
effective description of a control or decision strategy.

If the linguistic description is understood as a special text
then it requires a special inference method. Such a method
is the Perception-based Logical Deduction (PbLD) that is a
specific inference method working with genuine meaning of
evaluative linguistic expressions and based on formal proper-
ties of mathematical fuzzy logic. It was described in several
papers [2], [5], [7], [11]. It is specific for this inference that
it is based on local properties of the linguistic description.
Consequently, we can distinguish between the rules but at the
same time deal with them as vague expressions of natural
language. To obtain the specific conclusion, we also must
use a defuzzification method. The PbLD method uses special
methods: DEE (Defuzzification of Evaluative Expressions)
and its smooth modification.

To demonstrate our method, let us consider the following
linguistic description:

R1 = IF X is small THEN Y is small;

R2 = IF X is medium THEN Y is big; (3)
R3 = IF X is big THEN Y is small

This description characterizes linguistically a function that has
small functional values on the left and right side of the graphs
and big ones in the middle. The result using PbLD method is

(a)

(b)

(c)

(d)

Fig. 1. (a) A function obtained from the simple linguistic description (3) using
the PbLD method with smooth DEE defuzzification. (b) Extensions of the
evaluative expressions “small–medium–big” in the context h0; 0:4; 1i (c) A
function obtained using Mamdani’s-COG method from linguistic description
of the form (3) interpreted as fuzzy relation constructed using triangles. (d)
the triangular membership functions of the expressions SM, ME, BI used for
obtaining of the function above.

depicted in part (a) of Fig. 1. In part (b) are extensions of the
used evaluative expressions in the context h0; 0:4; 1i.

III. RELATIONAL INTERPRETATION OF LINGUISTIC
DESCRIPTION

An alternative interpretation of the linguistic description is
the widely known relational one. The linguistic description
consisting of m rules of the form (2) is in this case assigned
one of two special fuzzy relations that are called normal forms
(see [12], [13], [14], [15]).

(a) Disjunctive normal form

RDNF (u; v) =

m_
j=1

(A(u)
B(v)); u 2 U; v 2 (4)

where the operation
 is a either of the minimum, product,
or Łukasiewcz t-norm.

(b) Conjunctive normal form

RCNF (u; v) =

m̂

j=1

(A(u)! B(v)); u 2 U; v 2 V

(5)
where ! is an implication function (most often the
Łukasiewicz one a! b = 1^ (1�a+ b); a; b 2 [0; 1]).

In this case, the conclusion is formed by an image under
a fuzzy relation. This procedure can also be explained as a
composition of fuzzy relations.

Let an observation “X is A0” interpreted by a fuzzy set
A0 : U �! L be given. Then the conclusion is a fuzzy set

2338

B0 : V �! L given by the membership function

B0(v) =
_
u2U

(A0(u)
R(u; v)); v 2 V (6)

where R : U � V �! L is a fuzzy relation interpreting
the linguistic description (it can be obtained, e.g., either
as a disjunctive normal form from (4) or as a conjunctive
normal form from (5)). The
 is a special t-norm (quite
often the minimum). Recall that the disjunctive normal form-
based method with COG defuzzification is usually called
“Mamdani’s inference”.

Let us emphasize that formula (6) provides a good approx-
imation of a given function (see the mathematical justification
in [12, Chapter 6]). One must be, however, more careful
about shapes of the used membership functions of the fuzzy
sets A;B in (4) or (5). For example, if we simply replace
the evaluative expressions in the linguistic description (3) by
triangular fuzzy sets SM, ME, BI depicted in Fig. 1(d) then
using the Mamdani-COG method we obtain the function in
Fig. 1(c).

Let us remark that in the literature, one can find also another
concept of linguistic description (see, e.g., [16]). The authors,
however, do not analyze syntax of the considered linguistic
expressions — they use the unspecified term “linguistic la-
bels”. Moreover, they consider only simple extensions taken
as their semantics.

IV. THE PRINCIPLE OF F-TRANSFORM

The fundamental idea of the theory of fuzzy transform (F-
transform) is to map a continuous function f : [a; b] �! R

to a finite vector of numbers (direct F-transform) and then
to transform it back (inverse F-transform). The result is a
function f̂ that approximates the original function f . The
parameters of the F-transform can be set in such a way that
the approximating function f̂ has desired properties.

The first step of the F-transform procedure is to form a
fuzzy partition of the domain [a; b]. It consists of a finite
set of fuzzy sets A = fA0; : : : ; Ang, n � 2, defined over
nodes a = c0; : : : ; cn = b. Properties of the fuzzy sets from
A are specified by five axioms, namely: normality, locality,
continuity, unimodality, and orthogonality. The orthogonality
is formally defined by

nX
i=0

Ai(x) = 1; x 2 [a; b] (7)

and it is often called the Ruspini condition.
A fuzzy partition A is called h-uniform if the nodes

c0; : : : ; cn are h-equidistant, i.e., for all k = 0; : : : ; n � 1,
ck+1 = ck + h, where h = (b � a)=n and the fuzzy sets
A1; : : : ; An�1 are shifted copies of a generating function
A : [�1; 1] �! [0; 1] such that for all k = 1; : : : ; n� 1

Ak(x) = A

�
x� xk

h

�
; x 2 [ck�1; ck+1]

(for k = 0 and k = n we consider only half of the function A,
i.e. restricted to the interval [0; 1] and [�1; 0], respectively).

The membership functions A0; : : : ; An of fuzzy sets form-
ing the fuzzy partition A are often called basic functions. Once
the basic functions A0; : : : ; An 2 A are selected, we define
a direct F-transform of a continuous function f as a vector
F[f] = (F0[f]; : : : ; Fn[f]), where each k-th component Fk[f]
is equal to

Fk[f] =

R b
a
f(x)Ak(x) dxR b
a
Ak(x) dx

; k = 0; : : : ; n:

The meaning of Fk[f] component is a weighted average of
the functional values f(x) where weights are the membership
degrees Ak(x). The inverse F-transform of f with respect to
F[f] is a continuous functiony) f̂ : [a; b] �! R such that

f̂(x) =

nX
k=0

Fk[f] �Ak(x); x 2 [a; b]:

It is proved that the function f̂ differs from f (unless f is a
constant function) but, under certain conditions, the sequence
ff̂ng uniformly converges to f for n ! 1. All the details
and full proofs can be found in [17], [18].

The F-transform introduced above is F0-transform (i.e.,
zero-degree F-transform). Its components are real numbers. If
we replace them by polynomials of arbitrary degree m � 0,
we arrive at the higher degree Fm transform. This generaliza-
tion has been in detail described in [18]. Let us remark that
the F1 transform enables to estimate also derivatives of the
given function f as average values over wider area.

V. LFL CONTROLLER

The LFL Controller is a general software that makes it
possible to work with linguistic descriptions, modify them
and test their behavior. It implements more possibilities how
they can be interpreted and more possibilities for derivation
of the conclusion. The leading interpretation is linguistic in
combination with PbLD method but relational interpretation
is also available.

y)By abuse of language, we call by direct as well as inverse F-
transform both the procedure as well as its respective results F[f] =
(F0[f]; : : : ; Fn[f]) and f̂ .

Fig. 2. The main screen of LFL Controller.

2339

Fig. 3. The main screen of simulation of linguistic control in a closed
feedback loop using LFL Controller.

The LFL Controller consists of the following parts:

(i) GUI using which we can design and test behaviour of the
linguistic descriptions. The main screen is in Fig. 2. It is
divided into 5 parts: the upper left contains 1–5 gauges
using which values of the antecedent (input) variables are
set. The lower left is comment, the upper right contains
resulting fuzzy set with marked defuzzified value, the
center right is the list of fired rules and the lower right
contains the course of the consequent values (output) for
all possible values of antecedents.

(ii) GUI (LFLCSim) using which we can test fuzzy con-
trol in a closed feedback loop of simple processes
characterized using differential equations with constant
coefficients extended possibly by few non-linearities. A
typical screen with simulation of linguistic control of a
simple, slightly non-linear third-order process is depicted
in Fig. 3. The figure displays also one of the fired rules.

(iii) MATLAB / Simulink library which brings fuzzy mode-
ling entities into the MATLAB environment in a graph-
ical modeling manner (see example in Fig. 5). Practical
problems are usually too complex and difficult to be
modeled only by one technique, therefore a combination
of several approaches is used to design system for
solving the task.

(iv) General interface for other software systems using Mi-
crosoft COM (Component Object Model) technology –
RBaseCOM. COM is an object framework which is used
by developers to create re-usable software components,
link components together to build applications, and take
advantage of Windows services. COM objects can be
used inside various programming languages.

The main objective of the LFL Controller is to enable
design of linguistic descriptions and to realize inference on
the basis of them. The leading method is PbLD. Hence, LFL
Controller makes it possible to realize fully the original idea
of fuzzy control — to apply genuine linguistic description of

a control strategy in control of processes. Therefore, we speak
about linguistic control which has the following properties

(i) Mathematical theory of the meaning of special expres-
sions of natural language is applied. The computer
behaves as if “understanding” them.

(ii) Application of the perception-based logical deduction
makes it possible to derive a conclusion on the basis
of (vague) linguistic description formulated directly in
natural language.

LFL Controller can be applied both for linguistic control
and for decision-making. In the former case, the control engi-
neer can focus only on the control strategy which is described
in natural language and needs not care about shapes of fuzzy
sets; these are usually hidden to him. Instead, the control
engineer modifies the used evaluative linguistic expressions.

The LFL Control shares nice properties of the classical
fuzzy control (cf. [19]) but has several additional ones:

(a) The linguistic description is written in genuine linguistic
form which is well understandable to people, even after
years. Therefore, it is easy to modify the description any
time without big effort, if necessary.

(b) The linguistic description characterizes a general control
strategy which is often common to many kinds of pro-
cesses. Therefore, the same description can be used for
control of various kinds of processes.

(c) The control is very robust and does not require modifica-
tions even if the conditions are varying a lot and/or the
control is subject to many random disturbances.

(d) The linguistic context of the input variables can be auto-
matically learned. Moreover, it can also be continuously
modified so that the resulting control is very precise.

LFL Controller also enables to view extensions of all
evaluative expressions that can be used in the application.
The extensions are in Fig. 4. It is also possible to modify
the meaning of hedges and thus, to modify the extensions.
However, this is not recommended because all of them were
carefully tuned to fit linguistic feeling of people. The user
is recommended to define linguistic expressions directly and
the computer is expected to “understand” them and to act
accordingly.

The LFLCSim (the testing GUI program of LFL Controller)
enables us to simulate control using one of four fuzzy versions
of the classical P, PD, PI, and PID controllers. Let us consider
the variables error Et, its derivative/change dEt, its second
derivative/change d2Et, control action Ut and its derivative
dUt. Then the following linguistic descriptions can be used
for process control:

(i) PD-fuzzy controller with rules of the form

IF Et is A AND dEt is B THEN Ut is C:

(ii) PI-fuzzy controller with rules of the form

IF Et is A AND dEt is B THEN dUt is C:

2340

Fig. 4. Extensions of evaluative expressions in the given context h0; 0:4; 1i.

Out1

1

Rules from file

EconChar .rb RB

Reconstruction cost

[0; 1]

Price

[2000 ; 4000]

LFLC

Inference

PbLD

RB

IN

OUT

Economical characteristics

[0; 1]

Defuzzification

Simple DEE

In2

2

In1

1

Fig. 5. Example of Simulink schema using FGML.

(iii) PID-fuzzy controller with rules of the form

IF Et is A AND dEt is B AND d2Et is C
THEN dUt is D

where A;B; C;D are specific evaluative expressions. Of
course, any other kinds of variables can also be considered.

When LFL Controller is applied in decision-making then
the decision problem must be decomposed into several sub-
problems, each of which can be described using some linguis-
tic description — see Figure 5. The final decision is obtained
as an output of the summarizing linguistic description and it
can be expressed both numerically as well as linguistically.
More details including a sophisticated example can be found
in [20].

An important feature of LFL Controller is also possibility
to learn linguistic description from data. The method is
described in [21]. It is used for learning linguistic description
on the basis of monitored hand-operated successful control
and also in LFL Forecaster described below. Many practical
tests demonstrate that the learned linguistic description can
repeat the control as successfully as the original hand-operated
control.

Besides the linguistic interpretation, the LFL Controller
makes it possible also to work with the classical relational

interpretation of the linguistic description, namely, interpreta-
tion of the linguistic predications are just fuzzy sets that can
be explicitly specified by the user.

It should be stressed that the relational interpretation, in
fact, is not based on expert knowledge expressed in natural
language. The used fuzzy sets have in most cases triangular
shape and they are further modified to obtain the best control.
Consequently, the resulting rule base comprises of fuzzy sets
which have minimal, if any, relation to the original meaning of
the words used by experts when presenting their knowledge.
The control engineers, in fact, use a system that provides
efficient, mathematically well justified approximation of a
control function. This is the reason why modification of shapes
of fuzzy sets is necessary. LFL Controller enables to do the
same. However, its main strength is in the above discussed
linguistic control.

Besides the two GUI systems, LFL Controller includes also
COM object which has following interface:

� LoadFromFile(string FileName): loads rule-
base from rb file

� int NumInputVars(): returns number of input vari-
ables

� double LoBoundOfVar(int VarIndex):
returns low bound of variable context

� double HiBoundOfVar(int VarIndex):
returns high bound of variable context

� string VarName(int VarIndex): returns vari-
able name

� int NumFiredRules(): returns number of fired
rules of latest inference

� int FiredRule(int i): returns i-th fired rule of
latest inference

� double Inference(double *Inputs):
computes inference over given array of doubles as
input

� setLoBoundOfVar(int VarIndex, double
NewLo): sets low bound of variable context

� setHiBoundOfVar(int VarIndex, double
NewHi): sets high bound of variable context

� setInferenceMethod(int infMethodIndex):
sets inference method used for following inference
Possible values of infMethodIndex are:

1) Perception-based Logical Deduction (PbLD).
2) Fuzzy Approximation (CNF).
3) Fuzzy Approximation (DNF) with Minimum t-norm.
4) Fuzzy Approximation (DNF) with Product t-norm.
5) Fuzzy Approximation (DNF) with Łukasiewicz t-

norm.
� setDefuzMethod(int defuzMethodIndex):

sets defuzzification method used after inference. Possible
values of defuzMethodIndex are:

1) Simple Center of Gravity (COG).
2) Modified Center of Gravity (MCOG).
3) Simple Defuzzification of Linguistic Expressions

(DEE).

2341

4) Simple DEE using COG.
5) Defuzzification of Linguistic Expressions.
6) Mean of Maxima (MOM).

The defuzzification methods 3)–5) should be used with the
PbLD inference method.

Linguistic control realized using LFL Controller can be
applied for control of various kinds of processes. Besides
many tens of simulations and control of physical models such
as MATLAB helicopter or magnetic levitation, it was applied
in control of real plants: control of a plaster kiln, system of
hydraulic transition water–oil, control of massive 100t steam
generator. The most successful application is control of 5
smelting furnaces TLP9 in Al Invest company in a small
village Břidličná in the Czech Republic. The application has
been in detail described in [22].

Let us mention that LFL Controller makes it possible to
work also with the disjunctive and conjunctive normal forms
in combination with several kinds of defuzzifications. The
leading method, however, is the PbLD method. Application
of the conjunctive normal form is not so frequent but gives
also good results. A more detailed analysis of this possibility
can be found in [15].

VI. LFL FORECASTER

This is a specialized software system that provides analysis
of time series, forecast of its future behavior and linguistic
evaluation of trend in various parts of it (specified by the user).
Its functioning is based on combination of the F-transform
with fuzzy natural logic.

A time series is a stochastic process (see [23], [24]) X :
Q �
 �! R where Q = f0; : : : ; pg � N is a finite set
whose elements are interpreted as time moments. Our basic
assumption is that the time series can be decomposed into
three components:

X(t; !) = TC (t) + S(t) +R(t; !); t 2 Q;! 2
; (8)

where TC (t) is a trend-cycle and S(t) is a seasonal compo-
nent of the time series X(t). The TC (t) is assumed to be
an ordinary real function. The seasonal component S(t) is
considered to be a mixture of complex periodic functions

S(t) =

rX
j=1

Pj e
i(�jt+'j) (9)

for some finite r where �j are frequencies, 'j phase shifts
and Pj are amplitudes. The R(t; !) is a random noise, i.e.
each R(t) for t 2 Q is a random variable with the zero mean
value finite variance.

The trend-cycle TC is estimated using the F-transform
method described above. It was proved that this estimation
is obtained with high fidelity (cf. [25]). By setting a proper
fuzzy partition (determined on the basis of computation of
periodogram — see [24]), we first compute the F-transform
of X(t)

F[X] = (F1[X]; : : : ; Fn[X]):

Fig. 6. Main screen of LFL Forecaster on which a time series together with
estimation of its trend-cycle using F-transform, its forecast and forecast of
the whole time series are depicted. The used fuzzy partition is also depicted.

Estimation of the trend-cycle is obtained using the inverse
F-transform:

TC (t) � X̂(t):

The LFL Forecaster system forecasts future components
(Fn+1[X]; : : : ; Fn+k[X]) and also the seasonal component
S(t). The forecast of the future components is obtained
using the perception-based logical deduction on the basis of
a linguistic description (2) learned from the past data. As
antecedent variables, we consider the F-transform components
of the given time series F [Xi], i = 1; : : : ; n � 1 as well as
their first- and second-order differences:

�F [Xi] = F [Xi]� F [Xi�1]; i = 1; : : : ; n� 1

�2F [Xi] = �F [Xi]��F [Xi�1]; i = 2; : : : ; n� 1

respectively. All possible combinations are formed and trained
w.r.t. validation set, the best combination is chosen and used in
the forecast. The automatically generated linguistic description
is also provided to the user so that he/she can get better idea
about behavior of the studied time series.

A special task is linguistic evaluation of the trend (ten-
dency) of the time series. This is based on application of the
mentioned first-degree F-transform that provides estimation
of the average slope (tangent) in a specified area. Values of
the slope are then linguistically evaluated using the theory of
evaluative (linguistic) expressions. Typical examples of such
evaluation are fairly large decrease, huge increase, stagnating,
etc. These expressions characterize trend (tendency) of the
time series in an area specified by the user. Note that for
some time series, such as that depicted in Fig. 6, the tendency
is not clear even when seeing its graph. Our solution provides
objective estimation of it.

VII. FT-STUDIO

The Fuzzy Transform Studio (FT-Studio) is a software
system that computes and graphically depicts fuzzy transform
of the degree 0–2 applied to functions with one variable. It is
written in the Qt Framework.

The first step when defining the F-transform is to set fuzzy
partition. The fundamental fuzzy partition is equidistant which
fulfills the Ruspini condition (7). The user can define a number
of nodes and the shape of fuzzy sets. The system makes it
possible to select three kinds of fuzzy partitions that can be
further tuned up as follows:

2342

Fig. 7. Main screen of FT-studio on which approximation of a simple sin-
function is depicted using F0- and F2-transform.

� shift any node but preserve the Ruspini condition,
� shift all nodes and keep them equidistant,
� shift any node and change the width of fuzzy sets (the

Ruspini condition is then harmed).
Typical result of the F-transform of a given function f

realized using FT-Studio is depicted in Fig. 7. The defined
fuzzy partition is in lower part and the result of the inverse F-
transform of a given function is graphically depicted in upper
part. Values of the F-transform components are on the right.
All the values can also be exported into Excel.

The original function f can be given either by mathematical
formula or loaded in the form of data from a file. In Fig. 8,
a Formula Builder is shown. Using it, the user can edit the
formula and write it as a string. The parser can evaluate
all standard trigonometric, logarithmic functions and binary
operators. Moreover, special functions such as min, max, sgn
and noise generators can also be used. It is possible to use

Fig. 8. FT-studio with depicted noise generated using build-in function.

also conditional expression in a form “(predicate) ? true :
false” (the syntax is taken from C++). For example (x < 0)

? normal(0, 1): sin(x) means that if x is less than zero then
the function is generated as a noise with normal distribution
and otherwise, it is generated as sin(x) for x greater or equal
to zero. “normal(0, 1)” means normal distribution with zero
mean value and variance equal to 1.

FT-Studio stores changes in a session file that can be later
opened with all the fuzzy transform setting and a widget
positions. Components of the fuzzy transform can be exported
to the file and graph of all defined functions can be plotted.

Recall that F-transform has a lot of various applications.
Besides time series mentioned above, many applications are
in image processing (fusion, compression, edge detection,
reduction, removing damage), numerical methods (solving
differential equations), or data mining. More can be found
in [17], [26], [27], [28].

VIII. CONCLUSIONS

In this paper, we presented three special soft computing
software systems. The first one is LFL Controller that is
a universal system for fuzzy or linguistic control and also
for decision-making. The system has two GUI programs
and provides also modules that can be included in user’s
application.

The second system is LFL Forecaster that is a specialized
system for analysis and forecasting of time series. The anal-
ysis is realized using F-transform and forecasting using the
methods of fuzzy natural logic.

The third system is FT-Studio that is a specialized system
for computation of fuzzy transform of functions that can be
defined either using a formula or given by data.

REFERENCES

[1] V. Novák, “A comprehensive theory of trichotomous evaluative linguis-
tic expressions,” Fuzzy Sets and Systems, vol. 159, no. 22, pp. 2939–
2969, 2008.

[2] ——, “Mathematical fuzzy logic in modeling of natural language
semantics,” in Fuzzy Logic – A Spectrum of Theoretical & Practical
Issues, P. Wang, D. Ruan, and E. Kerre, Eds. Berlin: Elsevier, 2007,
pp. 145–182.

[3] A. Dvořák and V. Novák, “Fuzzy logic deduction with crisp observa-
tions,” Soft Computing, vol. 8, pp. 256–263, 2004.

[4] A. Dvořák and V. Novák, “Formal theories and linguistic descriptions,”
Fuzzy Sets and Systems, vol. 143, pp. 169–188, 2004.

[5] V. Novák, “Perception-based logical deduction,” in Computational In-
telligence, Theory and Applications, B. Reusch, Ed. Berlin: Springer,
2005, pp. 237–250.

[6] V. Novák and S. Lehmke, “Logical structure of fuzzy IF-THEN rules,”
Fuzzy Sets and Systems, vol. 157, pp. 2003–2029, 2006.

[7] V. Novák and I. Perfilieva, “On the semantics of perception-based fuzzy
logic deduction,” International Journal of Intelligent Systems, vol. 19,
pp. 1007–1031, 2004.

[8] A. Dvořák and M. Holčapek, “L-fuzzy quantifiers of the type h1i
determined by measures,” Fuzzy Sets and Systems, vol. 160, pp. 3425–
3452, 2009.

[9] V. Novák, “A formal theory of intermediate quantifiers,” Fuzzy Sets and
Systems, vol. 159, no. 10, pp. 1229–1246, 2008.

[10] P. Murinová and V. Novák, “A formal theory of generalized intermediate
syllogisms,” Fuzzy Sets and Systems, vol. 186, pp. 47–80, 2012.

[11] V. Novák, “Genuine linguistic fuzzy logic control: Powerful and suc-
cessful control method,” in Computational Intelligence for Knowledge-
Based Systems Design, E. Hüllermeier, R. Kruse, and F. Hoffmann, Eds.
Berlin: Springer, LNAI 6178, 2010, pp. 634–644.

[12] V. Novák, I. Perfilieva, and J. Močkoř, Mathematical Principles of Fuzzy
Logic. Boston: Kluwer, 1999.

2343

[13] I. Perfilieva, “Fuzzy function as an approximate solution to a system of
fuzzy relation equations,” Fuzzy Sets and Systems, vol. 147, pp. 363–
383, 2004.

[14] ——, “Logical approximation,” Soft Computing, vol. 7, no. 2, pp. 73–
78, 2002.

[15] M. Štěpnička, U. Bodenhofer, M. Daňková, and V. Novák, “Continuity
issues of the implicational interpretation of fuzzy rules,” Fuzzy Sets and
Systems, vol. 161, pp. 1959–1972, 2010.

[16] D. Sanchez-Valdes, A. Alvarez-Alvarez, and G. Trivino, “Linguistic
description about circular structures of the mars’ surface,” Applied Soft
Computing, vol. 13, p. 4738?4749, 2013.

[17] I. Perfilieva, “Fuzzy transforms: theory and applications,” Fuzzy Sets
and Systems, vol. 157, pp. 993–1023, 2006.

[18] I. Perfilieva, M. Daňková, and B. Bede, “Towards a higher degree F-
transform,” Fuzzy Sets and Systems, vol. 180, pp. 3–19, 2011.

[19] K. Michels, F. Klawonn, R. Kruse, and A. Nürnberger, Fuzzy Control:
Fundamentals, Stability and Design of Fuzzy Controllers. Berlin:
Springer, 2006.

[20] V. Novák, I. Perfilieva, and N. G. Jarushkina, “A general methodology
for managerial decision making using intelligent techniques,” in Recent
Advances in Fuzzy Decision-Making, E. Rakus-Anderson, R. Yager,
N. Ichalkaranje, and L. Jain, Eds. Heidelberg: Springer, 2009, pp.
103–120.

[21] R. Bělohlávek and V. Novák, “Learning rule base of the linguistic expert
systems,” Soft Computing, vol. 7, pp. 79–88, 2002.

[22] V. Novák and J. Kovář, “Linguistic IF-THEN rules in large scale
application of fuzzy control,” in Fuzzy If-Then Rules in Computational
Intelligence: Theory and Applications, R. Da and E. Kerre, Eds.
Boston: Kluwer Academic Publishers, 2000, pp. 223–241.

[23] J. Anděl, Statistical Analysis of Time Series. Praha: SNTL, 1976 (in
Czech).

[24] J. Hamilton, Time Series Analysis. Princeton University Press: Prince-
ton, 1994.

[25] V. Novák, I. Perfilieva, M. Holčapek, and V. Kreinovich, “Filtering
out high frequencies in time series using F-transform,” Information
Sciences, (to appear).

[26] I. Perfilieva, V. Novák, and A. Dvořák, “Fuzzy transform in the analysis
of data,” Int. Journal of Approximate Reasoning, vol. 48, pp. 36–46,
2008.

[27] I. Perfilieva, “Fuzzy transforms: A challenge to conventional trans-
forms,” in Advances in Images and Electron Physics, 147, P. Hawkes,
Ed. San Diego: Elsevier Academic Press, 2007, pp. 137–196.

[28] ——, “Fuzzfy transform: Application to reef growth problem,” in Fuzzy
Logic in Geology, R. B. Demicco and G. J. Klir, Eds. Amsterdam:
Academic Press, 2003, pp. 275–300.

2344

