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Abstract—In this paper, the sufficiency condition for 
disturbance attenuation level for uncertain discrete-time T-S 
fuzzy model-based system is derived by non-quadratic Lypaunov 
function (NQLF) and is expressed in terms of LMIs. And the 
quadratic finite horizon performance index optimal robust 
control with disturbance attenuation level for uncertain T-S 
fuzzy system can be formulated into static constrained 
optimization problem. Then, for static constrained optimization 
problem, the genetic algorithm is employed to search feedback 
gain for optimal finite quadratic performance index of uncertain 
discrete-time TS fuzzy model. Thus, the problem solving can be 
greatly simplified 

Keywords— finite horizon optimal control, H∞  control, T-S 
fuzzy models, hybrid-Taguchi genetic algorithm, non-quadrtaic 
Lyapunov function, LMI. 

I.  INTRODUCTION  
A method is proposed to design robust controller to 

minimize finite horizon summation of quadratic cost with 
prescribed level of disturbance attenuation for discrete-time 
TS fuzzy-model-based systems with a class of uncertainty. To 
achieve robust disturbance attenuation, i.e. H∞  control, we 
derive the relax conditions by employing non-quadratic 
Lyapunov function and non-PDC state feedback controller , 
which give more degree of freedom, as the forms in [1]. The 
conditions are expressed in terms of LMIs. Then, Hybrid 
Taguchi-genetic algorithm (HTGA)[2,3] is proposed to be the 
optimization tool for minimizing finite-horizon quadratic cost. 
The reason why we use HTGA rather than traditional genetic-
algorithms (TGA) is that Chou and his associate have shown 
that HTGA may obtain robust solution and better performance 
index  [3,4]. By integrating LMI and HTGA, the controller 
design problem is transformed into a static-parameter 
constrained optimization problem represented by algebraic 
equations together with LMI conditions. Thus, the design 
problem can be solved in numerical way. 

This paper is organized as follows. In section 2, the 
background of discrete-time T-S fuzzy system and problem 
formulation are provided. Then, in section 3, we first 

presented the main results of disturbance attenuation for 
nominal systems. In the next subsection, the results are 
extended to systems with time varying parametric 
uncertainties to deal with robust design. HTGA algorithm is 
followed to find the robust quadratic-optimal controllers of 
discrete-time T-S fuzzy system with time varying uncertainties.  

The notation used in this paper is quite standard. 
( ) ( )( ) .TA A A+ = +  m nR × denotes m n×  real matrix. 

∗ denotes the symmetric terms in a block matrix. ( )ih t+  
denotes  ( 1)ih t + . For short hand, we also sometimes will 
drop time t in time functions; for example, ih  instead of ( )ih t . 
 

II. PRELIMINARIES AND PROPLEM FORMULATION 

Consider a class of uncertain discrete-time non-linear 
systems governed by the following IF-THEN rule based T-S 
fuzzy system:  

Plant Rule i : If 1( )f t  is 1
iM  and … and ( )sf t  is i

sM , 

Then 
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  (1) 

where i
jM denotes an j -based fuzzy set used for the thi  

fuzzy rule, ( )if t  is the thi  premise variable, and r  is the 
total number of fuzzy rules. ( ) n nx t R ×∈ is the state 

vector, ( ) wmw t R∈ is the disturbance input vector, ( ) umu t R∈ is 

the input vectors, and ( ) pz t R∈ is the controlled output 
vectors. ,nxn

iA R∈ ,wn m
wiB R ×∈ ,un m

uiB R ×∈ ,zn p
ziC R ×∈

,z wp m
zwiD R ×∈ z up m

zuiD R ×∈ are the system matrices with time 
varying uncertainties defined as 
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where ,xiH ,ziH ,xiE uiE , wiE  , ziE , zwiE , and zuiE  are known 
constant matrices with appropriate dimension and xFΔ and zF Δ   
represent he unknown nonlinear time-varying function 
satisfying ( ) ( )T

x xF t F t IΔ Δ ≤ and T
z zF F IΔ Δ ≤  . 

Given a pair of ( )x t and ( ) ,u t the final outputs of fuzzy 
system can be inferred as: 
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where [ ]1 2( ) ( ), ( ), , ( )sf t f t f t f t= …  is the premise variable 

vector, ( ) ( )
1

( ) ( ) ,
s

j
i i j
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f t M f tμ
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In this paper, we have ( )( ) 0.i f tμ ≥ And we have 
following properties 

 ( )( ) ( )
1

0,   1, , ,   and  ( ) 1,
r

i i
i

h f t i r h f t
=

≥ = =∑…  

for all 0.t ≥ In what follows, we will use ih  instead of 

( )( )ih f t  for simplicity. Before stating our control object, we 
give a definite regarding to disturbance attenuation level. 

Definition 1: γ -disturbance attenuation: Given a constant 
0,γ > the system is said to achieve γ -disturbance attenuation 

if 2
0 0

( ) ( ) ( ) ( )T T
t t

z t z t w t w tγ∞ ∞

= =
<∑ ∑  for all 2( ) [0, )w t L∈ ∞  with 

initial condition (0) 0.x =  If initial condition (0) 0,x ≠ a 
modified term is added to right side to become 

2
0 0

( ) ( ) ( ) ( ) (0).T T
t t

z t z t w t w t Vγ∞ ∞

= =
< +∑ ∑  The γ -disturbance 

attenuation level also means H∞ norm of the system 
from ( )w t to ( )z t  is less than .γ  

For control system design, we primarily consider to 
synthesize a feedback controller to ensure the uncertain 
system is robustly stable against all allowable uncertainties 
and also achieves adequate attenuation level in facing 
exogenous disturbance. However, in practical control system, 
only robust stability and disturbance attenuation are often not 
enough in controller design. The control object of minimizing 
quadratic-finite-horizon integral performance criterion for 
nominal system is also considered in many practical control 
applications [2,3]. Therefore, the control objective is to design 
a state feedback controller such that the closed loop systems 
are met the following goals: 

(1) The closed-loop system is robustly stable for all allowable 
uncertainties appearing in the system matrices when ( ) 0.w t =  
(2) The closed-loop system achieves γ -disturbance attenuation. 
(3) The following finite-horizon-quadratic cost function is 
minimized: 

 2
0
( ( ) ( ) ( ) ( ))

ft
T T

t
J x t Qx t u t Ru t

=

= +∑   (3) 

where 0Q > and 0R >  are given matrices with appropriate 
dimension   and 0ft > is given integer. 
 

III. MAIN RESULTS 

To get more released conditions, assuming  
1

r

m m
m

h G
=
∑  is 

invertible and following non-PDC control law is proposed 
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where jF , ( , 1, , )mG j m r= …   are matrices to be determined. 
With the controller (4), the closed-loop system becomes 
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where 1
1, ( )r

i ui j m mmcl ij A B F h GA −
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+= ∑ and  
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A. H∞  performance design for nominal systems 

Let us consider the problem of designing a controller to 
reach certain disturbance attenuation level; that is 
H∞ performance design. To simplify the notation and 
derivation, we first consider the nominal model. The following 
theorem gives a sufficient condition to guarantee disturbance 
attenuation level less than γ . 

Theorem 1 [5] The system is stable and achieve γ -disturbance 
level if there exist 0iP > , iG , iF  , T

iim iimX X=  ( , 1, ,i m r= …  ) 
and T

ijm ijmX X=  ( , , 1,i j m r= … , i j<  ) such that 

        ( , 1, ),iim iimM X i m r< = …   (6) 

    ( , , 1,  and ),T
ijm jim ijm ijmM M X X i j m r i j+ < + = <…   (7) 
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Remark 1  The nonquadratic Lyapunov function employed in 
the proof of the theorem is the form  

 1

1 1 1
( ) ( )( ) ( ( ))

r r r
T

m m m m m m
m m m

V x x h G h P h G x−

= = =

= ∑ ∑ ∑  . (9) 

The validity of such Lyapunov function has been shown in [1] 
and it can be specialized to common Lyapunov function by 
letting  ( 1, , ).m mG P P m r= = = …  Furthermore, it also can be 
specialized to the fuzzy dependent Lyapunov function 
proposed in [6,7] by letting  ( 1, , ).m mP G m r= = …  Hence 
provides more degree of freedom for obtaining the relaxed 
conditions. 

Remark 2 Equation (6) implies 
1

( ) 0.
r

T
m m m m
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h G G P

=

+ − >∑ This 

further implies 
1

( ) 0.
r

T
m m m

m
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+ >∑  The existence of 

1

1
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r

m m
m
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=
∑  is followed. 

B. Extensions to uncertain systems 
In this subsection, we will consider a class of uncertain 
discrete-time T-S fuzzy model described by (2). The following 
theorem is an extension of Theorem 1. 
Theorem 2 For given 0,γ >  the uncertain system is said to be 
robustly stable with γ -disturbance attenuation via the 
controller (4) if there exist matrices iimY ( , 1, )i m r= … , 

T
ijm jimY Y=  ( , , 1, )i j m r= … , 0x

ijε >  and 0z
ijε >  such that 

      ( , 1, )iim iimY i m rΨ < = …   (10) 

  ( , , 1,  and ),T
ijm jim ijm ijmY Y i j m r i jΨ + Ψ < + = <…   (11) 
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C. Finite-Horizon Optimal Controller Design 

 With the results presented in previous subsections, 
consequently, the problem considered in this work is how to 
specify the matrices ,iF iG  and iP ( 1, , )i r= … in Theorem 2 
such that the constraint of LMI-based robust H∞  control 
conditions (10)-(12) for the closed-loop uncertain T-S fuzzy 
model based system in (2) can be satisfied, and such that the 
optimal performance for the nominal T-S fuzzy model-based 
system 

 
1

( 1) ( ( ) ( ))
r

i i ui
i

x t h A x t B u t
=

+ = +∑   (13) 

can be achieved by minimizing the quadratic-finite-horizon 
performance index function (3). Here, the design procedure 
can be depicted as following design steps: 
 Step 1: Check the LMI constraints (10)-(12). 
 Step 2:Minimize the quadratic-finite-horizon performance 
            index function (3) for the nominal system (13). 

Since, for the robust disturbance attenuation plus 
quadratic-finite-horizon optimal control problem, the LMI 
approach proposed in most guaranteed cost control cannot be 
directly applied, we integrate HTGA and LMI to solve the 
problem addressed in this work. 

IV. CONCLUSIONS 
In this paper, a systematic approach is proposed to solve 

the optimal finite-horizon quadratic cost subject to robust 
disturbance attenuation for uncertain discrete time  T-S fuzzy 
models. We first give the relax LMI conditions for disturbance 
attenuation level. Then, we convert the problem into static 
constraint optimization problem represented by algebraic 
equation with LMI constraint. The HTGA is employed to 
search the static feedback gain to directly minimizing the 
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finite-horizon quadratic cost for nominal system subjecting 
LMI constraint. Thus, the problem can be solved in efficiency 
way by available numerical algorithms. 
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