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Abstract—In this paper, the objective function of fuzzy c-
regression models (FCRM) is modified to develop a novel
fuzzy partition method on the basis of block structured sparse
representation, namely as sparse fuzzy c-regression model. This
method takes advantage of the block structured information
in the objective function of FCRM and casts fuzzy partition
into an optimization problem by making a tradeoff between
traditional FCRM and the number of prototypes of hyper-plane
with nonzero parameters. An alternating direction method of
multipliers (ADMM) based algorithm is exploited to address
the proposed optimization problem. Furthermore, based on
sparse fuzzy c-regression models, a novel T-S fuzzy systems
identification method is developed for reduction of fuzzy rules.
Finally, examples on well-known benchmark data set are carried
out to illustrate the effectiveness of the proposed methods.

I. INTRODUCTION

Fuzzy partition is an exploratory data analysis technique
that extends crisp clustering by assigning each object to all
of the clusters with certain degree of memberships. It plays
a significant role in feature analysis, systems identification
and classifier design. For many real-world problems with
impreciseness, uncertainty and vagueness, a fuzzy partitioning
of the underlying space appears to be more realistic than
“hard clustering”. The idea of fuzzy partition is formulated
by minimizing

f =
r

∑
i=1

N

∑
j=1

um
i jdi j

where fuzzifier m> 1 controls how many clusters may overlap;
di j = (x j − pi)

2 denotes the distance of data object x j to
prototype pi associated with cluster i; ui j represents the
membership degree of sample x j to the i-th cluster and fuzzy
partition matrix U = (ui j) ∈ R

r×N should satisfy uik ∈ [0,1]
and ∑r

i=1 ui j = 1 for all i = 1,2, · · · ,r and j = 1,2, · · · ,N.
The distance measurement di j varies with respect to different
cluster prototypes. For example, fuzzy c-means clustering
(FCM) [1] represents each cluster with the center of cluster
in the sense of geometrical structure, called hyper-spherical-
shaped based fuzzy partition; and fuzzy c-elliptotypes, fuzzy
c-varieties together with fuzzy c-regression models (FCRM)
[3], [4] define the prototype as linear or nonlinear subspace
of the data space, namely as hyperplane-shaped based fuzzy
partition. Specifically, the FCRM method uses polynomials
as cluster prototypes and divide the data set into a group of

different regression models [5]. In addition, fuzzy partitions
that simultaneously consider the mentioned two prototypes are
also studied in [6]–[8].

Fuzzy partition techniques are extensively used to derive
membership functions for fuzzy rule-based systems [4], [5],
[9]. Specifically, each cluster is associated with one fuzzy rule
involved in fuzzy models. With some prior knowledge, the
number of clusters (fuzzy rules) is assumed to be fixed and
assigned a priori in T-S fuzzy systems identification. However,
for most unknown system, the appropriate and exact number of
clusters (rules) may be unknown in practice [5], [10]. Usually,
cluster validity criterion and its modifications with respect
to different fuzzy partitions are developed to determine the
number of clusters (fuzzy rules) [5], [11]–[13].

Motivated by the block structured information in T-S fuzzy
model and the successful application of block structured
sparse representation [14]–[17], we have done some effort to
identify T-S fuzzy model on the basis of block structured
sparse representation [18], [19]. These methods effectively
take advantage of the block information and execute fuzzy
rule reduction by selecting main important fuzzy rules and
eliminating the redundant ones with block sparse representa-
tion. Nevertheless, the fuzzy system dictionary provided for
fuzzy rules reduction is fixed once the parameters of fuzzy
rules antecedent are determined by clustering. In this paper,
we develop a novel fuzzy partition (clustering) method which
simultaneously consider the number of prototypes of hyper-
plane with nonzero parameters, namely as sparse fuzzy c-
regression model. Moreover, a new T-S fuzzy systems iden-
tification method is exploited on the basis of sparse fuzzy
c-regression model. Two phases are included in the proposed
method. In the coarse learning phase, we partition the data
set with sparse fuzzy c-regression model and obtain the fuzzy
partition matrix and nonzero blocks of regression models. In
the fine-tuning learning phase, we pick up the nonzero blocks
and further adjust the corresponding consequent parameters of
fuzzy rules to improve the modeling accuracy.

The contribution of this article is three-fold: Firstly, a new
fuzzy partition method is proposed on the basis of sparse
representation, namely as sparse fuzzy c-regression models
This method takes advantage of the block structure information
and casts fuzzy partition into an optimization problem by
making a tradeoff between traditional objective function of
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FCRM and the number of prototypes of hyper-plane with
nonzero parameters. Secondly, an alternating direction method
of multipliers (ADMM) based algorithm are exploited to
address the optimization problem of sparse fuzzy c-regression
model. This algorithm takes the form of a decomposition-
coordination procedure, where the solutions to small local
subproblems are coordinated to find a solution to a large
global problem [2]. Thirdly, we apply the sparse fuzzy c-
regression models for T-S fuzzy systems identification such
that an appropriate number of fuzzy rules are associated with
the fuzzy model.

The remainder of this paper is organized as follows. In
Section II, notations and preliminaries about T-S fuzzy systems
are recalled. Section III casts fuzzy partition into an optimiza-
tion problem with block sparse representation, called sparse
fuzzy c-regression model and an algorithm for sparse fuzzy
c-regression model are exploited using alternating direction
method of multipliers. In Section IV, a new method for T-S
fuzzy systems identification is developed on the basis of sparse
fuzzy c-regression model. Some examples on well-known
benchmark data sets are carried out in Section V to illustrate
the effectiveness of the proposed methods. Conclusions are
given in Section VI.

II. NOTATIONS OF T-S FUZZY SYSTEMS
IDENTIFICATION

T-S fuzzy system consists of “if then” fuzzy rules with
fuzzy rule antecedent and consequent. Specifically, the con-
sequent part is specified as an affine function rather than a
fuzzy linguistic proposition. In such a way, T-S fuzzy model
provides a reasonable framework for modeling by decomposi-
tion of a nonlinear system into a collection of local linear
models [3]. More precisely, for n-dimension input variable
x = (x1 x2 · · · xn)

ᵀ ∈ R
n of T-S fuzzy system with r fuzzy

rules, the i-th fuzzy rule has the following form:

Ri : If x1 is Ai1, x2 is Ai2, · · · ,xn is Ain, then
y = wi0 +wi1x1 +wi2x2 + · · ·+winxn.

(i = 1,2, · · · ,r), where fuzzy subset Ai j : R → [0,1] for i =
1,2, · · · ,r and j = 1,2, · · · ,n.

Let w[i] = [wi0,wi1,wi2, · · · ,win]
ᵀ be the consequence pa-

rameter vector of the i-th fuzzy rule. Then, the value of cor-
responding fuzzy rule consequence is denoted by gi(x;wi) =
w[i]ᵀ(1 xᵀ)ᵀ (i = 1,2, · · · ,r). With weighted-average defuzzi-
fier, T-S fuzzy system output is derived as

ŷ =
r

∑
i=1

φi(x)gi(x;wi) (1)

where the firing strength of the i-th fuzzy rule with respect to
input variable x = (x1,x2, · · · ,xn)

ᵀ is denoted by

φi(x) =
Ai(x)

r
∑

k=1
Ak(x)

with Ai(x) =
n
∏
j=1

Ai j(x j) (i = 1,2, , · · · ,r).

For multi-input-single-output (MISO) T-S fuzzy system
identification, we denote the input-output data set by

D = {(xᵀk ,yk)
ᵀ,xk = (xk1,xk2, · · · ,xkn)

ᵀ,k = 1, · · · ,N}
where xk and yk represent the k-th n-dimension input variable
and output variable, respectively. Fuzzy partition is extensively
studied to obtain a partitioning of input data, where the object
can belong to all of the clusters with a certain degree of
membership [3]. We assume the input-output data set D is
divided by

M = {U = (uik) ∈ R
r×N : uik ∈ [0,1](∀i,k),

r

∑
i=1

uik = 1(∀k),0<
N

∑
k=1

uik < N(∀i)}

where uik denotes the membership degree of data object xk
to the i-th cluster (i = 1,2, · · · ,r;k = 1,2, · · · ,N). Particularly,
if uik ∈ {0,1} (∀i,k), the fuzzy partition turns to a crisp one.
In this paper, bell-shaped membership function is utilized to
represent the membership function of fuzzy set Ai j(x j) in
fuzzy rules’ antecedent, i.e.,

μAi j(x j) = exp[− (x j − ci j)
2

σ2
i j

] (2)

for i = 1,2, · · · ,r and j = 1,2, · · · ,n, where

ci j =
∑N

k=1 uikxk j

∑N
k=1 uik

, and σi j =

√
∑N

k=1 uik(xk j − ci j)2

∑N
k=1 uik

. (3)

Given the determined parameters of fuzzy rule antecedent, the
corresponding consequents are traditionally estimated as pa-
rameters of local models by weighted least-squares approach,
i.e.,

w[i] = argmin
w[i]

N

∑
k=1

um
ik[yk −gi(xk;wi)]

2 (4)

(i = 1,2, · · · ,r), where fuzzifier m ∈ [1,∞) controls how many
clusters may overlap [5].

III. SPARSE FUZZY C-REGRESSION MODEL

In this section, we consider the block structured in fuzzy c-
regression method (FCRM) and develop a new fuzzy partition
model on the basis of block sparse representation, namely as
sparse fuzzy c-regression model. Furthermore, an algorithm
are exploited on the basis of alternating direction method of
multipliers (ADMM) to address the optimization of sparse
fuzzy c-regression model.

For better presentation hereafter, we first introduce some
notations about mix-norm of vector with block structure.

Definition 1: For a vector x = (x1,x2, · · · ,xn) ∈ R
n, its L0-

norm is defined to count the sparsity number of the vector
by

‖x‖0 = lim
p→0

‖x‖p
p = lim

p→0

m

∑
k=1

|xk|p = �{i : xi �= 0}

where � denotes set cardinality.
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Definition 2: Let θ = (θ [1]ᵀ,θ [2]ᵀ, · · · ,θ [r]ᵀ)ᵀ ∈ R
rd be a

vector formed from r blocks θ [i] ∈ R
d (i = 1,2, · · · ,r). We

define the general mixed L2,p-norm as

‖θ‖2,p = ‖(‖θ [1]‖2,‖θ [2]‖2, · · · ,‖θ [r]‖2)
ᵀ‖p = (

r

∑
i=1

‖θ [i]‖p
2)

1
p

where p = 1,2,∞ here and in the following.
Specifically, we have

‖θ‖2,1 =
r

∑
i=1

‖θ [i]‖2.

‖θ‖2,0, indeed, represents the number of non-zero blocks for

‖θ‖2,0 = lim
p→0

(
r

∑
i=1

‖θ [i]‖p
2)

1
p = �{i : ‖θ [i]‖2 �= 0}.

Different from the tradition FCRM clustering methods, the
proposed sparse fuzzy c-regression model takes advantage of
the block structure information and control the number of
prototypes of hyper-plane with nonzero parameters simultane-
ously. We collect all of the parameters of hyper-plane θ [i] (i =
1,2, · · · ,r) (the local regression models parameters in FCRM)
into a vector θ such that θ = (θ [1]ᵀ,θ [2]ᵀ, · · · ,θ [r]ᵀ)ᵀ ∈
R

r(n+1). The idea of sparse fuzzy c-regression model can be
formulated by the optimization problem

min
r

∑
i=1

N

∑
j=1

um
i j[y j −gi(x j;θ [i])]2 +λ‖θ‖2,0 (5)

s.t
r

∑
i=1

ui j = 1 ( j = 1,2, · · · ,N)

ui j ∈ [0,1] (i = 1,2, · · · ,r; j = 1,2, · · · ,N)

where the constant λ > 0 is used to control the trade-off
between model fit (the first term) and the number of clusters
(the second term). This optimization problem aims to make
the consequent parameter vector θ as block sparse as possible
for a reasonable trade off between tradition objective function
of FCRM and the number of prototypes of hyper-plane with
nonzero parameters.

A. ADMM algorithm for sparse fuzzy c-regression model
It has been proved that optimization problems with mixed

L2,0-norm is NP-Hard. The L2,1-norm convex optimization is
a popular strategy to approximate the optimization problems
[14], [15]. In this sense, we approximate solution of the
optimization problem (5) by minimizing

min
r

∑
i=1

N

∑
j=1

um
i j[y j −gi(x j;θ [i])]2 +λ

r

∑
i=1

‖θ [i]‖2 (6)

s.t
r

∑
i=1

ui j = 1 ( j = 1,2, · · · ,N)

ui j ∈ [0,1] (i = 1,2, · · · ,r; j = 1,2, · · · ,N)

With an appropriate Lagrange multiplier β =
(β1,β2, · · · ,βN)

ᵀ ∈ R
N , the optimization problem (6) is

rewritten as

min f (U,θ ,β )+λ
r

∑
i=1

‖θ [i]‖2 (7)

where

f (U,θ ,β ) =
r

∑
i=1

N

∑
j=1

um
i j[y j −gi(x j;θ [i])]2 +

N

∑
j=1

β j(
r

∑
i=1

ui j −1).

Writing the problem in the format above enables us to ap-
ply alternating direction method of multipliers (ADMM) for
general L1 regularized loss minimization [2], where ADMM
is an algorithm that is intended to blend the decomposability
of dual ascent with the superior convergence properties of the
method of multipliers [2].

Let h(θ̂) = λ ∑r
i=1 ‖θ̂ [i]‖2, the optimization problem (7) can

be rewritten in ADMM form as

min f (U,θ ,β )+h(θ̂) (8)
s.t θ − θ̂ = 0

Furthermore, with the method of multipliers
α = (α [1]ᵀ,α[2]ᵀ, · · · ,α [r]ᵀ)ᵀ ∈ R

r(n+1), α[i]ᵀ ∈ R
n+1 (i =

1,2, · · · ,r), we form the augmented Lagrangian as

Lρ(U,θ , θ̂ ,α) = f (U,θ ,β )+h(θ̂)+αᵀ(θ − θ̂)+
ρ
2
‖θ − θ̂‖2

2.

Therefore, the following iterations for optimization (8) are
consisted in the framework of ADMM,

⎧
⎪⎪⎨

⎪⎪⎩

Uk+1 := argminU Lρ(U,θ k, θ̂ k,αk)

θ k+1 := argminθ Lρ(Uk+1,θ , θ̂ k,αk)

θ̂ k+1 := argminθ̂ Lρ(Uk+1,θ k+1, θ̂ ,αk)

αk+1 := αk +ρ(θ k+1 − θ̂ k+1)

where k = 0,1,2, · · · denotes the number of iterations. Let u =
1
ρ α be a scaled dual variable, then we have the scaled form
of ADMM for the optimization problem as

Uk+1 := argmin
U

f (U,θ k,β ) (9)

θ k+1 := argmin
θ

f (Uk+1,θ ,β )+
ρ
2
‖θ − θ̂ k +uk‖2

2 (10)

θ̂ k+1 := argmin
θ̂

h(θ̂)+
ρ
2
‖θ k+1 − θ̂ +uk‖2

2 (11)

uk+1 := uk +θ k+1 − θ̂ k+1 (12)

Subsequently, we introduce the following theorems to calcu-
late the optimal values of variables U,θ and θ̂ at each iteration.

Subsequently, we analysis the optimization problems (9)-
(11) and derive the corresponding solutions by the following
theorems.

Theorem 1: The necessary condition for a minimum of

f (U,θ ,β ) =
r

∑
i=1

N

∑
j=1

um
i j[y j −gi(x j;θ [i])]2 +

N

∑
j=1

β j(
r

∑
i=1

ui j −1)

yields the membership update equation:

ui j =
1

∑r
l=1(Di j/Dl j)

1
m−1

where Di j = (y j − gi(x j;θ [i]))2 for all i = 1,2, · · · ,r and j =
1,2, · · · ,N.
Proof: It is evident that this optimization problem is, indeed,
the traditional FCRM.
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Theorem 2: For the optimization problem

min
θ

f (U,θ ,β )+
ρ
2
‖θ − θ̂ +u‖2

2,

we have

θ [i] = (ρI+XᵀUiX)−1(XᵀUiy+ θ̂ [i]−u[i]) (i = 1,2, · · · ,r).
Proof: Because

f (U,θ ,β )+
ρ
2
‖θ − θ̂ +u‖2

2

=
1
2

r

∑
i=1

N

∑
j=1

um
i j[y j −gi(x j;θ [i])]2 +

ρ
2
‖θ − θ̂ +u‖2

2

the optimization problem above is separable with respect to
the partition θ [1],θ [2], · · · ,θ [r]. Therefore, it is equivalent to
address the following optimization problems

min
θ [i]

li(U,θ , θ̂ ,u) (13)

for i = 1,2, · · · ,r, where

li(U,θ , θ̂ ,u)

=
1
2
(y+Xθ [i])ᵀUi(y−Xθ [i])+

ρ
2
‖θ [i]− θ̂ [i]+u[i]‖2

2

with Ui = diag(um
i1,u

m
i2, · · · ,um

iN), y = (y1,y2, · · · ,yN)
ᵀ and X =

(x1,x2, · · · ,xN)
ᵀ, xi = (1,xi1,xi2, · · · ,xin)

ᵀ. Furthermore, com-
pute the derivative of li with respect to θ [i] and set it to zero,
i.e.,

∂ li
∂θ [i]

=−XᵀUiy+XᵀUiXθ [i]+ρ(θ [i]− θ̂ [i]+u[i]) = 0.

It leads that

θ [i] = (ρI+XᵀUiX)−1(XᵀUiy+ρ(θ̂ [i]−u[i])) (14)

for i = 1,2, · · · ,r. The proof is completed.
In order to address the optimization problem with respect to

θ̂ , we first introduce a lemma on sum-of-norms regularization
[17], [20].

Lemma 1: [17] Let x = (x[1]ᵀ,x[2]ᵀ, · · · ,x[r]ᵀ)∈R
n, where

x[i]ᵀ ∈R
ni with 0≤ ni ≤ n (∀i) and ∑r

i=1 ni = n. The minimizer
of optimization problem

min
x∈Rn

1
2
‖c−x‖2

2 +λ‖x‖2,1

is obtained as x[i] = Sλ (c[i]) for i = 1,2, · · · ,r, where the
vector soft thresholding operator Sκ : Rm → R

m is defined as

Sκ(a) = (1− κ
‖a‖ )+a with Sκ(0) = 0.

Theorem 3: For the optimization problem

min
θ̂

h(θ̂)+
ρ
2
‖θ − θ̂ +u‖2

2

we have θ̂ [i] = Sλ/ρ(θ [i]+u[i]) for i = 1,2, · · · ,r.

Based on the analysis above, we update the variables
Uk+1,θ k+1, θ̂ k and uk+1 at each iteration k in the framework
of ADMM by

uk+1
i j =

1

∑r
l=1(D

k
i j/Dk

l j)
1

m−1
, Dk

i j = (y j −gi(x j;θ [i]k))2 (15)

θ [i]k+1 = (ρI+XᵀUk+1
i X)−1(XᵀUk+1

i y+ρ(θ̂ [i]k −u[i]k))
(16)

θ̂ [i]k+1 = Sλ/ρ(θ [i]k+1 +u[i]k) (17)

uk+1 = uk +θ k+1 − θ̂ k+1 (18)

for i = 1,2, · · · ,r and j = 1,2, · · · ,N. Furthermore, we summa-
rize the ADMM algorithm for sparse fuzzy c-regression model
by Algorithm 1.

Algorithm 1 ADMM for sparse fuzzy c-regression model
Input: Data set D , Initial number of fuzzy rules r, parameters

m ∈ (1,∞) and λ .
Initialization: Initialize U0 and θ [1]0, · · · ,θ [r]0.

1: for t = 1,2, · · · do
2: if halting criterion is not true then
3: Update Uk+1 using (18).
4: Update θ [i]k+1 (i = 1,2, · · · ,r) using (19).
5: Update θ̂ [i]k+1 (i = 1,2, · · · ,r) using (20).
6: Update uk+1 using (21).
7: end if
8: end for

IV. SPARSE FUZZY c-REGRESSION MODEL FOR T-S FUZZY
SYSTEMS IDENTIFICATION

In this section, we develop a novel T-S fuzzy systems
identification method on the basis of sparse fuzzy c-regression
model. The method consists of two phases: (1) Coarse learning
phase of fuzzy partition and determination the number of
clusters; and (2) Fine-tuning learning phase of consequent
parameters of fuzzy rules.

Specifically, in the coarse learning phase, given the initial
number of clusters r that is assigned a priori, we partition
the input-output data set with the sparse fuzzy c-regression
model. In such a way, fuzzy partition matrix U and the block
sparse parameter vector θ are obtained. In the fine-tuning
learning phase, we first pick up the m (m ≤ r) nonzero blocks
of θ , denoted by θ [i j] and the corresponding fuzzy partition
vectors (ui j1,ui j2, · · · ,ui jN), where i j ∈ {1,2, · · · ,r} for all
j = 1,2, · · · ,m. Then we extract the parameters of bell-shaped
membership function of the fuzzy rules antecedent using (3)
and further adjust the corresponding consequent parameters
with global least square or local least square [3] to improve
the modeling accuracy. We have summarized the flow chart
of the sparse fuzzy c-regression model based method for T-S
fuzzy systems identification in Fig. 1.

V. APPLICATION EXAMPLES

In this section, a benchmark example of Mackey-Glass
time series is carried out to illustrate the effectiveness of
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Fig. 1. The flow chart of sparse fuzzy c-regression model based method for
T-S fuzzy systems identification.

the proposed method for sparse fuzzy c-regression model and
T-S fuzzy systems identification. The chaotic time series is
generated by the Mackey-Glass delayed differential equation:

dx(t)
dt

=
0.2(t − τ)

1+ x10(t − τ)
−0.1x(t).

and has been used as a benchmark example in the areas of
neural networks, fuzzy systems and hybrid systems [21], [22].
It is assumed that the time step Δt = 0.1, x(0) = 1.2,τ = 17
and x(t) = 0 for t ≤ 0. Based on Runge-Kutta (RK4) method,
85-steps ahead Mackey-Glass time series prediction is utilized
in this example: predict the values x(t+85) from input vectors
(x(t −18),x(t −12),x(t −6),x(t)) for any value of the time t.
The training data set is collected into

Dtr = {(x(t −18),x(t −12),x(t −6),x(t),x(t +85)) :
t = 201,202, · · · ,3200}

and the testing data set is

Dte = {(x(t −18),x(t −12),x(t −6),x(t),x(t +85)) :
t = 5001,5002, · · · ,5500}.

where x(t − 18),x(t − 12),x(t − 6),x(t) and x(t + 85) are the
input variable and output variable of the time t, respectively.

In the ADMM algorithm for sparse fuzzy c-regression
model, we set the parameters ρ = 1.1, λ = 0.5 and the
initial number of clusters r = 10. The initial fuzzy partition of
training data is obtained by FCM. In the process of ADMM
for fuzzy partition and fuzzy rules selection, many blocks of
fuzzy rule consequent parameters θ [i] (i = 1,2, · · · ,10) shrink
to zero and only three blocks remain nonzero (see Fig. 2). As a
result, a T-S fuzzy model with three fuzzy rules are established
after fine-tuning learning. The fuzzy rules are presented as
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Fig. 2. Only three blocks of fuzzy rules consequent parameters remain
nonzero by sparse fuzzy c-regression model.
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Iteration

f(U,θ,β)+λ||θ||2,1
f(U,θ,β)

Fig. 3. The objective functions of sparse fuzzy c-regression model and
traditional FCRM with iterations.

following:

R1 : If x1 is A11,x2 is A12, · · · , x4 is A14, then
0.0007−0.1676x1 +0.5052x2 −0.5212x3 +0.1839x4

R2 : If x1 is A21,x2 is A22, · · · , x6 is A24, then
y = 0.0004−0.1027x1 +0.3389x2 −0.3782x3 +0.1426x4

R3 : If x1 is A31,x2 is A32, · · · , x4 is A34, then
y = 0.0003−0.3140x1 +0.9934x2 −1.0590x3 +0.3803x4

where the parameters ci j and σi j of bell-shaped membership
function for fuzzy rules’ antecedent are illustrated by Table I.
We also depict the objective function of traditional FCRM

TABLE I
ANTECEDENT PARAMETERS OF FUZZY RULES

Fuzzy rule Ai1 Ai2
vi1 σi1 vi2 σi2

R1 0.9921 0.0675 0.9897 0.0674
R2 0.9312 0.0674 0.9252 0.0660
R3 0.8925 0.0345 0.8831 0.0351

Fuzzy rule Ai3 Ai4
vi3 σi3 vi4 σi4

R1 0.9869 0.0670 0.9833 0.0661
R2 0.9194 0.0643 0.9140 0.0623
R3 0.8742 0.0362 0.8657 0.0379
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TABLE II
COMPARISON RESULTS OF DIFFERENT FUZZY MODELS

Fuzzy models Number of fuzzy rules(nodes, clusters) NDEI
DENFIS 27 0.404

exTs 9 0.361
eTs 9 0.372

eTs+ [21] 8 0.438
rGK [22] 3 0.4667
rGK [22] 10 0.3787

Our model 3 0.3582

TABLE III
COMPARISON RESULTS OF MODELS FOR BOSTON HOUSING DATA

Fuzzy Number of RMSE RMSE
Model fuzzy rules (training) (testing)

SELM [24] 8192 24.12 24.38
RBFNN [23] 36 6.36 6.94

RBFNN + CFC [23] 36 5.52 6.91
Linguistic modeling [23] 36 4.12 5.32

SSEM [25] 4 4.23 5.36
Our model 3 3.6651 4.4293

and the proposed sparse fuzzy c-regression model in Fig. 3.
It is guaranteed that the objective function of sparse fuzzy
c-regression model keeps decreasing with iterations. Further-
more, we compare our fuzzy model with other excellent
models on the nondimensional error index (NDEI) which is
defined as the ratio of the root mean square error (RMSE)
to the standard deviation of the target data (see Table II). It
indicates that our fuzzy model performance better over other
models with only three fuzzy rules.

A. Example with Boston Housing Data

The Boston Housing Data is obtained from the UCI Ma-
chine Learning Repository, where 506 samples are collected
to concerns the housing values in suburbs of Boston. The main
purpose of this experiment is to predict the median value of
owner-occupied homes in $1000’s (the last column) from 1
binary-valued attribute and 12 continuous attributes (the first
13 columns). We split the data set into the training (60%) and
testing set (40%). This pattern was also studied in [23]–[25],
With cross validation method and the proposed algorithm in
this paper, T-S fuzzy model with 13 input variables and one
output variable is learned from the data set.

In the ADMM algorithm for sparse fuzzy c-regression
model, we set the parameters ρ = 1.1, λ = 0.5 and the initial
number of clusters r = 10. We compare our fuzzy model with
other excellent models over the number of fuzzy rules, root
mean square error (RMSE) for training data and testing date
in Table 3. It indicates that our model performs better with
just three T-S fuzzy rules; better accuracy on for both training
data and testing data are also obtained. We also execute the
simulation for 50 times by randomly dividing the data set into
training data (60%) and testing data (40%). Over 50 times
experiments, the averaged RMSE of training data and the
corresponding standard deviation are obtained as 3.6724 and
0.3230, respectively; the values of testing data are derived as
4.5868 and 0.5763. It is evident that our model shows more
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Fig. 4. With different values of λ , the variance of traditional objective function
of FCRM within 1000 iterations.
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Fig. 5. With different values of λ , the sparsity of consequent parameters
within 1000 iterations.

robust results in terms of accuracy for both training data and
testing data.

In the framework of sparse fuzzy c-regression model, pa-
rameter λ plays an important role by balancing a tradeof-
f between traditional objective function of FCRM and the
number of clusters. There is no doubt that the first term of
sparse fuzzy c-regression model decreases with the increase
of the number of clusters. We study the influence of different
λ on sparse fuzzy c-regression model and show the results
by Fig. 4. It indicates that the traditional objective function of
FCRM is convergent with different values of λ . Specifically,
the consequent parameters becomes more sparser with bigger
value of λ in the 1000-th iteration.

VI. CONCLUSIONS

In this paper, a new fuzzy partition method is developed
on the basis of block structured sparse representation, and is
applied to T-S fuzzy systems identification. Taking advantage
of the block structured information, this method cast fuzzy
partition into an optimization problem by making a tradeoff
between traditional objective function of FCRM and the num-
ber of prototypes of hyper-plane with nonzero parameters. An
ADMM based algorithm is exploited to address the sparse
fuzzy c-regression model. In such a way, an appropriate
number of fuzzy rules for T-S fuzzy systems identification is
technically learned in the process of sparse fuzzy c-regression

1576



model. In future work, we will further investigate the issue of
fuzzy system identification on the basis of sparse representa-
tion.
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