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Abstract—This paper presents a hierarchical fuzzy sliding 
mode control scheme for a class of uncertain nonlinear  under-
actuated systems.  First, the sliding surface of one subsystem is 
selected as the first layer sliding surface.  Hence, we further 
construct a second layer sliding surface from the first layer 
sliding surface and the sliding surface of another subsystem till 
all the subsystem sliding surfaces are included.  The fuzzy system 
and some adaptive laws are applied to approximate the unknown 
nonlinear functions and estimate the upper bounds of the 
unknown uncertainties, respectively.  By means of Lyapunov 
stability theorem and the theory of sliding mode control, the 
proposed control scheme ensures the robust  stability of the 
uncertain nonlinear under-actuated systems.  Finally, simulation 
results show the validity of the proposed method. 

Keywords—under-actuated systems; fuzzy systems; hierarchical 
fuzzy sliding mode control; Lyapunov stability theorem 

I. INTRODUCTION  
     In recent years, there has been growing interest in control 
problems of under-actuated systems [1-4].  Under-actuated 
systems are commonly encountered in mechanical systems 
which are fewer actuators than degrees-of-freedom to be 
controlled.  The applications are used widely in practical 
systems such as free-flying space robots, underwater robots, 
manipulators with structural flexibility, overhead crane, etc. 

Many papers on the control of under-actuated systems have 
been proposed in [5-8].  In [5], the hybrid switching control 
strategy was developed to cope with a class of nonlinear and 
under-actuated mechanical systems.  The optimal control of 
nonholonomic, under-actuated mechanical systems was 
studied in [6].  The research [7] introduced a motion planning-
based adaptive control method in under-actuated crane 
systems.  In the case of the under-actuated surface ship with 
rudder actuator dynamics under external disturbances, the 
adaptive fuzzy controller was developed in [8].  Thus, the 
analyses and control of nonlinear under-actuated systems have 
been an important research area. 

  The sliding mode control (SMC) [9-10] has shown to be 
one of the effective nonlinear robust control strategies to 
tackle systemic parameters and external disturbances for 
nonlinear systems.  SMC has some advantages such as 
insensitivity to system parameter variations, invariance to 

external disturbances, good transient performance, and fast 
response, etc.  In [11], the sliding-mode controller on the basis 
of the incremental hierarchical structure and aggregated 
hierarchical structure were used to treat the under-actuated 
system.  The work [12] was developed a hybrid sliding-mode 
controller for under-actuated systems.  SMC laws usually 
consist of two parts: switching controller design and 
equivalent controller design.  First, the switching controller 
design drives the system states toward the sliding surface.  
Then, when the system states are on the sliding surface, the 
equivalent controller design guarantees the system states to 
keep on the sliding surface and converge to zero along the 
sliding surface. 

 The fuzzy control methods [13-14] have been adopted 
widely to treat the problem of under-actuated systems with 
unknown nonlinear functions.  Especially, the decoupled 
fuzzy adaptive SMC method has been applied to the control of 
under-actuated systems with mismatched uncertainties [15].  
According to the universal approximation theorem, fuzzy 
systems, which are constructed from a collection of fuzzy If-
Then rules, are employed here as a way to approximate the 
unknown nonlinear functions of the system.  Moreover, the 
adaptive laws are used to adjust the parameters of the fuzzy 
model.  Thus, the adaptive schemes guarantee all signals to be 
bounded, and the tracking error of the closed-loop system will 
asymptotically track our desired trajectory and achieve the 
desired tracking performance. 

 The main object of this paper is on the design of the robust 
hierarchical fuzzy sliding mode control for uncertain nonlinear 
under-actuated systems.  The fuzzy system and some adaptive 
laws are applied to approximate the unknown nonlinear 
functions and estimate the upper bounds of the unknown 
uncertainties, respectively.  Furthermore, by Lyapunov 
stability theorem and the theory of sliding mode control, the 
presented hierarchical fuzzy sliding mode controller can not 
only guarantee the convergence to zero of each sliding 
surface, but also ensure the robust stability of the uncertain 
nonlinear under-actuated system. 

 This paper is organized as follows.  First, the control 
problems of the uncertain under-actuated system and the 
concept of fuzzy system are introduced in Section II.  The 
hierarchical fuzzy sliding mode control is proposed to deal 
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with the control problem for uncertain under-actuated systems 
in Section III.  The simulation results are illustrated to show 
the validity of the proposed control method in Section IV.  
Finally, a conclusion is given in Section V. 

II. PROBLEM STATEMENT AND PRELIMINARIES 

A. Problem Statement 
Consider a single-input-multi-output uncertain nonlinear 

underactuated system expressed as follows: 
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where [ ] 2
1 2 2, , , T n

nx x x R∈"x =  is the system state vector 

which is assumed to be available for measurement, 1u R∈ is 
the control input, nR∈y  is the system output, 

1 2( ), ( ), , ( )nf f f"x x x  and 1 2( ), ( ), , ( )nb b b"x x x  are unknown 
real continuous nonlinear functions, and 

1 2( , ), ( , ), , ( , )nd t d t d t"x x x  are unknown external bound 
uncertainties.  Without loss of generality, the following 
assumptions are made for the controller design: 

Assumption 1 : 0 ( ) ,  0 ( )i i i if F b B≤ ≤ < ∞ < ≤ < ∞x x , 
for ∈ Γx , 1, 2, ,i n= " , 

where iF  and iB  are known positive constants, and Γ  is a 
set given as follows 

{ },p ωΓ = ≤ Δ0x x - x .     (2) 

Here ω  is a set of weight, and Δ  is a positive constant which 
denotes all state variables’ boundary.  2n∈\0x  is a fixed 
point, and ,p ωx  is a weighted p-norm, which is defined as 
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If 2p = , 1ω = , ,p ωx  will denote Euclidean norm x . 

Assumption 2 : 0 ( , ) ( )i id t ρ≤ ≤ < ∞x x , for ∈ Γx , 
1,2, ,i n= " , where ( )iρ x  are unknown bounded positive 

smooth continuous functions. 

Control Objective: Design a controller for (1) such that the 
system states ( )tx would converge to zero as .t → ∞  

B. Description of Fuzzy Logic Systems 
The fuzzy logic system performs a mapping from nU R⊂  

toV R⊂ .  Let 1 nU U U= × ×"  where iU R⊂ , 1,2, ,i n= " .  The 
fuzzy rule base consists of a collection of fuzzy IF-THEN 
rules: 

( )
1 1 2 2:  IF  is ,  and  is ,  and  and,   is 

         THEN  is ,     for 1, 2, , .
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in which [ ]1 2, , , T
nx x x U= ∈x "  and y V R∈ ⊂  are the input 

and output of the fuzzy logic system, l
iF  and lG  are fuzzy sets 

in iU  and V , respectively.  The fuzzifier maps a crisp point 

[ ]1 2, , , T
nx x x=x " into a fuzzy set in U .  The fuzzy inference 

engine performs a mapping from fuzzy sets in U  to fuzzy sets 
in V , based upon the fuzzy IF-THEN rules in the fuzzy rule 
base and the compositional rule of inference.  The defuzzifier 
maps a fuzzy set in V  to a crisp point in V . 
     The fuzzy systems with center-average defuzzifier, product 
inference and singleton fuzzifier are of the following form: 
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where lθ  is the point at which fuzzy membership function 
( )l

l
G

μ θ  achieves its maximum value, and we assume that 

( ) 1l
l

G
μ θ = .  Eq. (6) can be rewritten as 

( ) ( )Ty ξ=x θ x                                                 (7) 
where 1 2, , ,

Tlθ θ θ⎡ ⎤= ⎣ ⎦"θ  is a parameter vector, and 

( ) ( ) ( )1 , ,
TMξ ξ ξ⎡ ⎤= ⎣ ⎦"x x x  is a regressive vector with the regressor 

( )lξ x , which is defined as fuzzy basis function 
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III. CONTROLLER DESIGN AND STABILITY 
ANALYSIS 

In view of (1), let the sliding surfaces be defined as follows: 
2 1 2 ,    for 1,2, , .                              (9)i i i is c x x i n−= + = …  

where ic  are positive constants.  Differentiating is  with 
respect to time t, we have 

2 1 2

2 ( ) ( ) ( , )
i i i i

i i i i i

s c x x
c x f b u d t

−= +
= + + +
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x x x

                               
(10) 

According to the equivalent control method, the equivalent 
control law of the subsystems can be obtained as 

( )2 ( ) ( ) for 1, 2, , .         (11)eqi i i i iu c x f b i n= − + = "x x  

Without loss of generality, the subsystem sliding surface 1s  is 
selected as 1S . 
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First, let the unknown nonlinear functions 
 ( ),  ( ),  and ( ),  for 1,2, ,i i if b i nρ = …x x x , can be approximated,  
over a compact set Ωx , by the fuzzy systems as follows: 

ˆ ( ) ( )
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i f ff =x θ ξ xθ ,                                        (12) 

ˆ ( ) ( )
i i

T
i b bb =x ξ xθ θ ,                                        (13) 
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T
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where ( )ξ x  is the fuzzy basis vector, 
ifθ , 

ibθ , and 

, for 1,2, , ,
i

i nρ = …θ  are the corresponding adjustable 
parameter vectors of each fuzzy systems.  It is assumed that 

ifθ , 
ibθ , and 

iρθ
 
belong to compact sets 

fi
Ωθ , 

bi
Ωθ , and 

,
iρ

Ωθ respectively, which are defined as 
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( 1 6 ) 
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MR N
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where 
if

N , 
ibN , and for 1,2, , ,

i
N i nρ = …  are the 

designed parameters, and M  is the number of fuzzy inference 
rules.  We require 

ibθ  to be bounded from below by 0δ >  

because from (28) we see that ˆ ( )
ii bb x θ  must be nonzero.  

Let us define the optimal parameter vectors ,
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,
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parameter estimation errors can be defined as 
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are the minimum approximation errors, which correspond to 
approximation errors obtained when optimal parameters are 
used. 
Then, we define 

        
ˆw w w= −�

                                          (27) 
where ŵ  be as the estimate of w . 

Based on the fuzzy systems, the equation (11) can be 
replaced as the following controller: 

( )2
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i ieqi i i i f i bu c x f b i n= − + = "x θ x θ  

The ith-layer sliding surface iS  and its control law iu  can be 
defined as follows. 
      1 1                                                         (29)i i i iS S sλ − −= +  
      1 ˆ ˆ                                                    (30)i i eqi swiu u u u−= + +

                     
Here 1 (1,2, , )i i nλ − = …  is a constant; 0 0 00 0S uλ = = =  

, for (1,2, , )swiu i n= …  is the switching control of the ith-
layer sliding surface.  From the recursive formulas (29) and 
(30), we have 
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where ik  is a positive constant, and the parameter update laws 
as follows: 
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r iργ = … , and wγ  are positive 
constants. 
Remark 1: Without loss of generality, the adaptive laws used 
in this paper are assumed that the parameter vectors are within 
the constraint sets or on the boundaries of the constraint sets 
but moving toward the inside of the constraint sets.  If the 
parameter vectors are on the boundaries of the constraint sets 
but moving toward the outside of the constraint sets, we have 
to use the projection algorithm to modify the adaptive laws 
such that the parameter vectors will remain inside of the 
constraint sets.  Readers can refer to reference [17].  The 
proposed adaptive laws (34)-(37) can be modified as the 
following form: 
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The main result of the robust adaptive tracking control 
scheme is summarized in the following theorem. 

Theorem 1: Consider the single-input-multi-output 
uncertain under-actuated system (1).  If Assumptions 1-2 are 
satisfied, then the proposed adaptive fuzzy sliding mode 
controller defined by (32) with adaptive laws (34)-(37) 
guarantees that all signals of the closed-loop system are 
bounded, and the system states ( )tx  will converge to zero as 
t → ∞ .   
Proof:  Consider the Lyapunov function candidate 

2 2

1 1 1

1 1 1 1 1         (44)
2 r r r r r r

r r r

i i i
T T T

i i f f b b
r r rf b w

V S wρ ρ
ργ γ γ γ= = =

⎛ ⎞
= + + + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑� � � � � � �θ θ θ θ θ θ

Differentiating the Lyapunov function V with respect to 
time, we can obtain

 
1 1 1

1 1 1 1  (45)
r r r r r r

r r r

i i i
T T T

i i i f f b b
r r rf b w

V S S wwρ ρ
ργ γ γ γ= = =

= + + + +∑ ∑ ∑� � �� � � � � � � �� � �θ θ θ θ θ θ

From (31) and by the fact 
r rf f=�� �θ θ , 

r rb b=�� �θ θ , 
r rρ ρ=�� �θ θ , 

and ˆw w= ��� , the above equation becomes 

( )
( ){
1 1 1 1

2
1

1 1 1 1 ˆ

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ  ( ) ( ) (

r r r r r r

r r r

r r r r

r

i i i ii T T T
i i j r f f b bj r

r r r rf b w

i i
i j r r r r f r f r f r fj r

r

r r b r

V S a s ww

S a c x f f f f f

b u b u b

ρ ρ
ργ γ γ γ=

= = = =

=
=

⎡ ⎤= + + + +⎢ ⎥
⎣ ⎦

⎡ ⎤ ⎡ ⎤≤ + − + − +⎣ ⎦ ⎣ ⎦

⎡ ⎤+ − +⎣ ⎦

∑ ∑ ∑ ∑∏

∑ ∏

�� � � � � �� � �

* *

*

θ θ θ θ θ θ

x x θ x θ x θ x θ

x x θ x }
{ }

( )
1

1 1 1

ˆ ˆ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

1 1 1 1 ˆ      46

r r r

r r r r

r r r r r r

r r r

b r b r b

i i
i j r r r r rj r

r
i i i

T T T
f f b b

r r rf b w

u b u b u

S a

ww

ρ ρ ρ ρ

ρ ρ
ρ

ρ ρ ρ ρ ρ

γ γ γ γ

=
=

= = =

⎡ ⎤− +⎣ ⎦

⎡ ⎤⎡ ⎤+ − + − +⎣ ⎦ ⎣ ⎦

+ + + +

∑∏

∑ ∑ ∑ �� � � � � � �

*

* *

θ x θ x θ

x x θ x θ x θ x θ
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According to (12)-(14), (46) becomes 
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( ) ( )

( )

2
1 1

1 1

1

ˆ ˆ ˆ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

ˆ( )

r r r

r r r r
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i
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S a S a u u

S a

S a f f

ρ

ρ ρ

ρ
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=
=

=
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⎡ ⎤ ⎡ ⎤+ − + −⎣ ⎦ ⎣ ⎦
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∑ ∑∏ ∏
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∑∏

∏

�

* *

*

x θ x θ x θ

θ ξ x θ ξ x θ ξ x θ ξ x

θ ξ x θ ξ x

x{ }

( )

1

1

1 1 1

ˆ( ) ( ) ( )

ˆ( ) ( )

1 1 1 1 ˆ 47
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r

r r r r r r
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i
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r
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ρ

ρ ρ
ρ

ρ ρ

γ γ γ γ

=
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=
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∑

∑∏
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* *

*

x θ x x θ

x x θ

θ θ θ θ θ θ

 

According to (21)-(23) and (25)-(26), we have  
( ){ }

( ) ( )
2

1 1

1 1 1

1 1 1

ˆ ˆ ˆ( ) ( ) ( )

( ) ( ) ( )

1 1 1

r r r

r r r

r r r r r r

r r r

i ii i
i i j r r r f r b i j rj r j r

r r
i i ii i iT T T

i j f i j b i jj r j r j r
r r r

i i
T T T

i f f b b
r r rf b
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S w

ρ

ρ

ρ ρ
ρ

ρ

γ γ γ
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− − −
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∑ ∑

�

� � �

� � � � � �

x θ x θ x θ

θ ξ x θ ξ x θ ξ x

θ θ θ θ θ θ 1 ˆ (48)
i

w

ww
γ

+∑ ��

  

Let us define  , , and 
r r rf bv v vρ  as follows: 

( )
1 1

1 = ( )
r r r r

r

i ii T T
f i j f f fj r

r r f

v S a
γ=

= =
− +∑ ∑∏ � � �θ ξ x θ θ                     (49) 

( )
1 1

1( )
r r r r

r

i ii T T
b i j b b bj r

r r b

v S a u
γ=

= =
= − +∑ ∑∏ � � �θ ξ x θ θ                     (50) 

1 1

1( )
r r r r

r

i ii T T
i jj r

r r
v S aρ ρ ρ ρ

ργ=
= =

= − +∑ ∑∏ � � �θ ξ x θ θ                    (51) 

If the condition in the first line of (38) is true, substituting (34) 
into (49), we have  

( ) ( )
1 1

= ( ) ( ) 0        (52)
r r r

i ii iT T
f i j f i j fj r j r

r r
v S a S a

= =
= =

− + =∑ ∑∏ ∏� �θ ξ x θ ξ x  

If the condition in the second line of (38) is true, we have  

 and ( ) 0.
r r fr

i T
f f j ij r

N a S
=

⎛ ⎞= >⎜ ⎟
⎝ ⎠∏θ θ xξ    

Then,  substituting (39) into (49), we have 

( )2 2 2* *
2

1

1 1 1 ( )
2 2 2

r

r r r r

r

i T
i j i fj r

fr f f f f
r f

a S
v =

=

⎡ ⎤= − − + −⎢ ⎥⎣ ⎦

∏
∑

θ
θ θ θ θ x

θ
ξ           

             (53) 

By the fact that *, ,  and ( ) 0
r r r r fr

i TN N a Sf f f f j i
j r

⎛ ⎞
⎜ ⎟= ≤ >
⎜ ⎟=⎝ ⎠
∏θ θ θ xξ , 

the above equation becomes 
 0

rf
v ≤ .                                                         (54) 

Using the same method, we can prove that 0 and 0
r rbv vρ≤ ≤  

for all 0t ≥ .  To show 
rb δ≥θ , we see from (40) that if 

rb δ=θ , then 0
rb ≥�θ ; hence, we can guarantees 

rb δ≥θ . 

By applying (54), (37), and 0 and 0
r rbv vρ≤ ≤  into (48), it 

yields 

( ){ }2
1

1

ˆ ˆ( ) ( )

ˆ ˆ    ( )          (55)

r r

r

i
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i i j r r r f r bj r
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+ +
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Using the control law (28) and (32), the above equation can be 
rewritten 

as

( )

1 1
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By applying (33), iV�  can be obtained as follows:
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where 1 1 1 1min 2 , , , , .
r r r r

i
f b w

c k
ργ γ γ γ
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  Then, 

  .i iV cV L≤ − +�  (58) 
Based on (58), we obtain 

( ) (0) .ct
i i

LV t e V
c

−≤ − +  (59) 

Then the tracking error converges to a region exponentially.   

Substituting swiu  into 
1
( )

i

i swr eqr
r

u u u
=

= +∑  and letting i=n, 

we can obtain the hierarchical sliding mode control law 
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where .nu u=  
Remark 2: Note that the control law is discontinuous when the 
states across the sliding surface.  Since the discontinuities in 
the control (60) give rise to chatter in the system, it has been 
proposed that the switching functions sgn( )iS  will be 
replaced by a continuous approximation in an -widthε  region 
of iS .  Thus, replacing sgn( )iS  with ( )isat S ε , the 

( )isat S ε  is described by 

( )

1            if 

       if ,    0.

1    if 

i

i
i i
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S

Ssat S S

S

ε

ε ε εε

ε

>⎧
⎪
⎪= ≤ ∀ >⎨
⎪
⎪− < −⎩

                     (61) 

IV. AN EXAMPLE AND SIMULATION RESULTS 
   In this section, the inverted pendulum system is used to 
verify the performance of the proposed controller.        
Consider the inverted pendulum system described by 

1 2

2 1 1 1

3 4

4 2 2 2
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(62) 
where  
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 pct mmm +=  
and 1x θ= , 2x θ= � , 3x x=  and 4x x= �  represent the angle of the 
pendulum with respect to the vertical axis, the angular velocity 
of the pendulum with respect to the vertical axis, the position 
of the cart and the velocity of the cart, respectively. 1 kgcm =  
is the mass of cart, 0.05 kgpm =  is the mass of pole, 

0.5 mL =  is the half-length of pole, and 29.8 m sg =  is the 
acceleration due to the gravity. u  is the force input to move 
the cart. 1 2( , ), and ( , ),d t d tx x  are the external uncertainties. 
The control objective is to maintain the system states ( )tx  
converge to zero. 
    In the implementation, six fuzzy sets are defined over 
interval [-3, 3] for 1 2 3 4, ,  and x x x x , with labels NB, NM, NS, 
PS, PM, and PB, and their membership functions are 

( ) ( )( )
1

1 exp 5 2NB i
i

x
x

μ =
+ +

,  

  ( )
( )( )2

1

1 exp 1.5
NM i

i

x
x

μ =
+ − +

, 

         ( )
( )( )2

1

1 exp 0.5
NS i

i

x
x

μ =
+ − +

, 

         ( )
( )( )2

1

1 exp 0.5
PS i

i

x
x

μ =
+ − −

, 

         ( )
( )( )2

1

1 exp 1.5
PM i

i

x
x

μ =
+ − −

, 

          ( ) ( )( )
1

1 exp 5 2PB i
i

x
x

μ =
+ − −

, 1, 2,3, 4.i =  

      A case is simulated in this inverted pendulum system, and 
we apply the hierarchical fuzzy sliding mode controller in 
Section 3 to deal with the control problem.  In this case, the 
sliding surfaces are selected as 1 1 1 2s c x x= +  and 

2 2 3 4s c x x= + , where 1 4c =  and 2 1c = , the hierarchical 
sliding surfaces are constructed as 1 1,S s= 2 1 1 2S a s s= + , 
where 1 1.1a = . The initial values are chosen as 

(0) [ ,0,0,0]
6

Tπ= −x , 
1
(0) 0f =θ , 

2
(0) 0f =θ , 

1
(0) 5b =θ , 

2
(0) 5b =θ , 

1
(0) 0ρ =θ , 

2
(0) 0ρ =θ , and ˆ (0) 0w = .  The other 

parameters are selected as 10k = , 
1

0.5fγ = , 
1

0.5bγ = , 
2

0.5fγ = , 

2
0.5bγ = , 

1
0.5ργ = , 

2
0.5ργ = , and 0.2wγ = , and the boundary 

layer 0.03ε = . 2
1 2

3( , ) ,
2

d t x=x and 2
2 1 2( , ) ,d t x x=x  are external 

uncertainties.  The simulation results are shown in Figs. 1-5.  
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Figs. 1-2 reveal that the state trajectories of the states 1x and 

3 ,x  respectively.  From these simulation results, it is easily 
shown that the proposed controller ensures that the state 
trajectories converge asymptotically to zero.  The performance 
of sliding dynamics and the control signal are shown in Figs. 
3-4 and Fig. 5, respectively.  The simulation results verify the 
effectiveness of the proposed robust hierarchical fuzzy sliding 
mode controller. 

V.  CONCLUSION 
 In this paper, a hierarchical fuzzy sliding mode controller is 

constructed to deal with the problems for a class of SIMO 
under-actuated systems with uncertainties.  Within the 
scheme, the fuzzy logic systems and some adaptive laws are 
used to approximate the unknown nonlinear functions and the 
unknown upper bounds of uncertainties.  Based on Lyapunov 
stability theorem and the theory of sliding mode control, the 
presented controller can not only guarantee the convergence to 
zero of each sliding surface, but also ensure the robust 
stability of the uncertain nonlinear under-actuated system.  
Finally, some simulation results are illustrated to confirm the 
effectiveness of the proposed control method. 
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Fig. 1. The state trajectory of the state 1x . 

 
Fig. 2. The state trajectory of the state 3x . 
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 Fig. 3. The sliding surface 1 1 1 2s c x x= + . 
                              Fig. 5. The control input u . 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
                    Fig. 4. The sliding surface 2 2 3 4s c x x= + . 
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