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Abstract— A combined cooperative and hierarchical control
structure utilizing Fuzzy Model Predictive Control (FMPC) for
building heating is introduced. The structure comprises three
types of Model Predictive Controllers (MPC): For different
independent zones of the building FMPCs optimize the fast
acting input variable fan coils (FC) while a global linear MPC
optimizes the slowly acting thermally activated building systems
(TABS). Cooperation between these two groups of controllers
is guaranteed by an inter-sample iteration. This cooperative
structure acts as master in a hierarchical structure, where the
slave is a mixed-inter MPC (MI-MPC) in the supply level. While
the cooperative structure ensures user comfort in the building,
the MI-MPC optimizes monetary costs of heat supply. This
structure allows for decoupled and independent modeling of
FMPCs, simple incorporation of the coupling input TABS, and
decoupled design of the supply level control. A discussion on
stability and sub-optimality of the control structure is given. A
simulation of a large office building incorporating disturbances
of ambient temperature, radiance, and occupancy demonstrates
the performance of the proposed concept.

Index Terms— fuzzy MPC; TS-fuzzy system modelling; build-
ing climate control; cooperative MPC; hierachical MPC.

I. INTRODUCTION

The application of standard control designs to large non-
linear complex processes requires specific modeling tech-
niques. One possible approach presented here is the division
into smaller locally linear sub-processes with Fuzzy model-
ing. This allows for application of linear control structures,
and moreover, individual local sub-processes can be added or
removed without affecting the model or controller parameters
of the other sub-processes. However, if there exist inputs
acting simultaneously on all sub-processes, the individual
local linear models are no longer decoupled. In order to ac-
tively compensate these input couplings an additional global
controller is proposed. All controllers are chosen as Model
Based Predictive Controllers (MPC), as it is an effective
way to handle measurable or predictable disturbances, large
numbers of inputs and outputs, and to cope with constraints,
[4].

The resulting control scheme is a hierarchical and coopera-
tive Fuzzy MPC (FMPC) structure which enables a modular
control design. Parallel FMPCs, one for each sub-process,
optimize their specific output by considering the output of
the global MPC as a known disturbance. The global MPC op-
timizes only the coupling inputs based on a simplified global
model and the known disturbances of all FMPC-inputs. The
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principles of such a cooperative structure are analyzed in [16]
and [12] where a cooperative distributed predictive control
design is shown, and in [14] sub-optimality and stability
of such MPC is discussed. Those results indicate that good
performance can be achieved even if global optimality is lost.

Additionally, if there exists a hierarchical split of the sub-
processes in a higher (HiLe) and lower (LoLe) level, the
introduced structure provides a methodology to decouple
them. Comparable hierarchical structures are discussed in
[13] and an example for building heating is given in [7].

The concept of cooperative and hierarchical FMPC was
applied to building heating control of large modern buildings.
In this case, the formulated HiLe is the building itself
with several separately controllable zones coupled by one
common input – the thermally activated building systems
(TABS). Since TABS represents a slow dynamic heating
system, one global MPC is employed for compensating
this coupling between individual zones. For each zone the
objective is to maximize the user’s comfort by minimizing
heating energy. Therefore, a separate FMPC is optimizing
the zone’s room temperature based on a network of local
linear models (LLM). These networks are identified by a
data-driven approach, as introduced and shown in [5]. On the
other hand, a hierarchically decoupled LoLe MPC ensures
the energy supply at minimal monetary costs [7]. All MPCs
are subject to constraints.

The remainder of the paper is structured as follows: In
Sec. II the data-driven system identification is introduced.
The cooperative control structure is presented in Sec. III
succeeded by the Sec. IV where the cooperative MPC
formulation is given. The prove of concept is done for a
demonstration building. The simulation results are shown in
Sec. V-C before the paper ends with a Conclusion and an
outlook to further research.

II. FUZZY SYSTEM MODEL

A. General Approach

A data-driven system identification (black-box) approach
for modeling nonlinear dynamic systems by LLM networks is
chosen to model the individual building zones. This approach
is an efficient way of modeling globally non-linear systems.
Since the validity of the resulting LLMs is confined to certain
regions within the so-called partition space, this model class
is also named Takagi-Sugeno Fuzzy models, [17]. For each
zone a separate LLM network is identified utilizing the
linear model tree algorithm (LOLIMOT, [10]). In addition
to the control input (fan coils – FC), LOLIMOT utilizes
disturbances as further inputs: weather forecast, radiance,
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occupancy information, and the control input of the global
MPC (TABS). Detailed information on thermal modeling of
buildings can be found in [6] and [8]. Information on FMPC
zone selection is given in [15], [22].

A single linear model for the global MPC is identified
comprising the slow coupling dynamics of the TABS input.
Disturbance inputs are the same as above, except for TABS,
which is replaced by the sum of all FCs from the individual
zones.

B. Takagi-Sugeno (TS) Models

Motivated by results of classical linear MPC theory [4],
linear model structures are used for controller design. Non-
linear dynamical systems can often be represented by a non-
linear autoregressive model structure with exogeneous input
(NARX), [1]. Such NARX systems may be approximated by
TS models, [17]. The basic element of a fuzzy system is a
set of fuzzy inference rules. In general, each inference rule
consists of two elements: the IF-part, called the antecedent
of a rule, and the THEN-part, called the consequent of the
rule. For each rule Rj the following structure holds:

Rj : IF ζ1 is Aj
1 and . . . ζmis Aj

m

THEN yj(k + 1) =

ny∑
i=1

ajiy(k − i+ 1) (1)

+

nu∑
i=1

bjiul(k − i− nd + 1) + cj .

Here j = {FC}, ζ = [ζ1, . . . , ζm] is the vector of input fuzzy
variables, and Aj

1, . . . , A
j
m are the forgoing fuzzy sets or

regions for the j-th rule Rj with corresponding membership
functions μj

A1
, . . . , μj

Am
, with μAj

(ζj) �→ [0, 1], for j =
1, . . . ,m, [6], [10]. The elements of the fuzzy vector are
usually a subset of the past input and outputs, [1]:

ζ ∈{y(k), . . . , y(k − ny + 1), ul(k − nd), (2)

. . . , ul(k − nu − nd + 1)}.

The overall output of the TS fuzzy model can be written
as y(k + 1) =

∑r
j=1 ω

j(ζ)yj(k + 1), where r denotes
the number of rules. The degree of fulfillment if the j-th
rule can be computed using the product operator: μj(ζ) =∏m

i=1 μ
j
Ai
(ζi), furthermore, the normalized degree of ful-

fillment can be computed as: ωj(ζ) = μj(ζ)∑r
i=1 μi(ζ) . If all

consequents of the rules have identical structure, the TS
model can be expressed as a pseudo-linear model with input-
dependent parameters:

y(k + 1) =

ny∑
i=1

ai(ζ)y(k − i+ 1) (3)

+

nu∑
i=1

bi(ζ)ul(k − i− nd + 1) + c(ζ),

where:

ai(ζ) =

r∑
j=1

ωj(ζ)aji , bi(ζ) =

r∑
j=1

ωj(ζ)bji , (4)

c(ζ) =

r∑
j=1

ωj(ζ)cj .

III. STRUCTURE OF THE COOPERATIVE AND

HIERARCHICAL FUZZY CONTROL

A. Theoretical Background

Cooperative distributed control is a possible way to facili-
tate implementation and optimization, especially if different
sub-processes have different control variables but the same
optimization target. Plant wide control has traditionally been
implemented in a decentralized way, where each subsys-
tem is controlled independently and network interactions
are treated as disturbances to the local subsystem, [12],
[16]. Each controller optimizes a plant wide cost function,
e.g., the centralized controller objective. Distributed opti-
mization algorithms are used to ensure a decrease in the
plant wide objective function at each intermediate iteration.
Under cooperative control, plant wide performance converges
to the Pareto optimum, providing similar performance as
centralized control. However, cooperative control is a form
of suboptimal control for the plant wide control problem.
Hence, stability is deduced from suboptimal control theory,
[14]

B. Control Structure

In Fig.1 the control concept is shown. Maximization of
user comfort is the goal of HiLe. All FMPCj , ∀j = 1, . . . , N
optimize the same cost function by controlling different in-
dependent variables uFCj

. In order to guarantee the reference
indoor temperature ϑin

ref , a global MPC with an underlying
global linear building model guarantees the basic level of
reference temperature with the TABS, uTABS. This global
linear model comprises only slow dynamics of TABS and
is not able to compensate fast disturbances. The purpose of
the global MPC is to set a temperature level for the whole
building, not for special zones. Therefore, each FMPC is able
to heat or cool their own zone in a quasi-local way with their
control variable uFCj

.
In this cooperative FMPC structure, for the global MPC

ufuzzy
FCj

= zglobalFCj
, and the other way round uglobal

TABS = zfuzzyTABS,
holds. Between each time step a number of iterations can
be defined for calculating stationary solutions for uj , j =
1, . . . , N and uglobal, (see III-C). This structure allows for
decoupled modeling and controller design in each building
zone, and simple compensation of coupling dynamics by
TABS.

C. Multi Sampling Rate & Communication

The sampling time is supposed with one hour in the
FMPCs, and with three hours in the global MPC (T global

s =
3T fuzzy

s ). Hence, a multi sampling rate control results, com-
parable to [2] . For a correct energy balance down-sampling
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Fig. 1. Concept of hierarchical decoupled MPCs with cooperative FMPCs plus global MPC as master (HiLe) and MI-MPC as slave (LoLe)

must be done according to zglobalFCj
(k) = 1

3

∑3
ν=1 u

fuzzy
FCj

3(k−
1)+ν, k being the counter of the the smaller sampling time.
Since the prediction horizon of the global MPC is larger than
the control horizon of the FMPCs, the disturbance vector
zglobalFCj

has to be extrapolated with the constant last value.

Each value of uglobal
TABS is up-sampled by 3 without filtering

to define the disturbance vector zfuzzyTABS. At each T fuzzy
s all

demands are handed over to the LoLe controller.

D. Hierarchical Control Structure

On the right side of Fig.1 the underlying supply level
(LoLe) is shown. Within the supply level, minimization of
monetary costs is another important control goal. Hence, in
LoLe a Mixed-Integer MPC (MI-MPC) is used for optimiz-
ing energy costs, [3]. This specific control structure, where
the control variable of one MPC (i.e. HiLe) is the reference
value of the underlying MPC (i.e. LoLe) is described by
a decoupled hierarchical MPC structure. More details on
such control structures can be found in [13], an application
example is given in [7].

IV. COOPERATIVE FUZZY MPC DESIGN

In Subsec.IV-A and , respectively, the cost functions of the
global MPC and the FMPCs are formulated. Subsequently, in
Subsec.IV-C the coordinated fuzzy MPC is formulated, and
in the last Subsec.IV-D a review of suitable papers treating
stability is given.

A. Constrained Cooperative Fuzzy MPC

Standard MPC formulations are well known and given in
e.g. [4]. In this paper an LLM network approximates the non-
linear dynamics. To avoid non-convex optimization, a set of
LLMs is extracted from each TS fuzzy model, which is then
utilized for MPC design, [1]. Stochastic disturbances such as
weather forecast, radiance, and occupancy information, are
important for HiLe modeling, [22]. As already mentioned,
the global MPC and the FMPCs control the same output

ϑin.
The optimization problem is formulated as follows:

J� = min
U

J(U, t) = αi · ‖ϑin
act(U, t)− ϑin

ref‖22 + βi ·
∑
i

Q̇2
i

s.t. ϑin
min ≤ ϑin(t) ≤ ϑin

max

ui,min ≤ ui(t) ≤ ui,max

for U = {ui} with i = FC in case of the FMPCs and
i = TABS for the global MPC. Moreover, αi and βi are
weights of the minimization criterion.

B. Fuzzy MPC formulation

Assume that the MISO TS fuzzy model can be regarded as
a multi-variable linear parameter-varying system (according
to equation (3)), [1],

y(k + 1) =

ny∑
i=1

Fi(ζ)y(k − i+ 1) (5)

+

nu∑
i=1

Hi(ζ)u(k − i+ 1) + c(ζ),

where the parameter matrices depend only on the
current operating point ζ and are calculated as:
Fi(ζ) =

∑r
j=1 Wj(ζ)Fi, i = 1, . . . , ny , Hi(ζ) =∑r

i=1 Wj(ζ)Hj
i , i = 1, . . . , nu, and c(ζ) =∑r

i=1 Wj(ζ)cj , where Wj is the diagonal weight matrix,
which entries are normalized degrees of fulfillment of the
j-th rule. ny is the number of parameters related to the
output and nu are the number of parameters related to the
inputs (control input and disturbances).
The formulation of the FMPC depends on linear models,
which are obtained by interpolating the parameters of the
local models in the TS model, see system (4) and equation
(3); [17]. The following problem is formulated for one
single FMPC and can be extended to all FMPCs.
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The goal is to locally represent a TS fuzzy model by a
linear state-space model, on the basis of [4]

x(k + 1) = Akx(k) + Bku(k) + Ekz(k) (6)

y(k) = Ckx(k)

in which system matrices Ak,Bk,Ck and Ek implicitly
depend on the operating point ζ and are computed from
matrices Fi and Hi, see e.g. [4]. In order to predict the
trajectory of the controlled output, system (5) can be used.
The linear extracted state-space models can be augmented to
provide offset free control. Let ξ(k) denote the augmented
state vector at time step k, then future process outputs are
computed from the following matrix equality

Ŷ = F(k)ξ(k) + Φu(k)ΔU +Φz(k)ΔZ, (7)

where the matrices F, Φu and Φz are computed as described
in [4]. They have to be calculated at each time step and are
then used in the following quadratic program for determining
optimal future control sequences:

J� = min
ΔUj

J(Uj) =(Yr − Ŷj)
T Qj(Yr − Ŷj) (8)

+ΔUT
j RjΔUj

s.t. Ymin,j ≤ Ŷj ≤ Ymax,j ,

Umin,j ≤ Uj ≤ Umax,j ,

ΔUmin,j ≤ ΔUj ≤ ΔUmax,j .

Yr is the reference trajectory for all FMPCs, Uj = {ui,j},
i = FC, j specify the optimizing FMPC ∀j = 1, . . . ,M +
N , Qj and Rj are positive semi-definite weighting matrices
which allow for tuning, depending on the considered FMPC.
The approach can be summarized in the following steps:

1) Use the obtained linear model 6 at the current operating
point ζ(k) and compute the control signal u(k) for the
whole control horizon.

2) Simulate the TS fuzzy model over the prediction
horizon.

3) Freeze the TS fuzzy model along each point in the
predicted operating point trajectory ζ(k+i) and obtain
to parameters of (6), for i = 1, . . . , Np.

4) Use calculated (6) of step before, i = 1, . . . , Np to
construct MPC matrices F, Φu and Φz and compute
the new control sequence u(k).

Steps 3 and 4 are repeated until u converges, [1], [5], [17].

C. Formulation of Full Optimization Problem

The cooperative problem for FMPCs and coupled global
MPC is iteratively solved within each control time step.
As previously defined, FMPCs are enumerated by j =
1, . . . , N , the global MPC is denoted by N + 1, sampling
instances are enumerated by k = 1, . . . ,M , and iterations
of the cooperative problem solution are denoted by i =
1, . . . , P .

The cooperative FMPC cost function can be defined by using
similar notation as eq.(8):

J�
j,k = min

ΔUj

J(Uj) =(Yr − Ŷj)
T
k,iQj(Yr − Ŷj)k,i (9)

+ (ΔUT
j RjΔUj)k,i

s.t. Ymin,j ≤ Ŷj ≤ Ymax,j ,

Umin,j ≤ Uj ≤ Umax,j ,

ΔUmin,j ≤ ΔUj ≤ ΔUmax,j .

The following assumption is straightforward:
Assumption 1: All disturbances zl,i, l = 1, . . . , nz , where

nz is the number of disturbances, stay constant during all
iterations i at time step k.
Hence z = zl,k holds, instead of using zTABS,i and zFC,i.

According to Subsec.IV-A the recursive state-space update
for the i-th iteration at time step k is given by the following
set of recursive equations:

xji (k + 1) = Aj
kxj

i (k) + Bj
kuj

i (k) + Ej
kzji (k) (10)

yji (k) = Cj
kxj

i (k)

zji (k) =
(
zN+1
TABS,i−1, z

j
2,k, . . . , z

j
nz,k

)T

xN+1
i (k + 1) = AN+1

k xN+1
i (k) + BN+1

k uN+1
i (k) (11)

+ EN+1
k zN+1

i (k)

yN+1
i (k) = CN+1

k xN+1
i (k)

zN+1
i (k) =

(
zjFC,i, z

N+1
2,k , . . . , zN+1

nz,k

)T

Note that for i = 1 the initial value for zN+1
TABS,i−1 in the

FMPCs state-space update (10) should be chosen constant
and at the current operating point.

D. Stability of Fuzzy MPC

Stability analysis and stabilization for TS-fuzzy systems
are mainly based on Lyapunov criteria. A so-called fuzzy
Lyapunov-function is able to guarantee such stability, [18].
In [18], the fuzzy Lyapunov function is defined by fuzzy
blending of quadratic Lyapunov-functions. Another way of
stability analysis for fuzzy model based control has been
applied by [9], where asymptotic stability can be shown
for open-loop bounded-input-bounded-output stable systems.
More recently, [20] introduced an approach to guarantee
both stability and transient performance of the closed-loop
system using piecewise quadratic Lyapunov funtions (PLFs)
in order to reduce the conservatism those controllers based in
common Lyapunov functions. Furthermore, in [21] a three-
step methodology is proposed to obtain a robust input-to-
state stable constraint FMPC system taking model-reality
discrepancy and unknown disturbances into account. [11]
shows that asymptotic stability in the sense of Lyapunov
is guaranteed if the derivative of the Lyapunov function
is negative-definite for all fuzzy rules. For further stability
analysis for the cooperative FMPC structure presented in
Sec. IV two steps will be necessary. Firstly, stability of
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one FMPC has to be guaranteed as proposed by [20] using
PLFs and secondly the analysis must be extended to the
cooperation of two FMPCs, as generally introduced for linear
MPCs in [19].

V. SIMULATION RESULTS: OFFICE BUILDING

A. Building Model

The demonstration building is the 27.000 m2 University
building in the center of Salzburg, Austria, which has five
floors above ground containing several large and numerous
smaller meeting rooms, offices and lecture rooms. For this
study, the third floor comprising about 400 office rooms is
considered which is split into two zones. For the simulation
study the zone north-east (NE) and the zone south-west (SW)
constitute the individual zones. The energy input for this floor
is supplied by fast FC inputs and by a common slow TABS
input. While the energy input from the FCs can be controlled
for each zone separately, the common input via the activated
concrete core (TABS) constitutes the coupling. Hence, for
each zone an FMPC is formulated according to Sec. IV-A,
whereas a global MPC computes the optimal input for TABS.

The considered period for simulation was March 2012.
Measurements for this period have been obtained from
records of the building management system. These data have
been used for model identification introduced in Sec. II.
Common system disturbances are the outside temperature
and the occupancy profile. For the SW zone the radiance is
an additional relevant disturbance input. The historic outside
temperature and the radiance was provided by the ZAMG1

Austria.

B. Design of Cooperative MPC

In this work only simulations results of the HiLe, the
cooperative MPC, are shown. Results of the hierachical
structure can be found in [7]. This cooperative structure is
built up of two FMPCs and one classical linear MPC. The
FMPCs are for zone NE and zone SW, while the classical
MPC controls the basic temperature level over the whole
floor, manipulated by TABS. In Fig. 2 mentioned topology
of control zones is shown.
The underlying TS-fuzzy models for the FMPCs are built
with LOLIMOT. From there parameters can be calculated
and used to fit an ARX model for building the TS-fuzzy
models as formulated in Sec. II by equations (3) and (4).
For each non-linear model a net of 3 LLMs is obtained, each
with 2 partitioning variables, ambient temperature ϑamb and
supply heat.

C. Simulation Results

Results of a closed-loop simulation with the proposed
control scheme are shown in Fig. 3. 13 days of the considered
period are plotted. Constraints are shown in green dashed
lines. The first plot shows the reference trajectory and the
indoor temperature ϑin for the global MPC. The second

1 Zentralanstalt für Meteorologie und Geodynamik - The central institute
for meteorology and geodynamics

FMPC

FMPC
SW

NE

south

north

TABS

Fig. 2. Scheme of cooperative MPCs demonstrated on one exemplary level
(3rd floor) of the demonstration building.

plot depicts the corresponding control variable uglobal =
{TABS} of the global MPC. Here, the large dead time of
TABS, approximately 36 hours, can be perfectly seen. In plot
3 and plot 4 the results of the two FMPCs can be seen, where
the red lines are associated with NE and the black ones with
SW. The ϑin

j of the FMPCs (plot 3) are the actual indoor
temperatures of the respective zones. Both excellent output
tracking and disturbance rejection can be observed.

In the fourth plot the different zone dynamics become
apparent, as the individual control inputs FMPCNE and
FMPCSW show different behavior. Note that input con-
straints become active during the set-point changes for
FMPCNE. The fifth plot shows the ambient temperature
until hour 210, where an (artificial) step in the disturbance
occurs. All three MPCs slightly reduce the demanded supply
temperatures for FCs as well as for the TABS.

In order to evaluate the influence of the inter-sample
iteration, the control scheme (10) and (11) was run with
different numbers of iterations P . Tab. I lists the gained
Mean Squared Error (MSE) of the Δuj as formulated in
(12). The result shows that with only four iterations the MSE
is reduced to almost the same level as for the asymptotic
value (approximated by P = 64). Note that in the MSE of
the control error (ϑin

ref − ϑin
act) did not show any significant

changes for variation of P .

MSEj =
1

M − 1

M∑
n=2

(uj,n − uj,n−1)
2 (12)

for j = 1, .., N,N + 1 MPCs and M simulation steps

TABLE I

COMPARISON OF THE MSE OF THE FMPC CONTROL VARIABLE FOR

DIFFERENT NUMBER OF ITERATIONS P

P MSEglobal MSEFMPCNE
MSEFMPCSW

0 0.603 1.56 0.269
4 0.467 1.47 0.270

64 0.461 1.46 0.270

VI. CONCLUSION

A cooperative and hierarchical constrained MPC control
structure for building heating control has been presented. The
cooperative part consists of several FMPCs, each of them
dedicated to control one building zone by optimizing the
fast acting input variable FC. The dynamics of the individual
zones are only coupled by another input, the slowly acting
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Fig. 3. Cooperative Fuzzy MPCs with 4 iterations between each time step;
reference step and disturbance step ϑamb

TABS. For optimizing this input a global linear MPC is
designed based on a simple linear model of the overall
building. Cooperation between FMPCs and global MPC is
guaranteed by an inter-sample iteration, where the control
variables of the FMPCs are the disturbances to the global
MPC and vice versa. The results of the simulation study
given in Tab. I clearly show that this iteration converges fast
and asymptotically to the stationary end value. Therefore, it
is successfully demonstrated, that a Fuzzy MPC structure can
be effectively integrated in a cooperative controller scheme.

The hierarchical part is given by the cooperative structure
as master and a supply level MI-MPC as slave. Since the
master feeds the overall heating demand of the building to
the slave, the MI-MPC is completely decoupled from the
building dynamics and focuses on the optimization of the
monetary costs of the heat supply.

This structure ensures a straightforward and simple con-
troller design, since all MPCs can be designed based on
independent and decoupled models. Only the simple global
linear MPC design has to consider the coupling effect of
the slow TABS input. Furthermore, if zones change in their
thermal behavior, are added or removed, only the affected
FMPC and the global MPC have to be re-designed, all other
parts of the scheme can be adopted unchanged. This property
will be preserved for similar processes.

Although a review on specific literature has been included,
a formal proof of stability and convergence of the proposed
scheme is still to be completed. This is a topic of current
research as well as the extension of the simulation to both
heating and cooling operation.
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