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Abstract—Bayesian games can handle the incomplete informa-
tion about players’ types. However, in real life, the information
could be not only incomplete but also ambiguous for lack
of sufficient evidence, i.e., a player cannot have a probability
precisely about each type of the other players. To address this
issue, we extend the Bayesian games to ambiguous Bayesian
games. We also illustrate and analyse our game model.

I. INTRODUCTION

Bayesian games [1]–[3] can handle incomplete information
about players’ types. That is, in a Bayesian game, players
know the probability precisely about each type of other players
although they do not know the exact types of each other.
However, in real-life games, sometimes a player even cannot
know the precise probability of each type of other players,
but can only know the overall probability for several types
of others for lack of sufficient evidence. For example, in a
security game [4], the available intelligence shows that airport
attackers could be the curbside bomb attackers, the large truck
bomb attackers, or the sniper attackers. However, the available
evidence only shows the probability that this attacker takes the
curbside bomb attack or the large truck bomb attack is 0.4, and
the probability that he takes the curbside bomb attack or the
sniper attack is 0.6. So, the police could not have the accurate
belief about the probability of each single type.

On the other hand, Dempster-Shafer (D-S) theory [5], [6]
is an effective tool to handle the ambiguous information, i.e.,
the imprecise probabilities, by mass function. Based on D-S
theory, Strat [7] figures out how to calculate interval-valued
expected utilities for the ambiguous decision problems. He
further derives a point-valued expected utility by using the
Hurwicz criterion [8]. Recently, Ma et al. [9] extend the work
of Strat [7] to form an ambiguous decision framework.

Now based on the ambiguous decision framework [9], in
this paper, we propose an ambiguous Bayesian games model to
extend Bayesian games to handle ambiguous information about
player types. That is, in our ambiguous Bayesian games, the
belief about the players’ types is represented by mass functions
in D-S theory [5], [6]. Thus, the probability could be not only
for one type but also for several types together. If the expected
utility of a strategy chosen by a player is determined by
different types of the other players but no precise probability
of each single type is available, then the expected utility
of a strategy becomes an interval [7]. Fortunately, from the
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interval, the player can get a point-valued expected utility by
using the methods of [7], [9]. Further, some players prefer the
choice with the less ambiguous belief (i.e., they are ambiguity-
averse [9]–[11]), but others prefer the choice with the more
ambiguous belief (i.e., they are ambiguity-seeking [10], [11]).
So, in this paper we propose different methods to model these
different situations by extending the model of [9] that can
only reflect ambiguity-averse [12] decision makers. In addition,
similar to the Harsanyi transformation [13], we propose a
method to find the ambiguous Nash equilibrium in our model.

The main contributions of this paper are: (i) we identify the
ambiguous information about players’ types; (ii) we introduce
the concept of the ambiguous Bayesian Nash equilibrium; (iii)
we provide methods to model ambiguity-averse and ambiguity-
seeking players; (iv) we reveal some insights into our model;
and (v) we show that our ambiguous Bayesian games are the
Bayesian games when the probability distribution among the
players’ types becomes precise.

The rest of this paper is organised as follows. Section II re-
caps the ambiguous decision framework and Bayesian games.
Section III defines our game model. Section IV illustrates our
model. Section V analyses our model. Section VI discusses
the related work. Finally, Section VII concludes this paper.

II. PRELIMINARIES

This section will recap an ambiguous decision framework
and Bayesian games.

A. A Decision Model Based on Dempster-Shafer Theory

D-S theory [5] can model the ambiguous belief when the
evidence is insufficient. Formally, we have:

Definition 1: Let Θ be a finite set of mutually disjoint
atomic elements, called a frame of discernment, and 2Θ

be the set of all the subsets of Θ. Then a basic probability
assignment, or called a mass function, is a mapping of 𝑚 :
2Θ → [0, 1], which satisfies 𝑚(∅) = 0 and

∑
𝐴⊆Θ𝑚(𝐴) = 1.

Subset 𝐴 (⊂ Θ) satisfying 𝑚(𝐴) > 0 is called a focal element
of mass function 𝑚.

The more elements in focal elements of a mass function
and the bigger the mass function values of focal elements, the
more ambiguous the belief is. This can be captured by the
following definition [9], [14]–[16]:
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Definition 2: The ambiguity degree of a mass function 𝑚
over discernment frame Θ, denoted as 𝛿, is given by

𝛿(𝑚) =
∑

𝐴⊆Θ𝑚(𝐴) log2 ∣𝐴∣
log2 ∣Θ∣ , (1)

where ∣𝐴∣ and ∣Θ∣ are the cardinality of sets 𝐴 and Θ,
respectively. Especially, if ∣Θ∣ = 1, 𝛿(𝑚) = 0.

Formula (1) reflects well that the more ambiguous the
belief, the higher the ambiguity degree. In particular, ∀𝐴 ⊆ Θ,
if ∣𝐴∣ = 1 when 𝑚(𝐴) > 0, then 𝛿(𝑚) = 0, which represents
the precise belief; and if 𝑚(Θ) = 1, then 𝛿(𝑚) = 1, which
represents the most ambiguous belief.

Strat [7] defines the expected utility interval as follows:

Definition 3: Given a choice of 𝑐 corresponding to mass
function 𝑚 over the possible consequence set, denoted as Θ,
of all the choices, let 𝑢(𝑎𝑖, 𝑐) be the utility of choice 𝑐 corre-
sponding to element 𝑎𝑖 in focal element 𝐴. Then the expected
utility interval of choice 𝑐 is 𝐸𝑈𝐼(𝑐) = [𝐸(𝑐), 𝐸(𝑐)], where

𝐸(𝑐) =
∑
𝐴⊆Θ min{𝑢(𝑎𝑖, 𝑐) ∣ 𝑎𝑖 ∈ 𝐴}𝑚(𝐴), (2)

𝐸(𝑐) =
∑
𝐴⊆Θ max{𝑢(𝑎𝑖, 𝑐) ∣ 𝑎𝑖 ∈ 𝐴}𝑚(𝐴). (3)

Here 𝐸(𝑐) and 𝐸(𝑐) are called the lower and upper bound-
aries of the expected utility of choice 𝑐, respectively.

If two choices’ expected utility intervals do not overlap,
it is easy to make a choice (i.e., just choose the one which
lower boundary is higher than the other’s upper boundary);
otherwise, the choice is unclear [7], [9]. In this case, more
evidence is required in order to make the expected utility
intervals no longer overlap. However, what should we do if we
cannot have more evidence? In this case, the Hurwicz criterion
[8] can help. In fact, Strat [7] extends the Hurwicz criterion
to handle the expected utility interval:

Definition 4: Given expected utility interval 𝐸𝑈𝐼(𝑐) =
[𝐸(𝑐), 𝐸(𝑐)] of choice 𝑐, the point-valued expected utility
of choice 𝑐 is defined as:

𝐸(𝑐) = (1− 𝛼)𝐸(𝑐) + 𝛼𝐸(𝑐), (4)

where 𝛼 ∈ [0, 1] represents the decision maker’s ambiguity
attitude.

In the above definition, the ambiguity attitude refers to
the decision maker’s attitude towards the ambiguous belief.
Dimmock et al. [10] argue that the ambiguity attitude could
be ambiguity averse, neutral, or seeking. If a decision maker
takes the ambiguity averse attitude, he prefers the choice
with the more precise belief to the choice with the more
ambiguous belief; conversely, if a decision maker takes the
ambiguity seeking attitude, he prefers the choice with the more
ambiguous belief to the choice with the more precise belief.
Dimmock et al. [10] also show that 𝛼 < 0.5 reflects ambiguity
aversion, 𝛼 > 0.5 reflects ambiguity seeking, and 𝛼 = 0.5
reflects ambiguity neutral.

In the ambiguous environment, after getting the expected
utility interval by formulas (2) and (3), we can get a point-
valued preference degree about each choice by formula (4) if
the ambiguity attitude of a decision maker is known.

B. Bayesian Games

In a game, when every player has several types and thus
several possible utilities functions, a player’s utility of taking
a strategy is uncertain if he does not know others’ types, but
every player can have a belief about other players’ types. This
kind of games are Bayesian games. Formally, we have:

Definition 5: A Bayesian game is a tuple of (𝑁 , {𝑆𝑖, 𝑇𝑖,
𝑝𝑖, 𝑢𝑖}𝑖∈𝑁 ), where

(i) 𝑁 = {1, ⋅ ⋅ ⋅ , 𝑛} is the set of players;

(ii) 𝑆𝑖 is a set of strategies of player 𝑖 ∈ 𝑁 ;

(iii) 𝑇𝑖 is a set of types of player 𝑖 ∈ 𝑁 ;

(iv) 𝑝𝑖(𝑡−𝑖 ∣ 𝑡𝑖) is player 𝑖’s probability distribution over
other players’ possible types 𝑡−𝑖, given player 𝑖’s own
type 𝑡𝑖; and

(v) 𝑢𝑖(𝑠1, ⋅ ⋅ ⋅ , 𝑠𝑛, 𝑡𝑖) is player 𝑖’s utility function with his
own type 𝑡𝑖.

With the Harsanyi transformation [13], the Bayesian Nash
equilibrium can be defined as follows:

Definition 6: Given a Bayesian game of (𝑁 ,{𝑆𝑖, 𝑇𝑖, 𝑝𝑖,
𝑢𝑖}𝑖∈𝑁 ), the strategy profile 𝑠∗ =(𝑠∗1, ⋅ ⋅ ⋅ , 𝑠∗𝑛) is a Bayesian
Nash equilibrium if ∀𝑖 ∈ 𝑁, 𝑡𝑖 ∈ 𝑇𝑖,
𝑠∗𝑖 (𝑡𝑖)=arg max

𝑠𝑖∈𝑆𝑖

∑

𝑡−𝑖∈𝑇−𝑖

𝑢𝑖
(
𝑠∗1(𝑡1), ⋅ ⋅ ⋅ ,𝑠∗𝑖−1(𝑡𝑖−1),𝑠𝑖, 𝑠

∗
𝑖+1(𝑡𝑖+1),

⋅ ⋅ ⋅ , 𝑠∗𝑛(𝑡𝑛), 𝑡𝑖) 𝑝𝑖(𝑡−𝑖∣𝑡𝑖). (5)

III. GAMES WITH AMBIGUOUS INFORMATION

This section proposes our ambiguous Bayesian games.

Definition 7: An ambiguous Bayesian game is defined as
a 5-tuple of (𝑁 , {𝑇𝑖, 𝑆𝑖, 𝑀𝑖, 𝑢𝑖}𝑖∈𝑁 ), where:

(i) 𝑁 = {1, ⋅ ⋅ ⋅ , 𝑛} is a finite set of players;

(ii) 𝑇𝑖 = {𝑡𝑖,1, . . . , 𝑡𝑖,𝑚𝑖
} is player 𝑖’s disjoint type set, and

player 𝑖 knows his type 𝑡𝑖 and is uncertain about the
types of the other players;

(iii) 𝑆𝑖 = {𝑠𝑖,1, . . . , 𝑠𝑖,𝑛𝑖
} is the strategy set for player

𝑖 ∈ 𝑁 , and 𝑠𝑖(𝑡𝑖,𝑘) ∈ 𝑆𝑖 is the strategy chosen by
player 𝑖 with type 𝑡𝑖,𝑘 and 𝑆𝑖(𝑇𝑖) =

∏
𝑡𝑖,𝑘∈𝑇𝑖

𝑠𝑖(𝑡𝑖,𝑘)

= (𝑠𝑖(𝑡𝑖,1), . . . , 𝑠𝑖(𝑡𝑖,𝑚𝑖
)) is the strategy profile chosen

by every type of player 𝑖;

(iv) 𝑀𝑖 = {𝑚𝑖,𝑗 ∣ 𝑗 ∈ 𝑁 −{𝑖}}, where 𝑚𝑖,𝑗 : 2
𝑇𝑗 → [0, 1] is

player 𝑖’s mass function over the frame of discernment
𝑇𝑗 (i.e., the player 𝑗’s type set); and

(v) 𝑢𝑖(𝑠1(𝑡1,ℎ), ⋅ ⋅ ⋅ , 𝑠𝑖−1(𝑡𝑖−1,𝑘), 𝑠𝑖,𝑗 , 𝑠𝑖+1(𝑡𝑖+1,𝑙), ⋅ ⋅ ⋅ ,
𝑠𝑛(𝑡𝑛,𝑟), 𝑡𝑖,𝑘) with 𝑠𝑖(𝑡𝑖,𝑘) = 𝑠𝑖,𝑗 is the utility function of
player 𝑖 with type 𝑡𝑖,𝑘 over strategy profile (𝑠1(𝑡1,ℎ), . . . ,
𝑠𝑖−1(𝑡𝑖−1,𝑘), 𝑠𝑖,𝑗 , 𝑠𝑖+1(𝑡𝑖+1,𝑙), . . . , 𝑠𝑛(𝑡𝑛,𝑟)) to ℝ, given
the other players’ types 𝑡1,ℎ, . . . , 𝑡𝑖−1,𝑘, 𝑡𝑖+1,𝑙, . . . , 𝑡𝑛,𝑟,
respectively.

In the above ambiguous Bayesian games, every player has
the ambiguous belief about the other players’ types. That is,
in an ambiguous Bayesian game, each player 𝑖 knows his type
𝑡𝑖,𝑘 and the type set, 𝑇𝑗 , that player 𝑗 could be in, but he does
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not know the precise probability distribution over these types.
What player 𝑖 knows may be only the probability distribution
over 𝑇𝑗’s power set 2𝑇𝑗 , (i.e., he may not know the probability
of each type of player 𝑗). Thus, the information for player
𝑖 about player 𝑗’s types is ambiguous. Thus, player 𝑖 have
mass function 𝑚𝑖,𝑗 to measure this ambiguous information.
Each player 𝑖 has strategy set 𝑆𝑖, but a player of each type
𝑡𝑖,𝑘 may have a different utility function 𝑢𝑖(𝑠1(𝑡1,ℎ), ⋅ ⋅ ⋅ ,
𝑠𝑖−1(𝑡𝑖−1,𝑘), 𝑠𝑖,𝑗 , 𝑠𝑖+1(𝑡𝑖+1,𝑙), ⋅ ⋅ ⋅ , 𝑠𝑛(𝑡𝑛,𝑟), 𝑡𝑖,𝑘). To find the
best response strategy, player 𝑖 needs to know the expected
utility. However, the utility obtained from a chosen strategy is
determined by all the types of other players. Thus, player 𝑖
has to make a decision in the light of the ambiguous informa-
tion about the other players’ types. Moreover, in ambiguous
decision environments, the player could be ambiguity averse,
seeking, or neutral [10]. So, formally we have:

Definition 8: In ambiguous Bayesian game (𝑁 , {𝑇𝑖, 𝑆𝑖,
𝑀𝑖, 𝑢𝑖}𝑖∈𝑁 ),

(i) for the ambiguity-averse players, the ambiguity attitude,
called his ambiguity-averse degree, is given by:

𝛽(𝑚) =
1− 𝛿(𝑚)

2
; (6)

(ii) for the ambiguity-seeking player, the ambiguity attitude,
called his ambiguity-seeking degree, is given by:

𝛽(𝑚) =
1 + 𝛿(𝑚)

2
; (7)

(iii) for the ambiguity-neutral player, the ambiguity attitude
is given by:

𝛽(𝑚) = 0.5, (8)

where 𝛿(𝑚) ∈ [0, 1] is mass function 𝑚’s ambiguity degree.

By the above definition, 𝛽 < 0.5 is for ambiguity averse,
𝛽 > 0.5 is for ambiguity seeking, and 𝛽 = 0.5 is for
ambiguity neutral, which is equal to the range of 𝛼 in the
Hurwicz criterion. And we calculate the ambiguity attitude
degree from the ambiguity degree because it can capture the
following intuitions. First, for the same ambiguity degree,
the ambiguity-seeking degree is higher than the ambiguity-
averse degree, which reflects that an ambiguity-seeking player
prefers the strategy with the ambiguous belief more than an
ambiguity-averse player. Second, the higher the ambiguity
degree, the lower the ambiguity-averse degree and the higher
the ambiguity-seeking degree. That is, an ambiguity-averse
player will avoid the strategy with the more ambiguous belief,
but an ambiguity-seeking player will prefer it more.

Furthermore, in the ambiguous environment, every player
𝑖 with the certain ambiguity attitude can make a decision
to find his best response strategy. To find the best response
strategy, the best way is to find the preference ordering over
all strategies. Then player 𝑖 needs to have the point-valued
expected utility to represent his utility of the chosen strategy
in the ambiguous environment. Formally, we have:

Definition 9: In ambiguous Bayesian game (𝑁 , {𝑇𝑖, 𝑆𝑖,
𝑀𝑖, 𝑢𝑖}𝑖∈𝑁 ), let player 𝑖’s type be 𝑡𝑖,𝑘, 𝑠𝑖,𝑗 = 𝑠𝑖(𝑡𝑖,𝑘), and
strategy profile �⃗�(𝑠𝑖,𝑗) = (𝑆1(𝑇1), ⋅ ⋅ ⋅ , 𝑆𝑖−1(𝑇𝑖−1), 𝑠𝑖,𝑗 ,
𝑆𝑖+1(𝑇𝑖+1), ⋅ ⋅ ⋅ , 𝑆𝑛(𝑇𝑛)), which is chosen by player 𝑖 of

𝑡𝑖,𝑘 and other players with every type. Then the point-valued
expected utility of player 𝑖 with type 𝑡𝑖,𝑘 is

𝑢𝑖(�⃗�(𝑠𝑖,𝑗), 𝑡𝑖,𝑘) =(1− 𝛽(𝑚𝑖,𝑛))𝑢𝑖(�⃗�(𝑠𝑖,𝑗), 𝑡𝑖,𝑘, 𝑇𝑛)

+ 𝛽(𝑚𝑖,𝑛)𝑢𝑖(�⃗�(𝑠𝑖,𝑗), 𝑡𝑖,𝑘, 𝑇𝑛), (9)

where:

𝑢𝑖(�⃗�(𝑠𝑖,𝑗), 𝑡𝑖,𝑘, 𝑇𝑛)

=
∑

𝜏⊆𝑇𝑛

min{𝑢𝑖(�⃗�(𝑠𝑖,𝑗),𝑡𝑖,𝑘,𝑡𝑛,ℎ) ∣ 𝑡𝑛,ℎ∈𝜏}𝑚𝑖,𝑛(𝜏), (10)

𝑢𝑖(�⃗�(𝑠𝑖,𝑗), 𝑡𝑖,𝑘, 𝑇𝑛)

=
∑

𝜏⊆𝑇𝑛

max{𝑢𝑖(�⃗�(𝑠𝑖,𝑗),𝑡𝑖,𝑘,𝑡𝑛,ℎ) ∣ 𝑡𝑛,ℎ∈ 𝜏}𝑚𝑖,𝑛(𝜏), (11)

where:

𝑢𝑖(�⃗�(𝑠𝑖,𝑗),𝑡𝑖,𝑘,𝑡𝑛,ℎ)=(1−𝛽(𝑚𝑖,𝑛−1))𝑢𝑖(�⃗�(𝑠𝑖,𝑗),𝑡𝑖,𝑘,𝑇𝑛−1)

+ 𝛽(𝑚𝑖,𝑛−1)𝑢𝑖(�⃗�(𝑠𝑖,𝑗), 𝑡𝑖,𝑘, 𝑇𝑛−1), (12)

where 𝑢𝑖(�⃗�(𝑠𝑖,𝑗), 𝑡𝑖,𝑘, 𝑇𝑛−1) and 𝑢𝑖(�⃗�(𝑠𝑖,𝑗), 𝑡𝑖,𝑘, 𝑇𝑛−1) are
calculated by the formulas that have the same forms as
formulas (10) and (11) but replace 𝑇𝑛, 𝑢𝑖(�⃗�(𝑠𝑖,𝑗), 𝑡𝑖,𝑘, 𝑡𝑛,ℎ),
and 𝑚𝑖,𝑛, respectively, with 𝑇𝑛−1, 𝑢𝑖(�⃗�(𝑠𝑖,𝑗), 𝑡𝑖,𝑘, 𝑡𝑛−1,ℎ),
and 𝑚𝑖,𝑛−1; and 𝛽 is player 𝑖’s ambiguity attitude (ambiguity
averse, seeking, or neutral) to the mass function. With the
similar method and the decreasing of n, player 𝑖 considers
all others players’ types and gets his expected utility.

Actually, Definition 9 gives a point-valued expected utility
by setting ambiguity attitude in the Hurwicz criterion. And
formulas (10) and (11) are the variations of formulas (2) and
(3). In our model, according to the belief about every other
player’s types, corresponding to each type of each player there
is a subgame with each player. In each subgame, by Definition
9, every player 𝑖 could have a lower expected utility and
an upper expected utility based on the different utilities for
each type of every other player. That is, every player can
obtain an expected utility interval from their beliefs about the
other players’ types on every strategy profile by formulas (10)
and (11). Then, by formula (9), they can have point-valued
utility over every strategy profile to represent their preference.
Specifically, formula (9) uses the ambiguity attitude, calculated
by formulas (6), (7) or (8), to get the value between the lower
utility and the upper utility, obtained by formulas (10) and
(11).

Now based on the point-valued expected utilities, players
can get linear preferences over their strategies to find their best
response strategies. Thus, they can find the Nash equilibrium
in the ambiguous Bayesian game. Formally, we have:

Definition 10: In ambiguous Bayesian game (𝑁 , {𝑇𝑖, 𝑆𝑖,
𝑀𝑖, 𝑢𝑖}𝑖∈𝑁 ), strategy profile �⃗�∗ = (𝑆∗

1 (𝑇1), . . . , 𝑆
∗
𝑛(𝑇𝑛)) is

an ambiguous Bayesian Nash equilibrium if for each player
𝑖 and for each of his types 𝑡𝑖,𝑘 ∈ 𝑇𝑖, �⃗�∗ satisfies:

∀𝑠𝑖,−𝑗 ∈ 𝑆𝑖, 𝑢𝑖(�⃗�∗(𝑠∗𝑖,𝑗), 𝑡𝑖,𝑘) ≥ 𝑢𝑖(�⃗�∗(𝑠𝑖,−𝑗), 𝑡𝑖,𝑘) (13)

where �⃗�∗(𝑠𝑖,−𝑗) = (𝑆∗
1(𝑇1), . . . , 𝑆

∗
𝑖−1(𝑇𝑖−1),𝑠𝑖,−𝑗 ,𝑆∗

𝑖+1(𝑇𝑖+1),
. . . , 𝑆∗

𝑛(𝑇𝑛)) and 𝑆∗
𝑖 (𝑇𝑖) = (𝑠∗𝑖 (𝑡𝑖,1), . . . ,𝑠

∗
𝑖 (𝑡𝑖,𝑚𝑖

)).

That is, if every strategy, for every player and every type, in
a strategy profile is a best response strategy, then the strategy
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profile is an ambiguous Bayesian Nash equilibrium. When
every type of players is regarded as a player, the ambiguous
Bayesian Nash equilibrium is a Nash equilibrium.

IV. ILLUSTRATION

In this section, we illustrate how to play an ambiguous
Bayesian game for a famous security problem [4].

Now we solve the security game as shown in Table I.
There are two players: (i) the defender who has only one type
𝑇𝑑 = {𝑡𝑑,1}, and should protect three locations 𝑠1, 𝑠2, and 𝑠3
(for example, three terminals at the Los Angeles International
Airport [4]); and (ii) the attacker who has three types 𝑇𝑎 =
{𝑡𝑎,1, 𝑡𝑎,2, 𝑡𝑎,3} (for example, the curbside bomb attacker, the
large truck bomb attacker, and the sniper attacker [4]). The
attacker can launch an attack to any location of 𝑠1, 𝑠2, and
𝑠3. Here the defender knows that the attacker has three types,
but he is unsure which type the attack is exactly as shown
in Table I. Let 𝐴1 = {𝑡𝑎,1, 𝑡𝑎,2} and 𝐴2 = {𝑡𝑎,1, 𝑡𝑎,3}. Then
𝑚𝑑,𝑎(𝐴1) = 0.4 and 𝑚𝑑,𝑎(𝐴2) = 0.6 are the defender’s mass
function about the attacker’s types. And the attacker knows
that the defender has only one type. That is, 𝑚𝑎,𝑑(𝑇𝑑) = 1
is the attacker’s mass function about the defender’s type. We
suppose all the players are ambiguity-averse and the defender
and the attacker take the strategy simultaneously. Then, for the
belief, by formula (1), the ambiguity degree of mass functions
𝑚𝑑,𝑎 is:

𝛿(𝑚𝑑,𝑎) =
𝑚𝑑,𝑎(𝐴1) log2 ∣𝐴1∣+𝑚𝑑,𝑎(𝐴2) log2 ∣𝐴2∣

log2 ∣𝑇𝑎∣
=

0.4 log2 2 + 0.6 log2 2

log2 3

= 0.6309.

That is, the defender’s belief about the attacker’s types is
ambiguous. For ∣𝑇𝑑∣ = 1, 𝛿(𝑚𝑎,𝑑) = 0. That is, the attacker’s
belief about the defender’s type is precise. Then, by formula
(6) the corresponding ambiguity-averse degrees are:

𝛽(𝑚𝑑,𝑎) =
1− 𝛿(𝑚𝑑,𝑎)

2
=

1− 0.6309

2
= 0.1845,

𝛽(𝑚𝑎,𝑑) =
1− 𝛿(𝑚𝑎,𝑑)

2
=

1− 0

2
= 0.5.

By formulas (9)−(11), the defender can get the utility
interval first, and then gets the corresponding point-valued
utility. When 𝑠𝑎(𝑡𝑎,1) = 𝑠𝑎(𝑡𝑎,2) = 𝑠𝑎(𝑡𝑎,3) = 𝑠1 (i.e.,
�⃗�(𝑠1) = (𝑠1, 𝑠1, 𝑠1, 𝑠1) (the first is the strategy of the defender,
the second is the strategy of the attacker with type 𝑡𝑎,1, the
third is the strategy of the attacker with type 𝑡𝑎,2, and the fourth
is the strategy of the attacker with type 𝑡𝑎,3), to obtain the
point-valued utility 𝑢𝑑(�⃗�(𝑠1), 𝑡𝑑,1) = 𝑢𝑑(𝑠1, 𝑠1, 𝑠1, 𝑠1, 𝑡𝑑,1),
by formulas (10) and (11), the defender first gets the following

expected utility interval:

𝑢𝑑(𝑠1, 𝑠1, 𝑠1, 𝑠1, 𝑡𝑑,1, 𝑇𝑎)

=
∑

𝜏⊆𝑇𝑎

min{𝑢𝑑((𝑠1, 𝑠𝑎(𝑡𝑎,𝑗), 𝑡𝑑,1) ∣ 𝑡𝑎,𝑗 ∈ 𝜏}𝑚𝑑,𝑎(𝜏)

=min{1, 1} × 0.4 + min{1, 2} × 0.6

=1;

𝑢𝑑(𝑠1, 𝑠1, 𝑠1, 𝑠1, 𝑡𝑑,1, 𝑇𝑎)

=
∑

𝜏⊆𝑇𝑎

max{𝑢𝑑((𝑠1, 𝑠𝑎(𝑡𝑎,𝑗), 𝑡𝑑,1) ∣ 𝑡𝑎,𝑗 ∈ 𝜏}𝑚𝑑,𝑎(𝜏)

=max{1, 1} × 0.4 + max{1, 2} × 0.6

=1.6.

Then, by formula (9), we get:

𝑢𝑑(𝑠1,𝑠1,𝑠1,𝑠1,𝑡𝑑,1) =(1−𝛽(𝑚𝑑,𝑎))𝑢𝑑(𝑠1,𝑠1,𝑠1,𝑠1,𝑡𝑑,1,𝑇𝑎)

+𝛽(𝑚𝑑,𝑎)𝑢𝑑(𝑠1,𝑠1,𝑠1,𝑠1,𝑡𝑑,1,𝑇𝑎)

=(1−0.1845)×1+0.1845×1.6
=1.1107.

Similarly, we can get 𝑢𝑑(𝑠2, 𝑠1, 𝑠1, 𝑠1, 𝑡𝑑,1) = 0 and
𝑢𝑑(𝑠3, 𝑠1, 𝑠1, 𝑠1, 𝑡𝑑,1) = 0. So, 𝑢𝑑(𝑠1, 𝑠1, 𝑠1, 𝑠1, 𝑡𝑑,1) >
𝑢𝑑(𝑠2, 𝑠1, 𝑠1, 𝑠1, 𝑡𝑑,1) = 𝑢𝑑(𝑠3, 𝑠1, 𝑠1, 𝑠1, 𝑡𝑑,1). That
is, 𝑠1 is the defender’s best response strategy given strat-
egy 𝑠1 of each type of the attacker. Similarly, we can al-
so find that 𝑢𝑑(𝑠1, 𝑠1, 𝑠1, 𝑠2, 𝑡𝑑,1) = 0.5107 < 0.6643 =
𝑢𝑑(𝑠2, 𝑠1, 𝑠1, 𝑠2, 𝑡𝑑,1) > 𝑢𝑑(𝑠3, 𝑠1, 𝑠1, 𝑠2, 𝑡𝑑,1) = 0. That is,
𝑠2 is the defender’s best response strategy given the attacker’s
strategy 𝑠1 for type 𝑡𝑎,1 and type 𝑡𝑎,2, and 𝑠2 for type 𝑡𝑎,3. We
also find that given the strategy 𝑠2 of the defender, 𝑠1 is the
best response strategy of type 𝑡𝑎,1 and type 𝑡𝑎,2 of the attacker,
and 𝑠2 is the best response of type 𝑡𝑎,3 of the attacker. By
formula (13), strategy profile (𝑠2, 𝑠1, 𝑠1, 𝑠2) is an ambiguous
Bayesian Nash equilibrium in the ambiguous Bayesian game
of Table I.

V. PROPERTIES

This section will reveal some insights into our model.

A. The Equilibrium Existence

The existence of the Nash Equilibrium has been well
studied [17], i.e., the normal Nash game with finite strategies
always has an equilibrium point. An ambiguous Bayesian game
with finite types can be reduced to a normal form Nash game,
which has finite dimensional strategy space. Thus, we can give
the following theorem for the existence of ambiguous Bayesian
Nash equilibrium.

Theorem 1: Every finite ambiguous Bayesian game 𝐺 =
(𝑁 , {𝑇𝑖, 𝑆𝑖, 𝑀𝑖, 𝑢𝑖}𝑖∈𝑁 ) has an ambiguous Bayesian Nash
equilibrium.

Proof: Given the other players’ information for each
type 𝑡𝑖,𝑘, player 𝑖 can get the ambiguous belief 𝑀𝑖 about
other players’ types 𝑇−𝑖. By one of formulas (6)–(8), the
player can obtain his degree of ambiguity attitude. Thus, by
formula (9), he can get every strategy’s point-valued expected
utility from the expected utility interval, which is obtained, by
formulas (10) and (11), from the utility 𝑢𝑖 and his ambiguous
belief 𝑀𝑖. So, given other players’ chosen strategy profile
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Defender

Attacker: 𝑡𝑎,1 𝑠1 𝑠2 𝑠3 Attacker: 𝑡𝑎,2 𝑠1 𝑠2 𝑠3 Attacker: 𝑡𝑎,3 𝑠1 𝑠2 𝑠3
𝑠1 1,0 0,2 0,3 𝑠1 1,0 0,6 0,1 𝑠1 2,0 0,5 0,4
𝑠2 0,5 2,0 0,3 𝑠2 0,4 5,0 0,2 𝑠2 0,0 6,0 0,0
𝑠3 0,5 0,2 3,0 𝑠3 0,4 0,6 3,0 𝑠3 0,2 0,5 2,0

TABLE I. A SECURITY GAME WITH THE PROBABILITY FOR TYPES 𝑡1 AND 𝑡2 OF THE ATTACKER IS 0.4, AND THE PROBABILITY FOR TYPES 𝑡1 AND 𝑡3 IS

0.6: THE PAYOFFS FOR BOTH PLAYERS OVER PURE STRATEGY PROFILES.

(𝑆1(𝑇1), ⋅ ⋅ ⋅ , 𝑆𝑖−1(𝑇𝑖−1), 𝑆𝑖+1(𝑇𝑖+1), ⋅ ⋅ ⋅ , 𝑆𝑛(𝑇𝑛)), each
type 𝑡𝑖,𝑘 has a normal form Nash game. Then, each type 𝑡𝑖,𝑘
can choose the best response strategy by formula (13). All
normal formal Nash games of all types of all players form a
normal formal Nash game with ∣𝑇1∣ × ⋅ ⋅ ⋅ × ∣𝑇𝑛∣ dimensions.
The number of each player’s types is finite, so this normal
formal Nash game is finite. Thus, this normal formal Nash
game has an equilibrium point [17]. That is, every strategy
for every player and every type in an equilibrium point is a
best response strategy. By Definition 10, this strategy profile is
an ambiguous Bayesian Nash equilibrium. Then, every finite
ambiguous Bayesian game has an ambiguous Bayesian Nash
equilibrium.

B. The Ambiguity Effect on Equilibrium

Now, we show that how the ambiguous information influ-
ences the equilibrium.

In the decision making under ambiguity [12], different peo-
ple with different ambiguity attitudes have different behaviors
[10]. The following theorem reveals how the ambiguity degree
and ambiguity attitude influence the outcomes of our games.

Theorem 2: For two-person ambiguous Bayesian games
𝐺1 and 𝐺2, let 𝑠1,1 and 𝑠1,2 be the two strategies of player
1 with unique type 𝑡1, 𝑆∗

2 (𝑇2) be the best response strategy
profile of player 2’s all types in both games, and the strategy
profile 𝑠1,𝑗 = (𝑠1,𝑗 , 𝑆2(𝑇2)), 𝑚1 and 𝑚2 be mass functions
over player 2’s type set 𝑇2 with respect to 𝐺1 and 𝐺2,
[𝑢(𝑠1,1), 𝑢(𝑠1,1)] and [𝑢(𝑠1,2), 𝑢(𝑠1,2)] be player 1’s expected
utility intervals in both games, 𝑢(𝑠1,1) < 𝑢(𝑠1,2) < 𝑢(𝑠1,1) <
𝑢(𝑠1,2), and 𝑢1(𝑠1,𝑗) and 𝑢′1(𝑠1,𝑗) be the point-valued utilities
from these intervals with respect to 𝐺1 and 𝐺2. Then:

(i) When player 1 is ambiguity-seeking and 𝛿0 ∈ (0, 1)
is the ambiguity degree of the mass function such that
𝑢1(𝑠1,1) = 𝑢1(𝑠1,2) = 𝑢

′
1(𝑠1,1) = 𝑢

′
1(𝑠1,2),

a) if 𝛿(𝑚1) < 𝛿0 < 𝛿(𝑚2) then (𝑠1,1, 𝑆
∗
2 (𝑇2)) is

the ambiguous Bayesian Nash equilibrium in 𝐺1 and
(𝑠1,2, 𝑆

∗
2 (𝑇2)) is the ambiguous Bayesian Nash equi-

librium in 𝐺2; and

b) if 𝛿(𝑚1) > 𝛿0 > 𝛿(𝑚2) then (𝑠1,2, 𝑆
∗
2 (𝑇2)) is

the ambiguous Bayesian Nash equilibrium in 𝐺1 and
(𝑠1,1, 𝑆

∗
2 (𝑇2)) is the ambiguous Bayesian Nash equi-

librium in 𝐺2.

(ii) When player 1 is ambiguity-averse and 𝛿0 ∈ (0, 1) is
the ambiguity degree of the mass function such that
𝑢1(𝑠1,1) = 𝑢1(𝑠1,2) = 𝑢

′
1(𝑠1,1) = 𝑢

′
1(𝑠1,2),

a) if 𝛿(𝑚1) < 𝛿0 < 𝛿(𝑚2) then (𝑠1,2, 𝑆
∗
2 (𝑇2)) is

the ambiguous Bayesian Nash equilibrium in 𝐺1 and

(𝑠1,1, 𝑆
∗
2 (𝑇2)) is the ambiguous Bayesian Nash equi-

librium in 𝐺2; and

b) if 𝛿(𝑚1) > 𝛿0 > 𝛿(𝑚2) then (𝑠1,1, 𝑆
∗
2 (𝑇2)) is

the ambiguous Bayesian Nash equilibrium in 𝐺1 and
(𝑠1,2, 𝑆

∗
2 (𝑇2)) is the ambiguous Bayesian Nash equi-

librium in 𝐺2.

Proof: For the ambiguity-seeking player, by formulas (7)
and (9), we have

𝑢1(𝑠1,1) = 𝑢
′
1(𝑠1,1) = (1− 1 + 𝛿0

2
)𝑢(𝑠1,1) +

1 + 𝛿0
2

𝑢(𝑠1,1),

𝑢1(𝑠1,2) = 𝑢
′
1(𝑠1,2) = (1− 1 + 𝛿0

2
)𝑢(𝑠1,2) +

1 + 𝛿0
2

𝑢(𝑠1,2).

By the above formulas with 𝑢1(𝑠1,1) = 𝑢1(𝑠1,2), we can get

𝛿0 =
(𝑢(𝑠1,1)− 𝑢(𝑠1,2))− (𝑢(𝑠1,2)− 𝑢(𝑠1,1))
(𝑢(𝑠1,1)− 𝑢(𝑠1,2)) + (𝑢(𝑠1,2)− 𝑢(𝑠1,1)) .

Since 𝑢(𝑠1,1) < 𝑢(𝑠1,2) < 𝑢(𝑠1,1) < 𝑢(𝑠1,2) and 𝑢(𝑠1,2)
−𝑢(𝑠1,1) < 𝑢(𝑠1,1) −𝑢(𝑠1,2), we can have 0 < 𝛿0 < 1, which
satisfies the definition of ambiguity degree. By formula (7),
we can have the ambiguity-seeking degree:

𝛽(𝛿0) =
𝑢(𝑠1,1)− 𝑢(𝑠1,2)

(𝑢(𝑠1,1)− 𝑢(𝑠1,2)) + (𝑢(𝑠1,2)− 𝑢(𝑠1,1)) .

So, we have 0.5 < 𝛽(𝛿0) < 1, which satisfies the definition
of ambiguity-seeking degree. Thus, if player 1 is ambiguity-
seeking and 𝑢(𝑠1,2) − 𝑢(𝑠1,1) < 𝑢(𝑠1,1) −𝑢(𝑠1,2), then
there exists a mass function’s ambiguity degree 𝛿0 such that
𝑢1(𝑠1,1) = 𝑢1(𝑠1,2) = 𝑢

′
1(𝑠1,1) = 𝑢

′
1(𝑠1,2).

If 𝛿(𝑚1) < 𝛿0, by formula (7), we have 𝛽(𝛿(𝑚1)) < 𝛽(𝛿0).
By formula (9), we have:

𝑢1(𝑠1,1) = (1− 𝛽(𝛿(𝑚1))𝑢(𝑠1,1) + 𝛽(𝛿(𝑚1)𝑢(𝑠1,1),

𝑢1(𝑠1,2) = (1− 𝛽(𝛿(𝑚1))𝑢(𝑠1,2) + 𝛽(𝛿(𝑚1)𝑢(𝑠1,2).

So, we have:

𝑢1(𝑠1,1)−𝑢1(𝑠1,2) = 𝑢(𝑠1,1)− 𝑢(𝑠1,2) + 𝛽(𝛿(𝑚1))((𝑢(𝑠1,1)

− 𝑢(𝑠1,1))− (𝑢(𝑠1,2)− 𝑢(𝑠1,2)))
> 𝑢(𝑠1,1)− 𝑢(𝑠1,2)− 𝛽(𝛿0)((𝑢(𝑠1,1)
− 𝑢(𝑠1,2)) + (𝑢(𝑠1,2)− 𝑢(𝑠1,1)))

= (𝑢(𝑠1,1)−𝑢(𝑠1,2))−(𝑢(𝑠1,1)−𝑢(𝑠1,2))
= 0.

Thus, 𝑢1(𝑠1,1) > 𝑢1(𝑠1,2). Similarly, if 𝛿0 < 𝛿(𝑚2) we have
𝑢′1(𝑠1,1) < 𝑢′1(𝑠1,2); and if 𝛿(𝑚1) > 𝛿0 > 𝛿(𝑚2), then
𝑢1(𝑠1,1) < 𝑢1(𝑠1,2) and 𝑢′1(𝑠1,1) > 𝑢′1(𝑠1,2). And 𝑆∗

2 (𝑇2)
is the best response strategy profile of player 2’s all types in
𝐺1 and 𝐺2. By Definition 10, (𝑠1,1, 𝑆∗

2 (𝑇2)) is the ambiguous
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𝐴

������A
B:𝑡2,1 L R

������A
B:𝑡2,2 L R

������A
B:𝑡2,3 L R

U 101, 40 100, 10 U 110, 50 80, 40 U 105, 70 1000/9, 90
D 91, 50 120, 10 D 130, 70 105, 10 D 100, 80 100, 150

TABLE II. AN AMBIGUOUS BAYESIAN GAME WITH THE PROBABILITY FOR TYPES 𝑡2,1 AND 𝑡2,2 OF PLAYER 2 IS 1, AND THE PROBABILITY FOR TYPE

𝑡2,3 IS 0.

𝐴

������A
B:𝑡2,1 L R

������A
B:𝑡2,2 L R

������A
B:𝑡2,3 L R

U 10, 40 100, 10 U 100, 50 80, 40 U 105, 70 1000/9, 90
D 10, 50 120, 10 D 400, 70 105, 10 D 100, 80 100, 150

TABLE III. AN AMBIGUOUS BAYESIAN GAME WITH THE PROBABILITY OF PLAYER 2’ TYPES 𝑡2,1 AND 𝑡2,2 IS 0.1, AND THE PROBABILITY FOR TYPE

𝑡2,3 IS 0.9.

Bayesian Nash equilibrium in 𝐺1 and (𝑠1,2, 𝑆
∗
2 (𝑇2)) is the

ambiguous Bayesian Nash equilibrium in 𝐺2. Similarly, we
know that if 𝛿(𝑚1) > 𝛿0 > 𝛿(𝑚2), then (𝑠1,2, 𝑆

∗
2 (𝑇2))

is the ambiguous Bayesian Nash equilibrium in 𝐺1 and
(𝑠1,1, 𝑆

∗
2 (𝑇2)) is the ambiguous Bayesian Nash equilibrium

in 𝐺2.

For the ambiguity-averse player and 𝑢(𝑠1,2) − 𝑢(𝑠1,1) >
𝑢(𝑠1,1) −𝑢(𝑠1,2), using the same method, we can show:

𝛿0 =
(𝑢(𝑠1,2)− 𝑢(𝑠1,1))− (𝑢(𝑠1,1)− 𝑢(𝑠1,2))
(𝑢(𝑠1,1)− 𝑢(𝑠1,2)) + (𝑢(𝑠1,2)− 𝑢(𝑠1,1)) .

And if 𝛿(𝑚1) < 𝛿0 < 𝛿(𝑚2) then 𝑢1(𝑠1,1) < 𝑢1(𝑠1,2)
and 𝑢′1(𝑠1,1, 𝑡1) > 𝑢′1(𝑠1,2); if 𝛿(𝑚1) > 𝛿0 > 𝛿(𝑚2)
then 𝑢1(𝑠1,1) > 𝑢1(𝑠1,2, 𝑡1) and 𝑢′1(𝑠1,1) < 𝑢′1(𝑠1,2). And
𝑆∗
2 (𝑇2) is the best response strategy profile of player 2’s all

types in 𝐺1 and 𝐺2. So, if 𝛿(𝑚1) < 𝛿0 < 𝛿(𝑚2), then
(𝑠1,2, 𝑆

∗
2 (𝑇2)) is the ambiguous Bayesian Nash equilibrium

in 𝐺1 and (𝑠1,1, 𝑆
∗
2 (𝑇2)) is the ambiguous Bayesian Nash

equilibrium in 𝐺2; and if 𝛿(𝑚1) > 𝛿0 > 𝛿(𝑚2), then
(𝑠1,1, 𝑆

∗
2 (𝑇2)) is the ambiguous Bayesian Nash equilibrium

in 𝐺1 and (𝑠1,2, 𝑆
∗
2 (𝑇2)) is the ambiguous Bayesian Nash

equilibrium in 𝐺2.

Now, we give an example to show how the ambiguous
Bayesian Nash equilibria change with the players’ ambiguity
attitudes and ambiguity degrees as shown in the above theorem.
So, we consider our model with ambiguity-averse players. To
find the equilibria in ambiguous Bayesian games as shown in
Tables II and III, we find the best response strategy of every
type of each player first. Now we start to discuss that of player
2 with each type. Similarly to the ambiguous Bayesian game
as shown in Table I, by formulas (9) and (12), since player
2 knows that player 1 has only one type 𝑡1, player 2 can get
the point-valued expected utility because of this precise belief.
That is, the point-valued expected utility of player 2 with each
type 𝑡2,𝑘 over strategy profile �⃗�(𝑠2,𝑗) (𝑠2,𝑗 ∈ 𝑆2 = {𝐿,𝑅})
is: 𝑢2(�⃗�(𝑠2,𝑗), 𝑡2,𝑘) = 𝑢2(𝑠1(𝑡1), 𝑠2,𝑗 , 𝑡2,𝑘), where 𝑠1(𝑡1) ∈
𝑆1 = {𝑈,𝐷}. So, the point-valued expected utility of player
2 with each type 𝑡2,𝑘 is shown in Table II. For example,
𝑢2(�⃗�(𝑠2,𝐿), 𝑡2,1) = 𝑢2(𝑈,𝐿, 𝑡2,1) = 40 when 𝑠1(𝑡1) = 𝑈 .
So, in the ambiguous Bayesian games as shown in Tables II
and III, whatever player 1 with a unique type chooses, player
2’s best response strategy profiles are always (𝐿, 𝐿, 𝑅) (i.e.,

𝐿, 𝐿, and 𝑅 are the best response strategies of type 𝑡2,1, 𝑡2,2,
and 𝑡2,3, respectively) in both ambiguous Bayesian games as
shown in Tables II and III.

Now we calculate player 1’s point-valued utilities on the
strategy profile when player 2’s best response strategy profile
is (𝐿, 𝐿, 𝑅) in both games of Tables II and III. In the
game of Table II, by formula (1), the ambiguity degree of
mass function 𝑚1,2 is 𝛿1(𝑚1,2) ≈ 0.6309. For player 1
with ambiguity aversion, by formula (6) the ambiguity-averse
degree is 𝛽1(𝑚1,2) = 0.1845. By formulas (10) and (11), the
utility intervals of profiles (𝑈,𝐿, 𝐿,𝑅) and (𝐷,𝐿,𝐿,𝑅) are:

[𝑢1(𝑈,𝐿, 𝐿,𝑅, 𝑡1, 𝑇2), 𝑢1(𝑈,𝐿, 𝐿,𝑅, 𝑡1, 𝑇2)] = [101, 110];

[𝑢1(𝐷,𝐿,𝐿,𝑅, 𝑡1, 𝑇2), 𝑢1(𝐷,𝐿,𝐿,𝑅, 𝑡1, 𝑇2)] = [91, 130].

Further, by formula (9), player 1’s point-valued utilities are:

𝑢1(𝑈,𝐿,𝐿,𝑅,𝑡1)=(1−0.1845)×101+0.1845×110=102.66,

𝑢1(𝐷,𝐿,𝐿,𝑅, 𝑡1)=(1−0.1845)×91+0.1845×130=98.20.

That is, 𝑢1(𝑈,𝐿, 𝐿,𝑅, 𝑡1) > 𝑢1(𝐷,𝐿,𝐿,𝑅, 𝑡1). So, strategy 𝑈
is player 1’s best response strategy. From the above discussion,
we know that if player 1 chooses strategy 𝑈 , then 𝐿, 𝐿, and
𝑅 are the best response strategies of player 2’s type 𝑡2,1, 𝑡2,2,
and 𝑡2,3, respectively. So, by Definition 10, (𝑈,𝐿, 𝐿,𝑅) is the
ambiguous Nash equilibrium in the game of Table II.

In the game of Table III, by formulas (10) and (11), the
utility intervals of (𝑈,𝐿, 𝐿,𝑅) and (𝐷,𝐿,𝐿,𝑅) still are:

[𝑢1(𝑈,𝐿, 𝐿,𝑅, 𝑡1, 𝑇2), 𝑢1(𝑈,𝐿, 𝐿,𝑅, 𝑡1, 𝑇2)] = [101, 110];

[𝑢1(𝐷,𝐿,𝐿,𝑅, 𝑡1, 𝑇2), 𝑢1(𝐷,𝐿,𝐿,𝑅, 𝑡1, 𝑇2)] = [91, 130].

However, by formula (1), the ambiguity degree of mass func-
tion 𝑚1,2 is 𝛿2(𝑚1,2) ≈ 0.0631. For player 1 with ambigu-
ity aversion, by formula (6) the ambiguity-averse degree is
𝛽2(𝑚1,2) = 0.47. By formula (9), player 1 has point-valued
expected utilities as follows:

𝑢1(𝑈,𝐿, 𝐿,𝑅, 𝑡1)=(1− 0.47)×101+0.47×110=105.21,

𝑢1(𝐷,𝐿,𝐿,𝑅, 𝑡1)=(1− 0.47)×91+0.47×130=109.27.

That is, 𝑢1(𝑈,𝐿, 𝐿,𝑅, 𝑡1) < 𝑢1(𝐷,𝐿,𝐿,𝑅, 𝑡1). So, strategy
𝐷 is player 1’s best response strategy. From the above discus-
sion, we know that if player 1 chooses strategy 𝐷, then 𝐿, 𝐿,
and 𝑅 are the best response strategy of player 2’s type 𝑡2,1,

1169



0 0.2 0.4 0.6 0.8 1
90

100

110

120

130

The Value of Ambiguity Attitude

T
he

 P
ay

of
f V

al
ue

 

 
payoff for strategy U
payoff for strategy D

Fig. 1. Player 1’s utility when player 2’s response strategy profile is (𝐿,𝐿,𝑅)
in both games of Tables II and III.
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𝑡2,2, and 𝑡2,3, respectively. So, by Definition 10, (𝐷,𝐿,𝐿,𝑅)
is the ambiguous Nash equilibrium in the game of Table III.

However, we have found that (𝑈, (𝐿,𝐿,𝑅)) is the am-
biguous Nash equilibrium in the game of Table II. So, given
player 2’s unique best response strategy profile (𝐿,𝐿,𝑅), even
though the player 1’s utility intervals (both are [110,130]) are
the same on the same strategy profile, the ambiguous Nash
equilibria are different in the games of Tables II and III.
Actually, in both games, the ambiguity degrees of player 1’s
belief are different. Player 1’s belief about player 2’s types in
the game of Table II is more ambiguous than the one in the
game of Table III (i.e., 𝛿1(𝑚1,2) > 𝛿2(𝑚1,2)). In our model,
players have different values of ambiguity attitude for different
ambiguity degrees. As shown in Figs. 1 and 2, the higher
the ambiguity degree, the lower the ambiguity-averse degree;
conversely, the higher the ambiguity degree, the higher the
ambiguity-seeking degree. However, the higher the ambiguity-
averse or ambiguity-seeking degree, the higher the utility for
players as shown in formula (9).

Furthermore, the ambiguous Bayesian Nash equilibrium
changes with the ambiguity degree of the belief. For example,
in Fig. 1, when 𝛽 = 1

3 (ambiguity degree 𝛿(𝑚) = 1
3 in

Fig. 2), player 1’s point-valued utility of strategy 𝑈 is equal
to the point-valued utility of strategy 𝐷 given player 2’s
response strategy profile (𝐿,𝐿,𝑅). If 𝛽 < 1

3 (the corre-
sponding ambiguity degree 𝛿(𝑚) > 1

3 in Fig. 2), player 1’s
point-valued expected utility of strategy 𝑈 is more than the
point-valued expected utility of strategy 𝐷. That is, player 1
prefers strategy 𝑈 given player 2’s response strategy profile
(𝐿,𝐿,𝑅). Actually, in the game of Table II, the value of
player 1’s ambiguity attitude is 𝛽1(𝑚1,2) = 0.1845 < 1

3 (the
corresponding ambiguity degree is 𝛿1(𝑚1,2) = 0.6039 > 1

3 )
and we know that (𝐿,𝐿,𝑅) is the best response strategy
profile of player 2’s all types given player 1’s strategy 𝑈 .
So, (𝑈,𝐿, 𝐿,𝑅) is the ambiguous Bayesian Nash equilibrium.
If 𝛽 > 1

3 (the corresponding ambiguity degree 𝛿(𝑚) < 1
3

in Fig. 2), the point-valued utility of strategy 𝐷 is more
than the point-valued expected utility of strategy 𝑈 . Thus,
player 1 prefers strategy 𝐷 given player 2’s response strategy
profile (𝐿,𝐿,𝑅). Actually, in the game of Table III, the value

of player 1’s ambiguity attitude is 𝛽2(𝑚1,2) = 0.47 > 1
3

(ambiguity degree 𝛿2(𝑚1,2) = 0.0631 < 1
3 ) and we know

that (𝐿,𝐿,𝑅) is the best response strategy profile of player
2’s all types given player 1’s strategy 𝐷. So, (𝐷,𝐿,𝐿,𝑅) is
the ambiguous Bayesian Nash equilibrium.

So, the above example confirms Theorem 2: different
mass functions and ambiguity attitudes will cause different
ambiguous Bayesian Nash equilibria. That is the reason why
the ambiguous Bayesian Nash equilibria are different in games
of Tables II and III.

VI. RELATED WORK

To deal with incomplete information (i.e., the precise prob-
ability distribution over players’ types), a standard model is
Bayesian games [1]. The following theorem reveals the relation
between our ambiguous Bayesian games and the Bayesian
games.

Theorem 3: In ambiguous Bayesian game (𝑁 , {𝑇𝑖, 𝑆𝑖,𝑀𝑖,
𝑢𝑖}𝑖∈𝑁 ), if for every player 𝑖, his belief about each type of
other players is precise (i.e., given every focal elements 𝜏𝑗 ⊆
𝑇𝑗 and player 𝑖’s mass function 𝑚𝑖,𝑗 , ∣𝜏𝑗 ∣ = 1 when 𝑚(𝜏𝑗) >
0), the ambiguous Bayesian game is a Bayesian game and the
ambiguous Bayesian Nash equilibrium is the Bayesian Nash
equilibrium.

Proof: Because the belief about the types in Bayesian
games are precise, i.e., if ∣𝜏𝑗 ∣ = 1 when 𝑚𝑖,𝑗(𝜏𝑗) > 0, the
ambiguous Bayesian game is the Bayesian game. If ∣𝜏𝑗 ∣ = 1
when 𝑚𝑖,𝑗(𝜏𝑗) > 0, let 𝜏𝑗 = 𝑡𝑗,ℎ and 𝑚𝑖,𝑗 = 𝑝𝑖,𝑗 , then by
formulas (10) and (11), we have

𝑢𝑛(�⃗�(𝑠𝑖,𝑗), 𝑇𝑛)=𝑢𝑛(�⃗�(𝑠𝑖,𝑗), 𝑇𝑛)

=
∑

𝑡𝑛,ℎ∈𝑇𝑛

𝑢𝑛(�⃗�(𝑠𝑖,𝑗), 𝑡𝑛,ℎ)𝑝𝑖,𝑛(𝑡𝑛,ℎ). (14)

By formula (9), we have:

𝑢𝑖(�⃗�(𝑠𝑖,𝑗), 𝑡𝑖,𝑘)=
∑

𝑡𝑛,ℎ∈𝑇𝑛

𝑢𝑛(�⃗�(𝑠𝑖,𝑗), 𝑡𝑛,ℎ)𝑝𝑖,𝑛(𝑡𝑛,ℎ). (15)

By formula (12), we have:

𝑢𝑖(�⃗�(𝑠𝑖,𝑗), 𝑡𝑖,𝑘)

=
∑

𝑡𝑛,ℎ∈𝑇𝑛

∑

𝑡𝑛−1,ℎ∈𝑇𝑛−1

𝑢𝑛−1(⃗𝑆(𝑠𝑖,𝑗),𝑡𝑛−1,ℎ)𝑝𝑖,𝑛−1(𝑡𝑛−1,ℎ)𝑝𝑖,𝑛(𝑡𝑛,ℎ).

Recursively, we have:

𝑢𝑖(�⃗�(𝑠𝑖,𝑗), 𝑡𝑖,𝑘)

=
∑

𝑡𝑛,ℎ∈𝑇𝑛

. . .
∑

𝑡𝑖+1,ℎ∈𝑇𝑖+1

∑

𝑡𝑖−1,ℎ∈𝑇𝑖−1

. . .
∑

𝑡1,ℎ∈𝑇1

𝑢𝑖 (𝑠1(𝑡1,ℎ), . . . ,

𝑠𝑖−1(𝑡𝑖−1,ℎ), 𝑠𝑖,𝑗 , 𝑠𝑖+1(𝑡𝑖+1,ℎ), . . . , 𝑠𝑛(𝑡𝑛,ℎ),𝑡𝑖,𝑘) 𝑝𝑖,1(𝑡1,ℎ)

. . . 𝑝𝑖,𝑖−1(𝑡𝑖−1,ℎ)𝑝𝑖,𝑖+1(𝑡𝑖+1,ℎ) . . . 𝑝𝑖,𝑛(𝑡𝑛,ℎ).

Let 𝑡−𝑖 = (𝑡1,ℎ, ⋅ ⋅ ⋅ , 𝑡𝑖−1,ℎ, 𝑡𝑖+1,ℎ, ⋅ ⋅ ⋅ , 𝑡𝑛,ℎ) ∈ 𝑇−𝑖 be the
types of the other players, 𝑇−𝑖 be the set of all possi-
ble values of 𝑡−𝑖, and the probability distribution 𝑝𝑖(𝑡𝑖 ∣
𝑡𝑖,𝑘) = 𝑝𝑖,1(𝑡1,ℎ) . . . 𝑝𝑖,𝑖−1(𝑡𝑖−1,ℎ)𝑝𝑖,𝑖+1(𝑡𝑖+1,ℎ) . . . 𝑝𝑖,𝑛(𝑡𝑛,ℎ)
be player 𝑖’s belief about 𝑡−𝑖. Then

𝑢𝑖(�⃗�(𝑠𝑖,𝑗), 𝑡𝑖,𝑘) =
∑

𝑡−1∈𝑇−𝑖

𝑢𝑖(𝑠1(𝑡1,ℎ), ⋅ ⋅ ⋅ , 𝑠𝑖−1(𝑡𝑖−1,ℎ), 𝑠𝑖,𝑗 ,

𝑠𝑖+1(𝑡𝑖+1,ℎ), ⋅ ⋅ ⋅ , 𝑠𝑛(𝑡𝑛,ℎ), 𝑡𝑖,𝑘)𝑝(𝑡−𝑖 ∣ 𝑡𝑖,𝑘),
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By formula (13), for each player 𝑖 and for each of his types
𝑡𝑖,𝑘 ∈ 𝑇𝑖, the ambiguous Bayesian Nash equilibrium �⃗�∗ =
(𝑆∗

1 (𝑇1), . . . , 𝑆
∗
𝑛(𝑇𝑛)) (𝑆∗

𝑖 (𝑇𝑖) =
∏
𝑡𝑖,𝑘∈𝑇𝑖

𝑠∗𝑖 (𝑡𝑖,𝑘)) is

𝑠∗𝑖 (𝑡𝑖,𝑘) = arg max
𝑠𝑖,𝑗∈𝑆𝑖

∑

𝑡−1∈𝑇−𝑖

𝑢𝑖(𝑠
∗
1(𝑡1,ℎ), . . . , 𝑠

∗
𝑖−1(𝑡𝑖−1,ℎ),

𝑠𝑖,𝑗 , 𝑠
∗
𝑖+1(𝑡𝑖+1,ℎ), . . . , 𝑠

∗
𝑛(𝑡𝑛,ℎ), 𝑡𝑖,𝑘)𝑝(𝑡−𝑖 ∣ 𝑡𝑖,𝑘),

which is the same as the Bayesian Nash equilibrium obtained
by using formula (5). So, the theorem holds.

So, ambiguous Bayesian games are a generalised model
of Bayesian games. Wang et al. [18] handle players with
fuzzy types and so can be regarded as a generalisation of
the Bayesian game as well. However, they cannot deal with
players’ types with imprecise probability, but we can.

In the field of games under ambiguity, Eichberger et al.
[19] define a notion of equilibrium under ambiguity to explain
the hypothesis that the result from changing an apparently
irrelevant parameter contradicts Nash equilibrium. In their two-
person games, they view their opponents’ behavior as ambigu-
ous based on non-additive beliefs. And Marco and Romaniello
[20] try to use the ambiguity model to remedy defects of Nash
equilibrium. In their model, the belief depends on the strategy
profile and then affects the equilibrium. Moreover, Xiong et
al. also [21] consider the ambiguous utility in game theory.
Furthermore, Ma et al. [22] extend the ambiguity decision
framework [9], [21] to deal with ambiguous utilities in the
static security games. However, all these studies do not concern
the players’ types, but we handle the ambiguous information
about players’ types.

Zhang et al. [16] propose a model of security games with
ambiguous information about attacker types. However, that is
the dynamic game with two players, but our model is the static
game with 𝑛 players by extending the Bayesian game and can
discriminate different ambiguity attitudes.

VII. CONCLUSION AND FUTURE WORK

This paper extends the Bayesian game model to handle
the ambiguous information about the player’s types. Moreover,
our model can handle ambiguity-averse, ambiguity-seeking,
and ambiguity-neutral players. We also define a new solution
concept: the ambiguous Nash equilibrium, and prove the exis-
tence of the solution of the game. In addition, we reveal how
the ambiguity degrees influence the outcomes of the games of
this kind. In the future, it is interesting to use the idea behind
our model to extend signaling games to ambiguous signaling
games.
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