
 
 

 

  

Abstract—The fuzzy feedback control design problem is 
addressed in this paper by using the distributed proportional- 
spatial integral (P-sI) control approach for a class of nonlinear 
distributed parameter systems represented by semi-linear 
parabolic partial differential-integral equations (PDIEs). The 
objective of this paper is to develop a fuzzy distributed P-sI 
controller for the semi-linear parabolic PDIE system such that 
the resulting closed-loop system is exponentially stable. To do 
this, the semi-linear parabolic PDIE system is first assumed to 
be exactly represented by a Takagi-Sugeno (T-S) fuzzy 
parabolic PDIE model. A new vector-valued integral inequality 
is established via the vector-valued Wirtinger's inequality. 
Then, based on the T-S fuzzy PDIE model and this new integral 
inequality, a distributed fuzzy P-sI state feedback controller is 
proposed such that the closed-loop PDIE system is exponentially 
stable. The sufficient condition on the existence of this fuzzy 
controller is given in terms of a set of standard linear matrix 
inequalities (LMIs), which can be effectively solved by using the 
existing convex optimization techniques. Finally, the developed 
design methodology is successfully applied to solve the feedback 
control design of a semi-linear reaction-diffusion system with a 
spatial integral term. 

I. INTRODUCTION 
UZZY control approach offers a systematic way to deal 
with the control synthesis of nonlinear systems. Over the 
past few decades, various fuzzy control approaches have 

been proposed and fruitful results have been achieved [1]. In 
particular, the so-called Takagi-Sugeno (T-S) fuzzy model [2] 
has been widely employed for the control design of nonlinear 
systems represented by ordinary differential equations (ODE) 
or delay differential equations (DDEs) (see e.g., [3], [4] and 
the references therein for a survey of recent development), 
since it can combine the merits of both fuzzy logic theory and 
linear system theory. This T-S fuzzy-model-based control 
technique is conceptually simple and effective for controlling 
complex nonlinear systems modeled by ODEs or DDEs. 
Based on the T-S fuzzy model, the fruitful linear system 
theory can be applied to the analysis and controller synthesis 
of nonlinear ODE systems or nonlinear DDE systems [1]-[8]. 
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However, these results only focus on nonlinear ODE systems 
or nonlinear DDE systems. 

It is well-known that most industrial processes are 
spatiotemporal ones, i.e., their behavior not only depends on 
time but also is concerned with spatial position, for example, 
thermal diffusion processes, fluid heat exchangers, and 
chemical engineering processes [9]-[12]. The mathematical 
models describing these processes are typically obtained from 
the dynamical conservation laws and take the form of 
parabolic partial differential equations (PDEs) [9] or partial 
differential-integral equations (PDIEs) [13]-[15]. The key 
characteristic of PDE systems and PDIE systems is that their 
outputs, inputs, and process states and relevant parameters 
may vary temporally as well as spatially. Due to the spatial 
distribution feature, the existing fuzzy control design for 
nonlinear ODE system or nonlinear DDE systems cannot be 
directly applied to address the control synthesis of the 
nonlinear parabolic PDE systems or nonlinear PDIE systems. 

Over the past decade, the existing fuzzy-model-based 
control techniques have been extended to address the control 
design of nonlinear PDE systems. Based on the approximated 
ODE models derived by using the model reduction 
techniques and the existing T-S fuzzy ODE model-based 
control techniques, some important results have been 
reported [16]-[19]. A potential drawback of these results is 
that the inherent loss of physical features of the problem due 
to the truncation before the control design, and the ultimate 
controller design may be negative and fail to take advantage 
of natural property of the system. More recently, Wang et al. 
have developed a distributed fuzzy control design method for 
a class of semi-linear parabolic PDE systems through a fuzzy 
PDE modeling approach [20] and [21]. However, to the best 
of authors’ knowledge, the distributed fuzzy proportional- 
spatial integral (P-sI) control design has not been reported for 
semi-linear parabolic PDIE systems based on directly the T-S 
fuzzy PDIE model, which motivates this study. 

In this paper, we will study the distributed fuzzy P-sI 
control design for a class of semi-linear parabolic PDIE 
systems via the fuzzy PDIE modeling approach, where the 
control actuators are continuously distributed in space. A T-S 
fuzzy parabolic PDIE model is assumed to be used to 
accurately represent the semi-linear parabolic PDIE system. 
Then, based on the T-S fuzzy PDIE model and the parallel 
distributed compensation (PDC) scheme [3], a distributed 
fuzzy P-sI controller is developed such that the closed-loop 
PDIE system is exponentially stable. A new integral 
inequality is established via the vector-valued Wirtinger's 
inequality. A sufficient condition of the closed-loop 
exponential stability is derived with the help of this new 
integral inequality, and presented in terms of a set of standard 
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linear matrix inequalities (LMIs), which can be solved via the 
existing convex optimization techniques [22] and [23]. 
Finally, the effectiveness of the proposed design method in 
this paper is illustrated by the simulation results on the 
feedback control of a semi-linear parabolic PDIE system. 

Notations: The following notations will be used throughout 
this paper. ℜ , nℜ  and m n×ℜ  denote the set of all real 
numbers, n-dimensional Euclidean space and the set of all 
real m n×  matrices, respectively. ⋅  and , nℜ

⋅ ⋅  denote the 
Euclidean norm and inner product for vectors, respectively. 
Identity matrix, of approximate dimension, will be denoted 
by I . For a symmetric matrix M , 0>M  ( 0<M , 
respectively) means that M  is positive definite (negative 
definite, respectively). min ( )λ ⋅  and max ( )λ ⋅  stand for the 
minimum and maximum eigenvalues of a square matrix, 
respectively. 2 1 2([ , ]; )n nl l ℜH L  is a Hilbert space of 
n-dimensional square integrable vector functions ( ) nz ∈ℜω , 

1 2[ , ]z l l∈ ⊂ ℜ  with the inner product and norm: 
 

2

1
1 2 1 2, ( ), ( ) n

l

l
z z dz

ℜ
= ∫ω ω ω ω  and 1/2

1 1 12
,=ω ω ω , 

 
where 1ω , 2

n∈Hω . ,2
1 2([ , ]; )l nl l ℜW  is a Sobolev space of 

absolutely continuous n-dimensional vector functions ( ) :xω  

1 2[ , ] nl l → ℜ  with square integrable derivatives ( )l

l
d x

dx
ω  of the 

order 1l ≥  and with the norm ( )2

,2
1

2 ( )

0
( )

i

l i

l Tl d x
dxl

i=
⋅ = ⋅∑∫W

ωω  

( )( )i

i
d x

dx
dxω . The superscript ‘T’ is used for the transpose of a 

vector or a matrix. The symbol ∗  is used as an ellipsis in 
matrix expressions that are induced by symmetry, e.g., 
 

[ ] [ ]T T

T

+ + + ∗ ⎡ ⎤+ + + +⎡ ⎤
⎢ ⎥⎢ ⎥∗⎣ ⎦ ⎣ ⎦

S M N X S M N M N X
Y X Y

. 

II. PRELIMINARY AND PROBLEM FORMULATION 
Consider the following semi-linear PDIE systems in one 

spatial dimension with a state-space description: 
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1 2

0

( , ) ( , ) ( ( , ))

( , ) ( , )

( , ) ( , ) 0
( ,0) ( )

t zz
z

u I l

z t z t z t

z t s t ds

l t l t
z z

= +⎧
⎪

+ +⎪
⎨
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⎪ =⎩

∫

y y f y

G u G y

y y
y y

Θ

                                      (1) 

 
where ( , ) nz t ∈ ℜy  is the state, the subscripts z  and t  stand 
for the partial derivatives with respect to z , t , respectively, 

1 2[ , ]z l l∈ ⊂ ℜ  and [0, )t ∈ ∞  is the spatial position and time, 
respectively, ( , ) mz t ∈ℜu  is the control input. ( ( , ))z tf y  is a 
locally Lipschitz continuous function in ( , )z ty  and satisfies 

(0) 0=f . Θ , uG , and IG  are real known matrices with 

approximate dimensions. 
For brevity, set 

 

( , ) ( , )zzz t z ty yΘA  and 
1

( , ) ( , )
z

l
z t s t ds∫ yυ ,                  (2) 

 
then the PDIE system (1) can be rewritten as 
 

1 2

0

( , ) ( , ) ( ( , )) ( , ) ( , )
( , ) ( , ) 0
( ,0) ( ).

t u Iz t z t z t z t z t
l t l t
z z

= + + +⎧
⎪ = =⎨
⎪ =⎩

y y f y G u G
y y
y y

υA
       (3) 

 
When ( , ) 0z t ≡u , the system (3) is referred to as an unforced 
system. We introduce the following definition of exponential 
stability on the Hilbert space nH : 
 
Definition 1. The unforced system of (3) (i.e., ( , ) 0z t ≡u ) is 
said to be exponentially stable, if there exist constants 0ρ >  
and 1σ ≥  such that the following expression holds: 
 

2 2
02 2

( , ) ( ) exp( )t tσ ρ⋅ ≤ ⋅ −y y , 0t∀ ≥ .                             (4) 

 
It has been pointed out that an exact T-S fuzzy ODE model 

construction from a given nonlinear dynamical ODE model 
can be obtained by applying the sector nonlinearity approach 
[3]. More recently, a T-S fuzzy PDE model has been 
proposed in [20] and [21] by extending this approach to a 
class of semi-linear parabolic PDE systems. Similar to [20] 
and [21], by extending this sector nonlinearity approach to the 
semi-linear PDIE system (3), we can derive an exact T-S 
fuzzy PDIE model construction. In this study, we also assume 
that the semi-linear PDIE system (3) can be exactly 
represented by the following T-S fuzzy PDIE model: 
 
Plant Rule i : 
IF 1( , )z tξ  is 1iF  and  and ( , )l z tξ  is ilF  
THEN  

1 2

0

( , ) ( , ) ( , ) ( , )
( , )

( , ) ( , ) 0
( ,0) ( ), {1,2, , }

t i u

I

z t z t z t z t
z t

l t l t
z z i r

= + +⎧
⎪ +⎪
⎨ = =⎪
⎪ = ∈⎩ S

y y A y G u
G

y y
y y

υ
A

                      (5) 

 
where ijF , i ∈S , 1,2, ,j l=  are fuzzy sets, n n

i
×∈ ℜA , 

i ∈S  are real known matrices, r  is the number of IF-THEN 
rules, and ( , )j z tξ , 1,2, ,j l=  are the known premise 
variables. In order to avoid a complicated defuzzification 
process of fuzzy controller, in this study, these premise 
variables are assumed to be functions of only the state 

( , )z ty . 
By applying the center-average defuzzifier, product 

interference and singleton fuzzifier, the overall dynamics of 
T-S fuzzy PDIE (5) can be expressed as: 
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where 1( , ) [ ( , ) ( , )]T

lz t z t z tξ ξ=ξ  and 
 

1
( ( , )) ( ( , ))l

i ij jj
w z t F z tξ

=
= ∏ξ ,  

1
( ( , )) ( ( , )) ( ( , ))r

i i ii
h z t w z t w z t

=
= ∑ξ ξ ξ , i ∈S . 

 
The term ( ( , ))ij jF z tξ  is the grade of the membership of 

( , )j z tξ  in ijF , i ∈S . In this paper, it is assumed that 

( ( , )) 0iw z t ≥ξ , i ∈S  and 
1

( ( , )) 0r
ii

w z t
=

>∑ ξ , for all 

1 2[ , ]z l l∈  and 0t ≥ . Then we can obtain the following 
conditions: 
 

( ( , )) 0ih z t ≥ξ , i ∈S  and 
1

( ( , )) 1r
ii

h z t
=

=∑ ξ                      (7) 
 
for all 1 2[ , ]z l l∈  and 0t ≥ . 

Based on the T-S fuzzy PDIE model (6), we consider the 
following fuzzy P-sI controller via the PDC scheme [3] for 
the semi-linear PDIE system (1): 

 
Control Rule j :  
IF 1( , )z tξ  is 1jF  and  and ( , )l z tξ  is jlF  
THEN , ,( , ) ( , ) ( , )P j I jz t z t z t= +u K y K υ , j ∈S  
 
where ,P jK  and ,I jK , j ∈S  are m n×  real matrices to be 
determined. Obviously, from (2), we have 
 

( , ) ( , )z z t z t= yυ  and 1( , ) 0l t =υ .                                             (8) 
 
The overall fuzzy P-sI controller can be represented by 
 

, ,1
( , ) ( ( , ))[ ( , ) ( , )]r

j P j I jj
z t h z t z t z t

=
= +∑u K y Kξ υ .              (9) 

 
From (6) and (9), we have the following closed-loop fuzzy 
PDIE system: 
 

,1

,1

1 2

0

( , ) ( , ) [ ] ( , )

( ( , )) ( , ) ( , )

( , ) ( , ) 0
( ,0) ( ).

r
t i u P ii

r
u i I i Ii

z t z t z t

h z t z t z t

l t l t
z z

=

=

⎧ = + +
⎪
⎪ + +
⎨
⎪ = =
⎪

=⎩

∑
∑

y y A G K y

G K G

y y
y y

ξ υ υ

A

            (10) 

 
Based on the T-S fuzzy PDIE model (6), the design 

purpose of this study is to seek a distributed P-sI controller of 
the form (9) for the semi-linear PDIE system (1) such that the 
resulting closed-loop system (10) is exponentially stable. To 

this end, the following lemmas are useful for the 
developments of control design in this study: 

 
Lemma 1. (Vector-valued Wirtinger’s inequalities [24]). Let 

1,2
1 2([ , ]; )nl l∈ ℜWy  be a vector function with 1 2( ) ( )l l=y y  

0= . Then, for a matrix 0>S , we have 
 

( ) ( )2 2

1 1

2 2
2 1( ) ( ) ( ) ( ) ( )

l l TT

l l
s s ds l l d s ds d s ds dsπ −≤ −∫ ∫y Sy y S y . 

(11) 
 
Moreover, if 1( ) 0l =y  or 2( ) 0l =y , we have 
 

( ) ( )2 2

1 1

2
2 1

2

4( )
( ) ( ) ( ) ( )

l l TT

l l

l l
s s ds d s ds d s ds ds

π
−

≤∫ ∫y Sy y S y . 

(12) 
 
Based on the Lemma 1, we have the following lemma: 

Lemma 2. Let 1 2: [ , ] nl l → ℜy  be a square integrable vector 

function and 
1

( ) ( )
z

l
z s ds= ∫ yυ  be square integrable. Then for 

a given matrix 0>S , we have 
 

2 2

1 1

2 2
2 1( ) ( ) 4( ) ( ) ( )

l lT T

l l
s s ds l l s s dsπ −≤ −∫ ∫S y Syυ υ .            (13) 

 
Proof. Since (8), using the inequality (12) in Lemma 1, we get 

 
2 2

1 1

2
2 1

2

4( )
( ) ( ) ( ( ) ) ( )

l lT T

l l

l l
s s ds d s ds d s ds ds

π
−

≤∫ ∫S Sυ υ υ υ . 

 
The inequality (13) can be derived from the property 

( ) ( )d s ds s= yυ  and the above inequality. The proof is 
complete. □ 

Remark 1. If we set 
1

( ) ( )
z

l
z s ds= −∫ yυ  ( 2( ) ( )

l

z
z s ds= −∫ yυ  

or 2( ) ( )
l

z
z s ds= ∫ yυ ), similar to the proof of Lemma 2, the 

same result (i.e., the inequality (13)) can be established using 
the fact 1( ) 0l =υ  (or 2( ) 0l =υ ). 

III. MAIN RESULT 
Based on Lemmas 1 and 2, this section will present a 

simple LMI-based design method of a distributed fuzzy P-sI 
controller of the form (9) exponentially stabilizing the 
semi-linear parabolic PDIE system (1). 

Consider the following Lyapunov functional for the fuzzy 
parabolic PDIE system (10): 
 

2

1

( ) ( , ) ( , )
l T

l
V t z t z t dz= ∫ y Py                                                          (14) 

 
where 0>P  is a real n n×  matrix to be determined. The 
time derivative of ( )V t  along the solution of the system 
given by (10) is represented as 
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1
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( ) 2 ( , ) ( , )

2 ( , ) ( , ) 2 ( , ) ( , )
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l T
tl

l lT T
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rl T
i i u P il

i

V t z t z t dz

z t z t dz z t z t dz
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=

=
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+ + + ∗

∫

∫ ∫

∑∫

y Py

y P y y PG

y P A G K y

υ

ξ

A  

2

1
,

1
2 ( , ) ( ( , )) ( , )

rl T
u i I il

i
z t h z t z t dz

=

+ ∑∫ y PG Kξ υ .            (15) 

 
Utilizing (2), integrating by parts and taking into account 

of boundary conditions of (10), we can find that 
 

2 2

1 1

2 ( , ) ( , ) 2 ( , ) ( , )
l lT T

zzl l
z t z t dz z t z t dz=∫ ∫y P y y P yΘA  

2

1

( , )[ ] ( , )
l T

z zl
z t z t dz= − + ∗∫ y P yΘ . (16) 

 
Therefore, we have the following theorem based on Lemmas 
1 and 2: 
Theorem 1. Consider the fuzzy PDIE system (6) and the fuzzy 
P-sI controller (9). If there exist a real n n×  matrix 0>Q  
and real m n×  matrices ,P iZ , ,I iZ , i ∈S  such that the 
following LMIs are satisfied: 
 

, ,
11, 4 4

2 1

[ ]
0

0.25 ( ) [ ]
i u P i u I i I

i l lπ −

+ + ∗ +⎡ ⎤
<⎢ ⎥∗ − − + ∗⎣ ⎦

A Q G Z G Z G Q
Q

Ψ
Θ

, 

i ∈S ,              (17) 
 
then the closed-loop fuzzy PDIE system (10) is exponentially 
stable, i.e., the fuzzy P-sI controller (9) can exponentially 
stabilize the semi-linear PDIE system (1). In this case, the 
control gain matrices ,P iK  and ,I iK , i ∈S  are given as 
 

1
, ,P i P i

−=K Z Q , 1
, ,I i I i

−=K Z Q , i ∈S .                                   (18) 
 
Proof. Assume that LMIs (17) are fulfilled. Let 
 

1−=Q P  and , ,P i P i=Z K Q , , ,I i I i=Z K Q , i ∈S .             (19) 
 
The LMIs (17) imply 
 
[ ] 0+ ∗ >QΘ .                                                                     (20) 
 
From (19), we have [ ] [ ]+ ∗ = + ∗P P Q PΘ Θ , we can further 
get from (20) 
 
[ ] 0+ ∗ >PΘ .                                                                     (21) 
 
Since the boundary condition of (1), (8), and (21), using 
Lemmas 1 and 2, the equality (16) can be written as 
 

2 2
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z zl l
z t z t dz z t z t dz= − + ∗∫ ∫y P y y P yΘA  

2

1

2 2
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l
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2

1

4 4
2 10.25 ( ) ( , )[ ] ( , )

l T

l
l l z t z t dzπ −≤ − − + ∗∫ Pυ υΘ . 

 (22) 
From (15) and (22), we have 
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Il

rl T
u i I il

i

l T

l

V t z t h z t z t dz

z t z t dz
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z t z t dz
l l
π

=

=

≤ + + ∗

+

+
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−

∑∫
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∫
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2

1
11,

1
( ( , )) ( , ) ( , )

rl T
i il

i
h z t z t z t dz

=

= ∑∫ y yξ Φ                       (23) 

 
where ( , ) [ ( , ) ( , )]T T Tz t z t z ty y υ  and 
 

, ,
11, 4 4

2 1

[ ( ) ]
0.25 ( ) [ ]

i u P i u I i I
i l lπ −

+ + ∗ +⎡ ⎤
⎢ ⎥∗ − − + ∗⎣ ⎦

P A G K PG K PG
P

Φ
Θ

. 

(24) 
Using (19), and pre- and post-multiplying the matrix 11,iΦ  
given in (24) with the block diagonal matrix diag{ }Q Q , 
respectively, we have 
 

11, 11,diag{ } diag{ }i i=Q Q Q QΦ Ψ , i ∈S .                     (25) 
 
Hence, we can conclude from (25) that if the LMIs (17) hold, 
then 
 

11, 0i <Φ , i ∈S .                                                        (26) 
 

For the inequalities (26), we can find an appropriate scalar 
0μ >  such that the following inequalities are fulfilled: 

 
11, 0i μ+ <IΦ , i ∈S .                                                               (27) 

 
Substituting (27) into (23) and using (7), we get for non-zero 

( , )t⋅y , 
 

2 2

2 2
( ) ( , ) ( , )V t t tμ μ≤ − ⋅ ≤ − ⋅y y .                                         (28) 

 
It is clear for the Lyapunov function ( )V t  given by (14) 

that there exist two positive scalars 1 min ( )p λ P  and 

2 max ( )p λ P  such that 
 

2 2
1 22 2

( , ) ( ) ( , )p t V t p t⋅ ≤ ≤ ⋅y y .                                           (29) 
 
Using (28) and (29), we can get the following relation: 
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2 1

1 22
( , ) ( ) (0) exp( )p t V t V p tμ −⋅ ≤ ≤ −y  

2 1
2 0 22

( ) exp( )p p tμ −≤ ⋅ −y .                    (30) 
 
Therefore, we have from (30) that 
 

2 21 1
2 1 0 22 2

( , ) ( ) exp( )t p p p tμ− −⋅ ≤ ⋅ −y y , 0t ≥  
 
which implies that the fuzzy closed-loop PDIE system (10) is 
exponentially stable. From (19), we have (18). The proof is 
complete. □ 

Based on Lemmas 1 and 2, Theorem 1 provides an 
LMI-based sufficient condition on the existence of a 
distributed fuzzy P-sI controller (9) guaranteeing the 
exponential stability of the fuzzy PDIE system (10). The 
desired control gain matrices ,P iK  and ,I iK , i ∈S  can be 
constructed as (18) via the feasible solutions to LMIs (17). 
These feasible solutions can be directly solved using the feasp 
solver in the convex optimization techniques [22], [23]. 
Remark 2. Notice that if the simple fuzzy proportional 
controller is used, i.e., 
 

,1
( , ) ( ( , )) ( , )r

j P jj
z t h z t z t

=
=∑u K yξ ,                                  (31) 

 
then by letting , 0I j ≡K , i ∈S , it is immediate from 
Theorem 1 to obtain an LMI-based exponential stabilization 
condition via the controller (31) for the semi-linear PDIE 
system  (1). 

IV. NUMERICAL SIMULATION 
In this section, in order to illustrate the effectiveness of the 

proposed result, we consider the control problem of a class of 
semi-linear reaction-diffusion system with distributed control 
inputs and a spatially integral term: 
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(32) 
where ( , )iy z t ∈ℜ , {1,2,3}i ∈  are the state variables, 

1 ( , )u z t , 2 ( , )u z t ∈ℜ  are distributed control inputs, t , z  and 

2 1l l−  denote the independent time, spatial position and the 

length of spatial domain, respectively. 0a ≥ , b , c , and d  
are process parameters. ,0 ( )iy z , {1,2,3}i ∈  are initial 
variables. 

The values of process parameters are given as: 
 

1 0l = , 2 0.5l π= , 2a = , 5b = − , 0.5c = , and 2d = .  
 

For the above process parameter values, it will be verified 
via the numerical simulation that the equilibrium points 

( , ) 0iy z t = , {1,2,3}i ∈  of the semi-linear PDIE system (32) 
are unstable ones. Set 1,0 ( ) 0.5sin(2 )y z z= , 2,0 ( ) 0.3y z = ×  
sin(2 )z and 3,0 ( ) 0.1sin(2 )y z z= . Fig. 1 shows open-loop 
profiles of evolution ( , )iy z t , {1,2,3}i ∈ . It is clear from Fig. 
1 that the equilibrium points ( , ) 0iy z t = , {1,2,3}i ∈  of the 
system (32) are unstable ones and 1( , ) [0,1.5]y z t ∈ , 

[0,0.5 ]z π∈ . 
 

 
 

Fig. 1 Open-loop profiles of evolution of ( , )iy z t , {1,2,3}i ∈  
 

Set 3
1 2 3( , ) [ ( , ) ( , ) ( , )]Tz t y z t y z t y z t ∈ℜy  and 

2
1 2( , ) [ ( , ) ( , )]Tz t u z t u z t ∈ℜu , the system (32) can be 

written as (1), where 
 

1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Θ , 
1 0
0 0
0 1

u

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

G , 
0 0

0 0 0
0 0 0

I

c⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

G , 

1

1

0

( ( , )) 1 ( , ) ( , )

0 ( , )

a a

z t b y z t z t

y z t d

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎣ ⎦

f y y                             (33) 

 
where 1( , )y z t  is the nonlinear term.  

Assume 1 1 2( , ) [ , ]y z t α α∈ , where 1 0.5α = −  and 

2 1.5α = . Under this assumption, let 1 1( ( , )) ( , )y z t y z tξ = , 
calculating the maximum and minimum values of 1( ( , ))y z tξ  
gives 
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1
1 1( , )

min ( ( , ))
y z t

y z tξ α=  and 
1

1 2( , )
max ( ( , ))
y z t

y z tξ α= . 

 
Using the above values, 1( ( , ))y z tξ  can be written as 

 
1 1( ( , )) ( , )y z t y z tξ =  

1 1 1 2 1 2( ( ( , ))) ( ( ( , )))h y z t h y z tξ α ξ α= ⋅ + ⋅            (34) 
 
where 1 1( ( ( , )))h y z tξ , 2 1( ( ( , ))) [0,1]h y z tξ ∈ , and 
 

1 1 2 1( ( ( , ))) ( ( ( , ))) 1h y z t h y z tξ ξ+ = .                                       (35) 
 

Solving equations (34) and (35) derives the following 
membership functions: 
 

1 1 2 1 2 1( ( ( , ))) ( ( ( , ))) ( )h y z t y z tξ α ξ α α= − −  and 

2 1 1 1 2 1( ( ( , ))) ( ( ( , )) ) ( )h y z t y z tξ ξ α α α= − − . 
 
Define the fuzzy sets “Big” and “Small”. Then, the system 
(32) can be represented by the following fuzzy PDIE of two 
rules: 
 
Plant Rule 1: 
IF 1( ( , ))y z tξ  is “Small”, THEN 

1

1

1 2

0
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Plant Rule 2: 
IF 1( ( , ))y z tξ  is “Big”, THEN 
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1 2

0
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where 
 

1 1
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0
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0

a a

b

d

α
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⎢ ⎥
⎣ ⎦
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0

a a
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d

α
α
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Then, the overall fuzzy PDIE model is given as 
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2
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1 2
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             (36) 

 
Based on T-S fuzzy PDIE model (36), we consider the 

following P-sI controller: 
 

1

2
1 , ,1

( , ) ( ( ( , ))[ ( , ) ( , ) ]
z

j P j I jj l
z t h y z t z t s t dsξ

=
= +∑ ∫u K y K y . 

(37) 
Solving LMIs (17) and using (18), the control gain matrices 

,1PK , ,2PK , ,1IK , and ,2IK  can be derived as follows:  
 

,1

7.1742 7.8768 0.9235
1.0251 0.6373 5.7910P

− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

K , 

,2

7.1768 7.8878 0.4213
0.9489 3.1755 5.8323P

− −⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

K , 

,1 ,2

0.5 0 0
0 0 0I I

−⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
K K . 

 

 
 

Fig. 2 Closed-loop profiles of evolution of ( , )iy z t , {1,2,3}i ∈  
 
Now, the fuzzy P-sI controller (37) with the above gain 
matrices is applied to the semi-linear PDIE system (32). 
Under the same initial condition (i.e., 1,0 ( ) 0.5sin(2 )y z z= , 

2,0 ( ) 0.3sin(2 )y z z= , and 3,0 ( ) 0.1sin(2 )y z z= ), Fig. 2 
indicates the closed-loop profiles of evolution of ( , )iy z t , 

{1,2,3}i ∈ . Clearly, the proposed fuzzy P-sI controller (37) 
with above gain matrices can stabilize the system (32). The 
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profile of evolution of the fuzzy P-sI controller ( , )z tu  is 
given in Fig. 3. 
 

 
 

Fig. 3 Profiles of evolution of fuzzy P-sI controller ( , )iu z t , {1,2}i ∈  

V. CONCLUSION 
In this paper, we have considered the problem of 

distributed fuzzy P-sI control design for a class of semi-linear 
PDIE systems via the fuzzy PDIE modeling approach. A T-S 
fuzzy parabolic PDIE model is utilized to accurately describe 
the semi-linear parabolic PDIE system. A new vector-valued 
integral inequality is established based on the vector-valued 
Wirtinger's inequality. Based on the T-S fuzzy PDIE model 
and this new integral inequality, an LMI-based distributed 
fuzzy P-sI state feedback control design has been developed. 
Numerical simulation results on feedback control of a 
semi-linear parabolic PDIE system illustrate the effectiveness 
of the proposed design method. 
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