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Abstract— In this paper, the concepts of weighted transducers
over strong bimonoids and their input-output-functions are
introduced. Further more, the input-functions and output-
functions induced by the input-output-functions of weighted
transducers over strong bimonoids are given. It is the most
important that the input-functions and output-functions of
weighted transducers over strong bimonoids can be realized
by weighted finite automata over strong bimonoids, and the
realization does not depend on the distributive law, which also
embodies the applications of weighted finite automata over
strong bimonoids.

I. INTRODUCTION

WEIGHTED FINITE AUTOMATA over strong bi-
monoids have been Proposed in [1] and [2]. Weighted

finite automata over strong bimonoids are also called fuzzy
transducers valued in strong bimonoids. Strong bimonoids
can be viewed as semirings which might lack distributivity.
Semirings, complete (orthomedular) lattices [3] and lattice
ordered QMV algebras [4] are all the special cases of
strong bimonoids. Therefore, weighted automata is one of the
most extensive uncertain computing models at present. We
know that weighted finite automata and weighted transducers
(weighted finite automata with output) valued in semirings
have both a well elaborated theory as well as practical
applications [5]. It is well known that completed residuated
lattice-valued [6], lattice-ordered monoids [7]-[10] are also
the special cases of semirings. Particularly, the properties
of weighted transducers and their applications at speech
processing are studied in many other papers, such as [11]-
[15].

It is the goal of this paper to study the properties and
applications of weighted transducers over strong bimonoids
(fuzzy automata with output valued in strong bimonoids or
fuzzy transducers valued in strong bimonoids). Concretely
speaking, for some works related to weighted automata
(without output or with output ) over strong bimonoids
which can be solved through using weighted transducers
or weighted finite automata over strong bimonoids. In this
paper, we mainly discuss some realization problems related
to weighted transducers over strong bimonoids. That is, the
input-functions and output-functions induced by the input-
output functions of weighted transducers over strong bi-
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monoids can be recognized by weighted automata (without
output) over strong bimonoids.

The rest of the paper is arranged as follows. In Section
2, we recall some basic notions about strong bimonoids,
give the definition of formal power series over strong bi-
monoids and some properties of them are studied. In Sec-
tion 3, the definition of weighted transducers over strong
bimonoids and their input-output-functions are given. In
Section 4, we proposed the notions of the input-functions
and output-functions induced by the input-output-functions
of weighted transducers over strong bimonoids. And the
realizations of the output-functions and input-functions are
given (see Theorem 1 and Theorem 2 ). That is, for a strong
bimonoid 𝑃 , we write the input-function 𝑓𝑖 and output-
function 𝑓𝑜 induced by the input-output-function of 𝑃−WT.
Then we constructed a finite weighted automaton ℐ over
strong bimonoid (𝑃 ⟨⟨Σ∗⟩⟩,+,⊙,0, 𝜀) such that ℛℐ = 𝑓𝑖
and a finite weighted automaton 𝒪 over strong bimonoid
(𝑃 ⟨⟨Ω∗⟩⟩,+,⊙,0, 𝜀) such that ℛ𝒪 = 𝑓𝑜. And an example
is given for displaying the applications of the conclusions.
Section 5 is a summary of this paper, and in this section, we
made some further work prospects.

II. ALGEBRAIC NOTIONS

Here we collect standard definitions concerning strong
bimonoids, semirings, lattice ordered QMV algebras and so
on. For a more detailed introduction to these concepts we
refer the reader to [1]-[4]

Definition 1: A strong bimonoid 𝑃 is a set together with
two binary operations + and ∙, and two constant elements 0
and 1 such that:

(i) (𝑃,+, 0) is a commutative monoid;
(ii) (𝑃, ∙, 1) is a monoid;
(iii) 0 ∙ 𝑎 = 𝑎 ∙ 0 = 0 for any 𝑎 ∈ 𝑃 .
As usual, we identify the structure (𝑃,+, ∙, 0, 1) with its

carrier set 𝑃 .
A strong bimonoid 𝑃 is called commutative if 𝑎∙𝑏 = 𝑏∙𝑎

for any 𝑎, 𝑏 ∈ 𝑃 .
A strong bimonoid 𝑃 is called left distributive (right

distributive, resp.) if 𝑎 ∙ (𝑏+ 𝑐) = 𝑎 ∙ 𝑏+𝑎 ∙ 𝑐 ( (𝑎+ 𝑏) ∙ 𝑐 =
𝑎 ∙ 𝑐 + 𝑏 ∙ 𝑐, resp.) for any 𝑎, 𝑏, 𝑐 ∈ 𝑃 .

A semiring is a strong bimonoid which is left and right
distributive.

A strong bimonoid 𝑃 is called additively idempotent
(multiplicatively idempotent, resp.) if 𝑎 + 𝑎 = 𝑎 (𝑎 ∙ 𝑎 = 𝑎
resp.) for any 𝑎 ∈ 𝑃 .

Definition 2: Let (𝑃,⩽) be a partially ordered set ,
and (𝑃,+, ∙, 0, 1) be a strong bimonoid. If 𝑃 satisfies the
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following conditions,
(i) 𝑎 ⩽ 𝑏 =⇒ 𝑎 + 𝑥 ⩽ 𝑏 + 𝑥 for any 𝑥 ∈ 𝑃 ;
(ii) 𝑎 ⩽ 𝑏 =⇒ 𝑎 ∙ 𝑥 ⩽ 𝑏 ∙ 𝑥 and 𝑥 ∙ 𝑎 ⩽ 𝑥 ∙ 𝑏 for any

𝑥 ∈ 𝑃 with 0 ⩽ 𝑥.
then 𝑃 is called an ordered strong bimonoid.
Moreover, 𝑃 is called a positive-ordered strong bimonoid

if 0 ⩽ 𝑎 for every 𝑎 ∈ 𝑃 .
Next, we give some important algebras which are the spe-

cial cases of strong bimonoids. The more specific examples
of strong bimonoids cf. [1] and [2].

Example 1: (1) a semiring (𝑆,+, ∙, 0, 1) is a strong
bimonoid which is left and right distributive (cf.[1]).

(2) A complete (orthomedular) lattice (𝐿,∨,∧, 0, 1) is a
strong bimonoid which is additively idempotent and multi-
plicatively idempotent (cf.[3]).

(3) A lattice ordered QMV algebra ℰ = (𝐸,∧,⊕,1,0)(
where, we only care for the operations ∧ and ⊕) which is
additively idempotent. Where, ∧ is induced by the two op-
erations ⊕ and ′ of QMV algebra ℰ = (𝐸,⊕, ′,0,1)(cf.[4]).

We noted that, complete (orthomedular) lattices and lat-
tice ordered QMV algebra are all positive-ordered strong
bimonoids. Therefore, strong bimonoids are more general
algebraic structures.

Let 𝑈 be an nonempty set, a 𝑃−valued subset on 𝑈 is
a mapping 𝐴 : 𝑈 −→ 𝑃, where, for every 𝑢 ∈ 𝑈, 𝐴(𝑢) is
called the weight of 𝑢. A 𝑃−valued subset on 𝑈 is often
written as 𝐴 =

∑
𝑢∈𝑈

𝐴(𝑢)
𝑢 , if 𝑈 is a finite set. We write

𝑃𝑈 for the set of all 𝑃−valued subsets on 𝑈 , that is 𝑃𝑈 =
{𝐴∣𝐴 : 𝑈 −→ 𝑃}.

Let Σ be an alphabet, Σ∗ denote the set of all words of
finite length over Σ and 𝜀 denotes the empty word, and 𝑃
be a strong bimonoid. A formal power series over Σ and 𝑃
is a mappings 𝑟 : Σ∗ → 𝑃 . ∀𝑠 ∈ Σ∗, it is usual to write
(𝑟, 𝑠) for 𝑟(𝑠) and 𝑟 itself is written as a formal sum

𝑟 =
∑

𝑠∈Σ∗
(𝑟, 𝑠)𝑠.

where, (𝑟, 𝑠)𝑠 is called a term of 𝑟 and (𝑟, 𝑠) the coefficient
of (𝑟, 𝑠)𝑠. In general, if (𝑟, 𝑠) = 0, then (𝑟, 𝑠)𝑠 will be omit.
The collection of all formal power series over Σ and 𝑃 is
denoted by 𝑃 ⟨⟨Σ∗⟩⟩.

Given 𝑟 ∈ 𝑃 ⟨⟨Σ∗⟩⟩, the support of 𝑟 is the set

𝑠𝑢𝑝𝑝(𝑟) = {𝑠 ∈ Σ∗ ∣ 𝑟(𝑠) ∕= 0}.
A series 𝑟 ∈ 𝑃 ⟨⟨Σ∗⟩⟩ where every coefficient equals 0

or 1 is termed the characteristic series of its support 𝐿, in
symbols, 𝑟 = 𝑐ℎ𝑎𝑟(𝐿) or 𝑟 = 1𝐿. The subset of 𝑃 ⟨⟨Σ∗⟩⟩
consisting of all series with a finite support is denoted by
𝑃 ⟨Σ∗⟩ are referred to as polynomials. It will be convenient
to use the notations 𝑃 ⟨Σ ∪ {𝜀}⟩, 𝑃 ⟨Σ⟩ for the collection of
polynomials having their supports in Σ ∪ {𝜀},Σ.

Examples of polynomials belong to 𝑃 ⟨Σ∗⟩ are 0 and 𝑎𝑠,
where 𝑎 ∈ 𝑃 and 𝑠 ∈ Σ∗, defined by

(0, 𝑠) = 0, ∀𝑠 ∈ Σ∗.

(𝑎𝑠, 𝑠′) =
{

𝑎, 𝑠′ = 𝑠,
0, otherwise.

Often, 1𝑠 is denoted by 𝑠 or 1𝑠.
Next, we introduce several operations on 𝑃 ⟨⟨Σ∗⟩⟩. For

𝑟, 𝑟1, 𝑟2 ∈ 𝑃 ⟨⟨Σ∗⟩⟩, 𝑎 ∈ 𝑃 , we define the sum 𝑟1 + 𝑟2, the
(Cauchy) product 𝑟1⊙ 𝑟2, the Hadamard product 𝑟1 ⋅ 𝑟2, and
scalar product 𝑎𝑟, 𝑟𝑎, each as a seies belonging to 𝑃 ⟨⟨Σ∗⟩⟩,
as follows:
(1) (𝑟1 + 𝑟2, 𝑠) = (𝑟1, 𝑠) + (𝑟1, 𝑠).
(2) (𝑟1 ⊙ 𝑟2, 𝑠) =

∑
𝑠1𝑠2=𝑠

(𝑟1, 𝑠1) ∙ (𝑟2, 𝑠2).
(3) (𝑟1 ⋅ 𝑟2, 𝑠) = (𝑟1, 𝑠) ∙ (𝑟2, 𝑠).
(4) (𝑎𝑟, 𝑠) = 𝑎 ∙ (𝑟, 𝑠).
(5) (𝑟𝑎, 𝑠) = (𝑟, 𝑠) ∙ 𝑎.
𝑎𝜀⊙ 𝑟 = 𝑟 for any 𝑎 ∈ 𝑃 and 𝑟 ∈ 𝑃 ⟨⟨Σ∗⟩⟩.
It can be checked that (𝑃 ⟨⟨Σ∗⟩⟩,+, ⋅,0, 𝜀), (𝑃 ⟨Σ∗⟩,+,
⋅,0, 𝜀) and (𝑃 ⟨⟨Σ∗⟩⟩,+,⊙,0, 𝑐ℎ𝑎𝑟(Σ∗)) are strong bi-
monoids. Since 𝑃 does not satisfies the distributive laws
in general, the (Cauchy) product 𝑟1 ⊙ 𝑟2 does not satisfies
the associative law in general. But we have the following
conclusion.

Proposition 1: Let 𝑃 be a strong bimonoid and Σ an
alphabet.

(i) ∀𝑟𝑖 =
∑𝑁𝑖

𝑘𝑖=1 𝑎𝑖𝑘𝑖𝜎𝑖𝑘𝑖 ∈ 𝑃 ⟨Σ𝜀⟩(𝑖 = 1, 2, 3;𝑁𝑖 are
positive integers), it holds that

(𝑟1 ⊙ 𝑟2)⊙ 𝑟3 = 𝑟1 ⊙ (𝑟2 ⊙ 𝑟3) ∈ 𝑃 ⟨Σ∗⟩.
(ii) ∀𝑟𝑖 =

∑𝑁𝑖

𝑘𝑖=1 𝑎𝑖𝑘𝑖𝜎𝑖𝑘𝑖 ∈ 𝑃 ⟨Σ𝜀⟩(𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛;𝑁𝑖

are positive integers), then the value of 𝑟1⊙ 𝑟2⊙ ⋅ ⋅ ⋅ ⊙ 𝑟𝑛 is
unique in every way of adding brackets. This value is denoted
by 𝑟1 ⊙ 𝑟2 ⊙ ⋅ ⋅ ⋅ ⊙ 𝑟𝑛(∈ 𝑃 ⟨Σ∗⟩), and

𝑟1 ⊙ 𝑟2 ⊙ ⋅ ⋅ ⋅ ⊙ 𝑟𝑛
=
∑𝑁1

𝑘1=1 𝑎1𝑘1𝜎1𝑘1 ⊙
∑𝑁2

𝑘2=1 𝑎2𝑘2𝜎2𝑘2 ⊙ ⋅ ⋅ ⋅ ⊙∑𝑁𝑛

𝑘𝑛=1 𝑎𝑛𝑘𝑛𝜎𝑛𝑘𝑛
=
∑𝑁1

𝑘1=1

∑𝑁2

𝑘2=1 ⋅ ⋅ ⋅
∑𝑁𝑛

𝑘𝑛=1(𝑎1𝑘1 ∙ 𝑎2𝑘2 ∙ ⋅ ⋅ ⋅ ∙ 𝑎𝑛𝑘𝑛)
𝜎1𝑘1𝜎2𝑘2 ⋅ ⋅ ⋅𝜎𝑛𝑘𝑛

Proof: (i) It is immediate by the definition of the (Cauchy)
product ⊙.

(ii) it followed by (i), the definition of the (Cauchy)
product ⊙ and mathematical induction.

From the definition of scalar product, we have the follow-
ing theorem.

Proposition 2: Let 𝑃 be a strong bimonoid and Σ an
alphabet. For any 𝑎 ∈ 𝑃, 𝑟 = 𝑎1𝑠1 + 𝑎2𝑠2 + ⋅ ⋅ ⋅ + 𝑎𝑛𝑠𝑛 ∈
𝑃 ⟨Σ∗⟩, we have 𝑎𝑟 and 𝑟𝑎 ∈ 𝑃 ⟨Σ∗⟩ and

(i) 𝑎𝑟 = 𝑎(𝑎1𝑠1 + 𝑎2𝑠2 + ⋅ ⋅ ⋅+ 𝑎𝑛𝑠𝑛) = (𝑎 ∙ 𝑎1)𝑠1 + (𝑎 ∙
𝑎2)𝑠2 + ⋅ ⋅ ⋅+ (𝑎 ∙ 𝑎𝑛)𝑠𝑛.

(ii) 𝑟𝑎 = (𝑎1𝑠1+𝑎2𝑠2+ ⋅ ⋅ ⋅+𝑎𝑛𝑠𝑛)𝑎 = (𝑎1 ∙𝑎)𝑠1+(𝑎2 ∙
𝑎)𝑠2 + ⋅ ⋅ ⋅+ (𝑎𝑛 ∙ 𝑎)𝑠𝑛.

By the definitions of the sum +, pruduct ⊙ and proposition
2 , it is straighforward to see the following two conclusions.

Proposition 3: Let 𝑃 be a strong bimonoid and Σ an
alphabet. ∀𝑟1 = 𝑎1𝑠, 𝑟2 = 𝑎2𝑠, ⋅ ⋅ ⋅ , 𝑟𝑛 = 𝑎𝑛𝑠 ∈ 𝑃 ⟨Σ∗⟩,
it hold that 𝑟1 + 𝑟2 + ⋅ ⋅ ⋅+ 𝑟𝑛 ∈ 𝑃 ⟨Σ∗⟩, and

𝑟1 + 𝑟2 + ⋅ ⋅ ⋅ + 𝑟𝑛 = 𝑎1𝑠 + 𝑎2𝑠 + ⋅ ⋅ ⋅ 𝑎𝑛𝑠 = (𝑎1 + 𝑎2 +
⋅ ⋅ ⋅+ 𝑎𝑛)𝑠.

Proposition 4: For any 𝑎, 𝑏 ∈ 𝑃 and 𝑟 ∈ 𝑃 ⟨⟨Σ∗⟩⟩, then
(i) 𝑎𝜀⊙ 𝑟 = 𝑎𝑟.
(ii) 𝑟 ⊙ 𝑏𝜀 = 𝑟𝑏.
(iii) 𝑎𝜀⊙ 𝑟 ⊙ 𝑏𝜀 = (𝑎𝑟)𝑏 = 𝑎(𝑟𝑏).
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III. WEIGHTED TRANSDUCERS OVER STRONG

BIMONOIDS

Now, we will recall the definition of nondeterministic
weighted finite automata over strong bimonoids without
outputs.

Let 𝑃 be a strong bimonoid. A nondeterministic weighted
finite automaton over 𝑃 (which is also called a nondeter-
ministic 𝑃−valued weighted finite automaton, 𝑃−NFA, for
short) is a five-tuple 𝒜 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ), where

(i) 𝑄 is a non-empty finite set of states, Σ is a non-empty
finite set of symbols.

(ii) 𝐼 : 𝑄 −→ 𝑃 is a 𝑃−valued initial state, 𝐹 : 𝑄 −→ 𝑃
is a 𝑃−valued finial (accepted) state.

(iii) 𝛿 : 𝑄 × Σ × 𝑄 −→ 𝑃 is a 𝑃−valued transition
function.

The behavior of 𝒜 in run semantics way is defined as,
ℛ𝒜 ∈ 𝑃Σ∗

, ∀𝑠 = 𝜎1 ⋅ ⋅ ⋅𝜎𝑛 ∈ Σ∗,

ℛ𝒜(𝑠) =
∑
𝑞0,𝑞1,⋅⋅⋅ ,𝑞𝑛∈𝑄 𝐼(𝑞0) ∙ 𝛿(𝑞0, 𝜎1, 𝑞1) ∙ ⋅ ⋅ ⋅

∙𝛿(𝑞𝑛−1, 𝜎𝑛, 𝑞𝑛) ∙ 𝐹 (𝑞𝑛)

ℛ𝒜 ∈ 𝑃Σ∗
ia also been called the 𝑃−valued languages

accepted (recognized) by 𝒜.
Next, we will give the formal definition of nondetermin-

istic weighted finite automata over strong bimonoids with
outputs, i.e. weighted transducers over strong bimonoids.

Definition 3: Let 𝑃 be a strong bimonoid. A weighted
transducer over 𝑃 (which is also called a 𝑃−valued
weighted transducer, 𝑃−WT, for short) is a six-tuple 𝒯 =
(𝑄,Σ,Ω, 𝛿, 𝐼, 𝐹 ), where

(i) 𝑄 is a non-empty finite set of states, Σ is a non-empty
finite set of input alphabet, Ω is a non-empty finite set of
output alphabet.

(ii) 𝐼 : 𝑄 −→ 𝑃 is a 𝑃−valued initial state, 𝐹 : 𝑄 −→ 𝑃
is a 𝑃−valued finial (accepted) state.

(iii) 𝛿 : 𝑄 × Σ𝜀 × Ω𝜀 × 𝑄 −→ 𝑃 is a 𝑃−valued input-
output transition function, where, Σ𝜀,Ω𝜀 denote respectively
Σ ∪ {𝜀},Ω ∪ {𝜀}.

Let 𝐸𝒯 = {(𝑝, 𝑥, 𝑦, 𝑞) ∈ 𝑄×Σ𝜀×Ω𝜀×𝑄 ∣ 𝛿(𝑝, 𝑥, 𝑦, 𝑞) ∕=
0}. For any 𝑒 = (𝑝, 𝑥, 𝑦, 𝑞) ∈ 𝐸𝒯 , the weight of 𝑒 is 𝛿(𝑒),
the input-output symbols of 𝑒 is (𝑥, 𝑦), written as 𝑎𝑙𝑝(𝑒), that
is 𝑎𝑙𝑝(𝑒) = (𝑥, 𝑦), and the input symbol of 𝑒 is 𝑥, written
as 𝐼𝑎𝑙𝑝(𝑒), the output symbol of 𝑒 is 𝑦, written as 𝑂𝑎𝑙𝑝(𝑒).
The current state of 𝑒 is 𝑝 denoted by 𝑐(𝑒), The successor
state of 𝑒 is 𝑞, denoted by 𝑠(𝑒).

Let 𝑝(𝒯 ) = 𝐸𝒯 ∪ {𝜋 ∣ 𝜋 = 𝑒1𝑒2 ⋅ ⋅ ⋅ 𝑒𝑛(𝑛 ⩾ 2), 𝑒𝑖 ∈
𝐸𝒯 , 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 and 𝜋 satisfies 𝑠(𝑒𝑖+1) = 𝑐(𝑒𝑖), 𝑖 =
1, 2 ⋅ ⋅ ⋅𝑛− 1}.

For any 𝜋 ∈ 𝑝(𝒯 ), 𝜋 is called a path of 𝒯 . For example,
𝜋1 = (𝑞3, 𝜎1, 𝜀, 𝑞1) and 𝜋2 = (𝑞0, 𝜎, 𝜀, 𝑞1)(𝑞1, 𝜀, 𝜔, 𝑞2) are
two paths of 𝒯 , but 𝜋3 = (𝑞0, 𝜎1, 𝜀, 𝑞1)(𝑞3, 𝜎2, 𝜔, 𝑞2) is not
a path of 𝒯 .

For any 𝜋 = 𝑒1𝑒2 ⋅ ⋅ ⋅ 𝑒𝑛(𝑛 ⩾ 1) ∈ 𝑝(𝒯 ), the inial state of
𝑒 denoted by 𝑜(𝑒), the finial state of 𝑒 denoted by 𝑑(𝑒). The
weight of 𝑒, denoted by 𝑤(𝑒), is defined by

𝑤(𝜋) = 𝛿(𝑒1) ∙ 𝛿(𝑒2) ∙ ⋅ ⋅ ⋅ ∙ 𝛿(𝑒𝑛). (1)

The input string and output string of 𝑒, denoted by 𝐼𝑠𝑡𝑟(𝑒)
and 𝑂𝑠𝑡𝑟(𝜋)) is defined as follows, respectively.

𝐼𝑠𝑡𝑟(𝜋) = 𝐼𝑎𝑙𝑝(𝑒1)𝐼𝑎𝑙𝑝(𝑒2) ⋅ ⋅ ⋅ 𝐼𝑎𝑙𝑝(𝑒𝑛).

𝑂𝑠𝑡𝑟(𝜋) = 𝑂𝑎𝑙𝑝(𝑒1)𝑂𝑎𝑙𝑝(𝑒2) ⋅ ⋅ ⋅𝑂𝑎𝑙𝑝(𝑒𝑛). (2)

Therefore, the input-output string of 𝑒, denoted by 𝑠𝑡𝑟(𝑒),
defined by

𝑠𝑡𝑟(𝜋) = 𝑎𝑙𝑝(𝑒1)𝑎𝑙𝑝(𝑒2) ⋅ ⋅ ⋅ 𝑎𝑙𝑝(𝑒𝑛)
= (𝐼𝑎𝑙𝑝(𝑒1)𝐼𝑎𝑙𝑝(𝑒2) ⋅ ⋅ ⋅ 𝐼𝑎𝑙𝑝(𝑒𝑛),

𝑂𝑎𝑙𝑝(𝑒1)𝑂𝑎𝑙𝑝(𝑒2) ⋅ ⋅ ⋅𝑂𝑎𝑙𝑝(𝑒𝑛))
= (𝐼𝑠𝑡𝑟(𝜋), 𝑂𝑠𝑡𝑟(𝜋)).

Let 𝑠𝑡𝑟(𝑝(𝒯 )) = {𝑠𝑡𝑟(𝜋)∣𝜋 ∈ 𝑝(𝒯 )}.
𝑂𝑠𝑡𝑟(𝑝(𝒯 )) = {𝑂𝑠𝑡𝑟(𝜋)∣𝜋 ∈ 𝑝(𝒯 )}.
𝐼𝑠𝑡𝑟(𝑝(𝒯 )) = {𝐼𝑠𝑡𝑟(𝜋)∣𝜋 ∈ 𝑝(𝒯 )}.
∀(𝑠1, 𝑣1), (𝑠2, 𝑣2) ∈ Σ∗ × Ω∗,

(𝑠1, 𝑣1) = (𝑠2, 𝑣2)⇐⇒ 𝑠1 = 𝑠2 and 𝑣1 = 𝑣2.

Hence, ∀𝜋1, 𝜋2 ∈ 𝑝(𝒯 ),
𝑠𝑡𝑟(𝜋1) = 𝑠𝑡𝑟(𝜋2) ⇐⇒ 𝐼𝑠𝑡𝑟(𝜋1) = 𝐼𝑠𝑡𝑟(𝜋2) and

𝑂𝑠𝑡𝑟(𝜋1) = 𝑂𝑠𝑡𝑟(𝜋2).

Based the above notations, we will give the related defi-
nitions of 𝑃−WT.

Definition 4: Let 𝒯 = (𝑄,Σ,Ω, 𝛿, 𝐼, 𝐹 ) be a 𝑃 −𝑊𝑇 .
The 𝑃−valued input-output-function of 𝒯 , 𝑓𝒯 : Σ∗×Ω∗ −→
𝑃 , defined by ∀(𝑠, 𝑣) ∈ Σ∗ × Ω∗,

𝑓𝒯 (𝑠, 𝑣) =

{
𝑎, if ∃𝜋 ∈ 𝑝(𝒯 ) such that 𝑠𝑡𝑟(𝜋) = (𝑠, 𝑣),
0, otherwise.

(3)
Where, 𝑎 =

∑
𝜋∈𝑝(𝒯 ),𝑠𝑡𝑟(𝜋)=(𝑠,𝑣)[𝐼(𝑜(𝜋))∙𝑤(𝜋)∙𝐹 (𝑑(𝜋))].

It is noted that, for a 𝑃−NFA 𝒜 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ), we may
use the notations similar to those of 𝑃−WT. And ℛ𝒜 ∈ 𝑃Σ∗

are written equivalently as

ℛ𝒜(𝑠) =
{

𝑏, if ∃𝜋 ∈ 𝑝(𝒯 ) such that 𝑠𝑡𝑟(𝜋) = 𝑠,
0, otherwise.

(4)

Where, 𝑏 =
∑
𝜋∈𝑝(𝒯 ),𝑠𝑡𝑟(𝜋)=𝑠[𝐼(𝑜(𝜋)) ∙ 𝑤(𝜋) ∙ 𝐹 (𝑑(𝜋))].

IV. REALIZATION OF INPUT-FUNCTIONS AND

OUTPUT-FUNCTIONS

Next, we give the definition of input-functions and output-
functions induced by input-output-functions.

Definition 5: Let 𝒯 = (𝑄,Σ,Ω, 𝛿, 𝐼, 𝐹 ) be a 𝑃−WT. The
𝑃−valued input-output-function of 𝒯 , 𝑓𝒯 : Σ∗×Ω∗ −→ 𝑃 ,
induced the following two functions

(1) The output-function: 𝑓𝑜 : Σ∗ −→ 𝑃 ⟨⟨Ω∗⟩⟩ is defined
by ∀𝑠 ∈ Σ∗,

𝑓𝑜(𝑠) =
∑

𝑣∈Ω∗
𝑓𝒯 (𝑠, 𝑣)𝑣.

𝑓𝑜(𝑠) are viewed as the all outputs with input string 𝑠.
(2)The input-function: 𝑓𝑖 : Ω

∗ −→ 𝑃 ⟨⟨Σ∗⟩⟩ is defined by
∀𝑣 ∈ Ω∗,

𝑓𝑖(𝑣) =
∑

𝑠∈Σ∗
𝑓𝒯 (𝑠, 𝑣)𝑠.
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𝑓𝑖(𝑣) are viewed as the all inputs with output string 𝑣.
Since the terms with coefficients equal 0 can be omit. 𝑓𝑜(𝑠)

and 𝑓𝑖(𝑣) can be simplified the following forms, respectively

𝑓𝑜(𝑠) =
∑

𝑣∈𝑂𝑠𝑡𝑟(𝑃 (𝒯 ))

𝑓𝒯 (𝑠, 𝑣)𝑣 (5)

𝑓𝑖(𝑣) =
∑

𝑠∈𝐼𝑠𝑡𝑟(𝑃 (𝒯 ))

𝑓𝒯 (𝑠, 𝑣)𝑠 (6)

These simplification forms are help for the realization
of input-functions and output-functions. The realization of
input-functions (output-functions) can be solved through
using the relevant weighted automata over strong bimonoids.
Firstly, we consider the realization of output-functions.

Theorem 1: Let 𝒯 = (𝑄,Σ,Ω, 𝛿, 𝐼, 𝐹 ) be a 𝑃−WT.
There exists a weighted finite automaton over a strong
bimonoid (𝑃 ⟨⟨Ω∗⟩⟩,+,⊙,0, 𝜀) 𝒪, such that ℛ𝒪 = 𝑓𝑜.

Proof : Let 𝒯 = (𝑄,Σ,Ω, 𝛿, 𝐼, 𝐹 ) be a 𝑃−WT. We
construct a weighted finite automaton over a strong bimonoid
(𝑃 ⟨⟨Ω∗⟩⟩,+,⊙,0, 𝜀), 𝒪 = (𝑄,Σ, 𝛿𝒪, 𝐼𝒪, 𝐹𝒪), as follows

𝐼𝒪(𝑞) = 𝐼(𝑞)𝜀, 𝐹𝒪(𝑞) = 𝐹 (𝑞)𝜀, for any 𝑞 ∈ 𝑄,

𝛿𝒪 : 𝑄× Σ×𝑄 −→ 𝑃 ⟨Ω𝜀⟩, ∀𝑝, 𝑞 ∈ 𝑄, 𝑥 ∈ Σ𝜀,

𝛿𝒪(𝑝, 𝑥, 𝑞) =
∑

(𝑝,𝑥,𝑦,𝑞)∈𝐸𝒯

𝛿(𝑝, 𝑥, 𝑦, 𝑞)𝑦.

We will shown that ℛ𝒪 = 𝑓𝑜 by the following steps.
(1) By the definition of 𝛿𝑜, we can give a surjection from

𝐸𝒯 to 𝐸𝒪, i.e. 𝜑 : 𝐸𝒯 −→ 𝐸𝒪, ∀𝑒 ∈ 𝐸𝒯

𝜑(𝑒) = (𝑐(𝑒), 𝐼𝑎𝑙𝑝(𝑒), 𝑠(𝑒)) ∈ 𝐸𝒪.

∀𝑒𝒪 ∈ 𝐸𝒪, let 𝜑−1(𝑒𝒪) = {𝑒 ∈ 𝐸𝒯 ∣ 𝜑(𝑒) = 𝑒𝒪}, then

𝜑(𝐸𝒯 ) = ∪𝑒∈𝐸𝒯 𝜑(𝑒), 𝜑−1(𝐸𝒪) = ∪𝑒𝒪∈𝐸𝒪𝜑−1(𝑒).

We can verify that
(1-1) ∀𝑒𝒪 ∈ 𝐸𝒪, ∀𝑒 ∈ 𝜑−1(𝑒𝒪),

𝑐(𝑒𝒪) = 𝑐(𝑒), 𝑠(𝑒𝒪) = 𝑠(𝑒), 𝑎𝑙𝑝(𝑒𝒪) = 𝐼𝑎𝑙𝑝(𝑒),

𝛿𝒪(𝑒𝒪) =
∑

𝑒∈𝜑−1(𝑒𝒪)

𝛿(𝑒)𝑂𝑎𝑙𝑝(𝑒) ∈ 𝑃 ⟨Ω𝜀⟩.

(1-2) 𝜑(𝐸𝒯 ) = 𝐸𝒪, 𝜑−1(𝐸𝒪) = 𝐸𝒯 .
(2) 𝜑 : 𝐸𝒯 −→ 𝐸𝒪 may induce a homomorphic mapping

from 𝑝(𝒪) to 𝑝(𝒯 ) denoted also by 𝜑. That is 𝜑 : 𝑝(𝒯 ) −→
𝑝(𝒪), ∀𝜋 = 𝑒1𝑒2 ⋅ ⋅ ⋅ 𝑒𝑛 ∈ 𝑝(𝒯 ),

𝜑(𝜋) = 𝜑(𝑒1𝑒2 ⋅ ⋅ ⋅ 𝑒𝑛) = 𝜑(𝑒1)𝜑(𝑒2) ⋅ ⋅ ⋅𝜑(𝑒𝑛).
∀𝜋𝒪 = 𝑒𝒪1𝑒𝒪2 ⋅ ⋅ ⋅ 𝑒𝒪𝑛 ∈ 𝑝(𝒪), 𝜑−1(𝜋𝒪) is defined as

𝜑−1(𝜋𝒪) = 𝜑−1(𝑒𝒪1𝑒𝒪2 ⋅ ⋅ ⋅ 𝑒𝒪𝑛)
= 𝜑−1(𝑒𝒪1)𝜑

−1(𝑒𝒪2) ⋅ ⋅ ⋅𝜑−1(𝑒𝒪𝑛)
= {𝑒1𝑒2 ⋅ ⋅ ⋅ 𝑒𝑛 ∣ 𝑒𝑖 ∈ 𝜑−1(𝑒𝒪𝑖), 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛}
= {𝜋 ∣ 𝜑(𝜋) = 𝜋𝒪}

𝜑(𝑝(𝒯 )) = ∪𝜋∈𝑝(𝒯 )𝜑(𝜋)

𝜑−1(𝑝(𝒪)) = ∪𝜋𝒪∈𝑝(𝒪)𝜑
−1(𝜋𝒪).

And we also can verify that
(2-1) ∀𝜋𝒪 ∈ 𝑝(𝒪), 𝜋 ∈ 𝜑−1(𝜋𝒪),

𝑜(𝜋𝒪) = 𝑜(𝜋), 𝑑(𝜋𝒪) = 𝑑(𝜋), 𝑠𝑡𝑟(𝜋𝒪) = 𝐼𝑠𝑡𝑟(𝜋).

(2-2) 𝜑(𝑝(𝒯 )) = 𝑝(𝒪), 𝜑−1(𝑝(𝒪)) = 𝑝(𝒯 ).
(2-3) ∀𝜋𝒪 ∈ 𝑝(𝒪), Let 𝜋𝒪 = 𝑒𝒪1𝑒𝒪2 ⋅ ⋅ ⋅ 𝑒𝒪𝑛, then

𝑤𝒪(𝜋𝒪) = 𝛿𝒪(𝑒𝒪1)⊙ 𝛿𝒪(𝑒𝒪2)⊙ ⋅ ⋅ ⋅ ⊙ 𝛿𝒪(𝑒𝒪𝑛)
=

∑
𝑒1∈𝜑−1(𝑒𝒪1)

𝛿(𝑒1)𝑂𝑎𝑙𝑝(𝑒1)⊙∑
𝑒2∈𝜑−1(𝑒𝒪2)

𝛿(𝑒2)𝑂𝑎𝑙𝑝(𝑒2)⊙ ⋅ ⋅ ⋅
⊙∑𝑒𝑛∈𝜑−1(𝑒𝒪𝑛)

𝛿(𝑒𝑛)𝑂𝑎𝑙𝑝(𝑒𝑛)

=
∑
𝑒1∈𝜑−1(𝑒𝒪1)

∑
𝑒2∈𝜑−1(𝑒𝒪2)

⋅ ⋅ ⋅
∑
𝑒𝑛∈𝜑−1(𝑒𝒪𝑛)

(𝛿(𝑒1) ∙ 𝛿(𝑒2) ∙ ⋅ ⋅ ⋅ ∙ 𝛿(𝑒𝑛))

(𝑂𝑎𝑙𝑝(𝑒1)𝑂𝑎𝑙𝑝(𝑒2) ⋅ ⋅ ⋅𝑂𝑎𝑙𝑝(𝑒𝑛))
(by proposition 1)

=
∑
𝑒1∈𝜑−1(𝑒𝒪1),𝑒2∈𝜑−1(𝑒𝒪2),⋅⋅⋅ ,𝑒𝑛∈𝜑−1(𝑒𝒪𝑛)

(𝑤(𝑒1𝑒2 ⋅ ⋅ ⋅ 𝑒𝑛)𝑂𝑠𝑡𝑟(𝑒1𝑒2 ⋅ ⋅ ⋅ 𝑒𝑛))
=

∑
𝜋∈𝜑−1(𝜋𝒪) 𝑤(𝜋)𝑂𝑠𝑡𝑟(𝜋) ∈ 𝑃 ⟨Ω∗⟩

(3) Finally, we shown that ℛ𝒪 = 𝑓𝑜. In fact, ∀𝑠 ∈ Σ∗,

ℛ𝒪(𝑠) =
∑
𝜋𝒪∈𝑝(𝒪),𝑠𝑡𝑟(𝜋𝒪)=𝑠[𝐼𝒪(𝑜(𝜋𝒪))⊙ 𝑤𝒪(𝜋𝒪)⊙

𝐹 (𝑑(𝜋𝒪))]
=

∑
𝜋𝒪∈𝑝(𝒪),𝑠𝑡𝑟(𝜋𝒪)=𝑠[𝐼(𝑜(𝜋𝒪)𝜀)⊙

(
∑
𝜋∈𝜑−1(𝜋𝒪) 𝑤(𝜋)𝑂𝑠𝑡𝑟(𝜋))⊙ 𝐹 (𝑑(𝜋𝒪))𝜀]

( by (2-1))
=

∑
𝜋𝒪∈𝑝(𝒪),𝑠𝑡𝑟(𝜋𝒪)=𝑠[

∑
𝜋∈𝜑−1(𝜋𝒪)(𝐼(𝑜(𝜋))∙

𝑤(𝜋) ∙ 𝐹 (𝑑(𝜋)))𝑂𝑠𝑡𝑟(𝜋)]
(by (2-3) and proposition 1)

=
∑
𝜋∈∪

𝜋𝒪∈𝑝(𝒪) 𝜑
−1(𝜋𝒪),𝐼𝑠𝑡𝑟(𝜋)=𝑠𝑡𝑟(𝜋𝒪)=𝑠

(𝐼(𝑜(𝜋)) ∙ 𝑤(𝜋) ∙ 𝐹 (𝑑(𝜋)))𝑂𝑠𝑡𝑟(𝜋)
(by (2-1))

=
∑
𝜋∈𝜑−1(𝑝(𝒪)),𝐼𝑠𝑡𝑟(𝜋)=𝑠(𝐼(𝑜(𝜋)) ∙ 𝑤(𝜋)∙

𝐹 (𝑑(𝜋)))𝑂𝑠𝑡𝑟(𝜋)
=

∑
𝜋∈𝑝(𝒯 ),𝐼𝑠𝑡𝑟(𝜋)=𝑠(𝐼(𝑜(𝜋)) ∙ 𝑤(𝜋)∙

𝑇 (𝑑(𝜋)))𝑂𝑠𝑡𝑟(𝜋) (by (2-2))
=

∑
𝑣∈𝑂𝑠𝑡𝑟(𝑝(𝒯 ))(

∑
𝜋∈𝑝(𝒯 ),𝑠𝑡𝑟(𝜋)=(𝑠,𝑣) 𝐼(𝑜(𝜋))∙

𝑤(𝜋) ∙ 𝐹 (𝑑(𝜋)))𝑣 (by proposition 2)
=

∑
𝑣∈𝑂𝑠𝑡𝑟(𝑝(𝒯 )) 𝑓𝒯 (𝑠, 𝑣)𝑣 = 𝑓𝑜(𝑠).

That is ℛ𝒪 = 𝑓𝑜.
The following theorem will give the realization of input-

functions.
Theorem 2: Let 𝒯 = (𝑄,Σ,Ω, 𝛿, 𝐼, 𝐹 ) be a 𝑃−WT.

There exists a weighted finite automaton over a strong
bimonoid (𝑃 ⟨⟨Σ∗⟩⟩,+,⊙,0, 𝜀) ℐ, such that ℛℐ = 𝑓𝑖.

proof: Let 𝒯 = (𝑄,Σ,Ω, 𝛿, 𝐼, 𝐹 ) be a 𝑃−WT. We
construct a weighted finite automaton over a strong bimonoid
(𝑃 ⟨⟨Σ∗⟩⟩,+,⊙,0, 𝜀), ℐ = (𝑄,Σ, 𝛿ℐ , 𝐼ℐ , 𝐹ℐ), as follows

𝐼ℐ(𝑞) = 𝐼(𝑞)𝜀, 𝐹ℐ(𝑞) = 𝐹 (𝑞)𝜀, for any 𝑞 ∈ 𝑄,

𝛿ℐ : 𝑄× Ω×𝑄 −→ 𝑃 ⟨Σ𝜀⟩, ∀𝑝, 𝑞 ∈ 𝑄, 𝑦 ∈ Ω𝜀,

𝛿ℐ(𝑝, 𝑦, 𝑞) =
∑

(𝑝,𝑥,𝑦,𝑞)∈𝐸𝒯

𝛿(𝑝, 𝑥, 𝑦, 𝑞)𝑥.
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Then, it is similar to theorem 1 to shown that ℛℐ = 𝑓𝑖.
Example 1: Let R∞

+ = {𝑎 ∈ R∣𝑎 ⩾ 0}∪{∞}, then 𝑃 =
(R∞

+ ,∧,+,∞, 0) a is trong bimonoid with∞∧𝑎 = 𝑎∧∞ =
𝑎,∞∧∞ =∞ and 𝑎 +∞ =∞+ 𝑎 =∞. It is noted that
𝑃 is not distributive. Give a 𝑃−TM 𝒯 = (𝑄,Σ,Ω, 𝛿, 𝐼, 𝐹 ),
where

𝑄 = {𝑞0, 𝑞1, 𝑞2, 𝑞3},Σ = {𝐴, 𝐵},Ω = {𝑎1, 𝑎2, 𝑏}
𝐼 =

𝑞0
0

, 𝐹 =
𝑞2
0

+
𝑞3
0

𝛿(𝑞0, 𝐴, 𝑎1, 𝑞1) = 2, 𝛿(𝑞0, 𝐴, 𝑎2, 𝑞1) = 3,

𝛿(𝑞1, 𝐴, 𝑎1, 𝑞2) = 1, 𝛿(𝑞1, 𝐴, 𝑎1, 𝑞3) = 2,

𝛿(𝑞1, 𝐴, 𝑏, 𝑞3) = 1, 𝛿(𝑞1, 𝐵, 𝑏, 𝑞3) = 2,

and 𝛿 =∞ for the rest. We have

𝑓𝒯 = 3(𝐴𝐴, 𝑎1𝑎1) + 3(𝐴𝐴, 𝑎1𝑏) + 4(𝐴𝐵, 𝑎1𝑏)+
4(𝐴𝐴, 𝑎2𝑎1) + 4(𝐴𝐴, 𝑎2𝑏) + 4(𝐴𝐵, 𝑎2𝑏).

and then

𝑓𝑜 = (3𝑎1𝑎1 + 3𝑎1𝑏 + 4𝑎2𝑎1 + 4𝑎2𝑏)𝐴𝐴+
(4𝑎1𝑏 + 5𝑎2𝑏)𝐴𝐵

,

𝑓𝑖 = (3𝐴𝐴)𝑎1𝑎1 + (4𝐴𝐴)𝑎2𝑎1 + (3𝐴𝐴 + 4𝐴𝐵)𝑎1𝑏
+(4𝐴𝐴 + 5𝐴𝐵)𝑎2𝑏

.

We construct a weighted finite automaton over a strong
bimonoid (𝑃 ⟨⟨Ω∗⟩⟩,+,⊙,0, 0𝜀), 𝒪 = (𝑄,Σ, 𝛿𝒪, 𝐼𝒪, 𝐹𝒪),
where

𝐼𝒪 =
𝑞0
0𝜀

, 𝐹𝒪 =
𝑞2
0𝜀

+
𝑞3
0𝜀

𝛿𝒪(𝑞0, 𝐴, 𝑞1) = 2𝑎1 + 3𝑎2,
𝛿𝒪(𝑞1, 𝐴, 𝑞2) = 1𝑎1,
𝛿𝒪(𝑞1, 𝐴, 𝑞3) = 2𝑎1 + 1𝑏,
𝛿𝒪(𝑞1, 𝐵, 𝑞3) = 2𝑏,

and 𝛿𝒪 = 0 for the rest. we can compute that ℛ𝒪 as follows.

ℛ𝒪(𝐴𝐴) = 𝛿𝒪(𝑞0, 𝐴, 𝑞1)⊙ 𝛿𝒪(𝑞1, 𝐴, 𝑞2)+
𝛿𝒪(𝑞0, 𝐴, 𝑞1 ⊙ 𝛿𝒪(𝑞1, 𝐴, 𝑞3)

= (2𝑎1 + 3𝑎2)⊙ 1𝑎1 + (2𝑎1 + 3𝑎2)⊙ 2𝑏
= (2 + 1)𝑎1𝑎1 + (3 + 1)𝑎2𝑎1

+(2 + 2)𝑎1𝑏 + (3 + 2)𝑎2𝑏
= 3𝑎1𝑎1 + 3𝑎1𝑏 + 4𝑎2𝑎1 + 4𝑎2𝑏

,

ℛ𝒪(𝐴𝐵) = 𝛿𝒪(𝑞0, 𝐴, 𝑞1)⊙ 𝛿𝒪(𝑞1, 𝐵, 𝑞3)
= (2𝑎1 + 3𝑎2)⊙ 2𝑏
= (2 + 2)𝑎1𝑏 + (3 + 2)𝑎2𝑏
= 4𝑎1𝑏 + 5𝑎2𝑏

,

and ℛ𝒪 = 0 for the rest. That is ℛ𝒪 = 𝑓𝑜.
Similarly, We construct a weighted finite automata

over a strong bimonoid (𝑃 ⟨⟨Σ∗⟩⟩,+,⊙,0, 0𝜀), ℐ =
(𝑄,Σ, 𝛿ℐ , 𝐼, 𝐹 ), where

𝛿ℐ(𝑞0, 𝑎1, 𝑞1) = 2𝐴,
𝛿ℐ(𝑞0, 𝑎2, 𝑞1) = 3𝐴,
𝛿ℐ(𝑞1, 𝑎1, 𝑞2) = 1𝐴,
𝛿ℐ(𝑞1, 𝑎1, 𝑞3) = 2𝐴,
𝛿ℐ(𝑞1, 𝑏, 𝑞3) = 1𝐴 + 2𝐵,

and 𝛿ℐ = 0 for the rest. we can compute that ℛℐ = 𝑓𝑖.

V. CONCLUSIONS

In this work, we introduced weighted transducers over
strong bimonoids and solved some realizations problems
related to them. For a strong bimonoid 𝑃 , we proposed
the notions of the input-function 𝑓𝑖 and output-function
𝑓𝑜 induced by the input-output-function of 𝑃−WT. Then
we constructed a finite weighted automaton ℐ over strong
bimonoid (𝑃 ⟨⟨Σ∗⟩⟩,+,⊙,0, 𝜀) such that ℛℐ = 𝑓𝑖 and
a finite weighted automaton 𝒪 over strong bimonoid
(𝑃 ⟨⟨Ω∗⟩⟩,+,⊙,0, 𝜀) such that ℛ𝒪 = 𝑓𝑜. By the realizations
of input-function 𝑓𝑖 and output-function 𝑓𝑜. Next, the further
research on the applications of 𝑃−WT in uncertain data
management will be given.
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