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A Fast Geometric Defuzzication Operator for Large Scale
Information Retrieval

Simon Coupland, David Croft and Stephen Brown

Abstract—In this paper we explore the centroid defuzzi-
cation operation in the context of specific data retrieval
application. We present a novel implication and centroid
defuzzication approach based on geometric fuzzy sets
and systems. It is demonstrated that this new approach
requires fewer operations and results in a significant
reduction in processing time in our application.

I. INTRODUCTION

Many Gallery, Library, Archive and Museum
(GLAM) institutions posses sizeable collections of her-
itage objects and in recent years considerable effort
has been expended in digitising information related
to these heritage resources. Digitisation projects are
conducted for a variety of reasons, typically focused
on conservation, research and collection accessibility
[1], but the result is that tens of millions (at least) of
collection items exist digitally [2].

There is growing consensus among museum pro-
fessionals and users about the importance of data in-
tegration between different collections to allow cross
searching and data clustering that extends beyond the
limited powers of basic keyword searching ([3], [4],
[5], [6]. ”“The nature of humanities data (being fuzzy,
small scale, heterogeneous, of varying quality, and tran-
scribed by human researchers) as opposed to scientific
datasets (large scale, homogenous, numeric, and gen-
erated or collected/sampled automatically), means that
novel computational techniques need to be developed
to analyse and process humanities data for large scale
projects’™ [7].

Although cross-collection searches were always pos-
sible even with non-digitised objects, the reality is that
they were very time and resource intensive and had,
therefore, to be limited to both scope and number.
Digitised heritage collections offer the possibility of
easier cross collection searching. This would allow
humanities researchers to investigate a broader range
of sources and to conduct their investigations faster.
Although the potential for cross-collection searching
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within GLAM collections is considerable, the nature of
the information to be searched makes this a challenging
problem. Record information within GLAM collections,
is often imprecise and of uncertain accuracy. Coping
with these issues requires elements from multiple do-
mains, including but not limited to, Short Text Semantic
Similarity (STSS), approximate string matching and
fuzzy logic.

Our previous research has demonstrated that semi-
automated co-reference identification between GLAM
collection records is possible despite the difficult nature
of record information [8]. Having demonstrated its fea-
sibility, our current focus is on implementing a system
for ongoing and sustainable linkage of records in real
heritage collections. At the present time we have records
from fourteen different collections, amounting to more
than 1.4 million.

The overall record similarity approach being used has
been described in greater detail previously [8], although
it has subsequently undergone further refinements. Of
importance to this paper is that the final stage of the
record pair comparison process is a Mamdani Fuzzy
Inference System (FIS) which produces a defuzzified
centroid. Whilst the sets and rules used by that FIS
are very simple and have a low computational cost,
the sheer number of comparisons to be made means
that the cumulative time required for defuzzification is
considerable.

Under our co-reference identification process, the
total number of pair comparisons needed to compare
r records is r> — r. Assuming that we wish to find co-
reference candidates for every one of the ~ 1.4 million
records collected as part of this project so far, a total
of 1.96 x 10'? comparisons would be required.

While the centroid was initially calculated using a
discretisation approach in order to demonstrate that
the rest of the co-reference approach was working as
expected, this approach was (as expected) time consum-
ing. Geometric defuzzification promises to be signifi-
cantly cheaper computationally than discretisation tech-
niques, but even with geometric approaches the number
of comparisons represent a significant processing and
therefore time cost. In order to process our large number
of records is was therefore necessary to optimise every

1143



stage of processing as much as possible.

In this paper we describe the minimal computational
cost geometric defuzzification process we use in order
to produce dramatic processing throughput improve-
ments for the overall co-reference identification process.

The reminder of the paper is structured as follows:
Section II presents related work which underpins our
new approach, Section III presents the novel geometric
implication and defuzzification approach, Section IV
presents a comparison between our approach and a
discrete implementation and finally Section V concludes
this work.

II. RELATED WORK

The approach presented in this paper is a form of
geometric fuzzy sets and systems approach first outlined
in two papers by Coupland et al [9], [10]. Geometric
fuzzy systems treat fuzzy sets (including type-2 interval
and general) as geometric objects made up of simple
geometric primitives. Coupland ef al considered line
segments as their geometric primitive when dealing with
type-1 fuzzy sets. This required line segment intersec-
tion calculations [11] and a modified version of the
Bentley-Ottman plane sweep algorithm [12] to compute
logical operations on fuzzy sets. However, in this paper
we use triangles as our geometric primitive and rely on
the simple fact that a triangle’s area is given by half it’s
base times it’s height and the centroid of a triangle is
given by the arithmetic mean of it’s three apexes. As
with all geometric fuzzy systems, we restrict ourselves
to only using Mamdani style rule based systems and
only using minimum and maxmium for t-norms and t-
conorms. We also only consider the centroid defuzzifier.
The main reason for this is that we found it worked well
in our application and therefore our motivation for this
work was simply to improve computation time. There
are a number of other approaches to defuzzification
which are efficient (centre of sums, mean of maxima,
height. See [13] for details), however we wished to
maintain the behaviour of our prototype rule base so
therefore stuck to the centroid.

III. FAST DEFUZZIFICATION ALGORITHM

We now examine how to perform the geometric
implication and centroid defuzzication for triangular
membership functions. We do not cover all potential
combinations, however we cover all those required for
our application.

A. Centroid of a Single Symmetrical Triangle

Consider the fuzzy set whose membership function is
a single symmetrical triangle depicted in Figure 1. The
membership function of this set is simply a triangle,
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Fig. 1. A Single Symmetrical Triangular Fuzzy Set.

therefore it’s area is half the base length multiplied by
the height. The centroid can be calculated as the mean
of the three co-ordinates which make up the triangle.
The area and the centroid of this fuzzy set are given in
equations 1 and 2.

e—Ss
A= M
CzL’;’“ )

where A is area and C is the centroid. For this triangle
e —m = s —m, therefore the centroid is simply m. Now
suppose this set is used as a consequent of a Mamdani
style rule with a firing strength of u. Such a situation
is depicted in Figure 2(a). The shape of the resultant

(b)

Fig. 2. A Single Symmetrical Triangular Consequent Fuzzy Set
Under Firing Strength u.

consequent set is a trapezoid which is shown as the
grey shaded area in Figure 2(a). This trapezoid shape
can be easily constructed from two triangles. If we take
the triangle depicted in Figure 2(a) from the triangle in
Figure 1 we arrive at the trapezoid which would result
from the impaction of the rule firing strength u on the
triangular consequent set. The area of this set is given
by subtraction of the triangle areas. The area of the
smaller second triangle is given by equation 3.

Wx(l_y) 3)

Notice that the base of the second triangle is calculated
by multiplying the base of the original triangle by (1 —

A=
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u), with (1 —pu) being a simple scalar. We can rewrite
the area of the resultant trapezoid as:

(e—s) x (1-p)?

A= 4
5 “)

The centroid of the trapezoid is clearly given by:
c_ermts _ (5)

3

B. Centroid of a Non-Contained Pair of Symmetrical
Triangles

Of course, in a Mamdani system consequent fuzzy
sets must also be combined with the logical AND
before defuzzifcation. Therefore, the next situation we
are concerned with is a pair of triangular fuzzy sets
under firing strengths of u; and u, respectively. We
begin by looking at a pair of symmetrical triangles
where s1 < 50, m; < mp and e; < ep as depicted in
Figure 3 which we will refer to as non-contained.

S1 mysy €p mz ()

Fig. 3. A Pair of Symmetrical Triangular Fuzzy Sets.

The particular pair of triangles in Figure 3 can be
deconstructed into five separate triangles which can be
used to calculate the area and centroid of the resultant
set. For the sake of generality we must include a sixth
triangle not immediately apparent in Figure 3. In Figure
3 both y; and up are greater than the y-component of the
point where the line segments (mj,e;), (s2,my) inter-
sect. This may not always be the case as demonstrated
by the pair of triangles depicted in Figure 4.

S1 my €1

Fig. 4. A Second Pair of Symmetrical Triangular Fuzzy Sets.

Triangle Area Centroid
3 (61—31)2(1—#1)2 m
4 (62—52)2(1—#2)2 .
5 @ X hy i
6 (6’1—Sz)x(hl—éhw(m\/llz)))z i
TABLE I

AREAS AND CENTROID OF THE TRIANGLES MAKING UP TWO
NON-CONTAINED INTERSECTING SYMMETRICAL TRIANGLES.

A pair of symmetrical triangular fuzzy sets may be
broken down into six triangles. The first two trian-
gles are straightforward: si,mj,e; (Figure 5 (a)) and
s2,my,er (Figure 5 (b)). The second two triangles are
used to form trapezoids formed by the application of
the implication operator with the respective rule firing
strengths of yy (Figure 5 (c)) and yy (Figure 5 (d)). The
final pair of triangles we have to consider are formed by
the intersection of the original two triangles. Clearly, the
intersection of two triangles results in a triangle (Figure
5 (e)), however it may be that the implication operator
also acts on this triangle resulting in a sixth and final
triangle (Figure 5 (f)). The areas and centroids of each
of these triangles are given in table I. When the situation
depicted in Figure 3 occurs, the area of triangle 6 will
be 0 and not contribute towards the centroid calculation.

The centroid C of the final consequent set is given
by the weighted average of each triangles area (equation
6).

C—
Ci XA +Cr xAy —C3 x A3 —Cy x Ay — C5 X A5 +Cg X Ag

A1 +Ay—A3—Ay—As+A¢
(6)
However, we are concerned primarily with operational
efficiency, our goal is to minimise computation time
and we will modify equation 6 to make use of any pre-

computed values we can. Let o and B be precomputed
values as follows.

A=A xXC1+Ay; xCy —A3 xC3 @)
B=A;+Ar—A;3 (®)

Note that all terms in equations 7 and 8 are known
beforehand and are listed in Table I, therefore the
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Fig. 5.

centroid can be given by equation 9.

. aA—Cy XxAy+Cs xAs —Cg X Ag
o B—As+As—Ag

C ©))

C. The Centroid of A Fully Contained Pair of Symmet-
rical Triangles

We now move on to look at a pair of symmetrical
triangles, which we refer to as fully contained, where
mp < sp <ep, m <m <e and m < ey < e as
depicted in Figure 6.
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Fig. 6.
Sets.

A Pair of Fully Contained Symmetrical Triangular Fuzzy

51 nisp

A Second Pair of Symmetrical Triangular Fuzzy Sets.

The centroid of the conjunction of these two trian-
gular fuzzy sets can be calculated from five triangles.
Table II gives the area and centroid of each of these
triangles and Figure 7 depicts the fourth and fifth
triangles in Table II. The overall centroid is given by
equation 10.

. Al XC1—Ay xCr+A3 X (C3—A4 X Cy —As5 X Cs
A —Ar+A3—A4—As

C

(10)
Equation 10 can be extended to include the impli-
cation operation We however, leave this to the reader.
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Fig. 7.
Sets.

A Pair of Fully Contained Symmetrical Triangular Fuzzy
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Triangle Area Centroid
er—s
1 ( = 1) m
2 (62;SZ> Ny
3 (=) o (1—hy)

2 1 nmp
(2—11) i Fir+i
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5 5 X (/’l2 —/’ll) L 32 2

TABLE I
AREAS AND CENTROID OF THE TRIANGLES MAKING UpP TWO
Fuzzy CONTAINED INTERSECTING SYMMETRICAL TRIANGLES.

D. Centroid of Four Non-Contained Symmetrical Fuzzy
Sets

We move on to look at the exact problem faced in
our data retrieval application, namely an efficient way of
calculating the centroid of the output of four Mamdani
rules. In our rule base the four fuzzy sets happen to be
symmetrical and non-contained and this is the reason
we have pursued the efficient defuzzication approach
in the way described in this paper. Figure 8 depicts
this situation where each of the four rules has some
firing strength (u...us4) which is implied across the
respective consequents which are then combined and
defuzzified. For this problem we must use 14 separate
triangles to calculate the implication and defuzzification
operation. These triangles follow from the triangles we
used to calculate implication and centroid for a pair
of non-contained symmetrical triangles. The areas and
centroids of each of these 14 triangles are listed in Table
III.

The only terms unknown before the implication and
defuzzification are the rule firing strengths y; .. .. Any
area or centroid listed in Table III not containing these
terms can be computed ahead of time. This means all
centroids are known ahead of time and areas 1
7 may be precomputed as may the combination of
these first seven areas and centroids. In addition several
components (i.e. (¢; —s1)) of the remaining areas may
be precomputed. Let o and B be precomputed terms
given by equations 11 and 12 respectively.

4 7
=Y CixA—Y CixA (11)
i=1 i=5
4 7
B=Y Ai—} A (12)

i=1 i=5
The final centroid may then be given by equation 13. It
is this equation which is used in the following section to

Triangle Area Centroid
5 @ X hy i1
6 @ X hy 153
7 @ X hy i3
3 (61*51)2(1*#1)2 m
9 (fzﬂ'z)é(l*/lz)2 my
10 (63*33);(1*#3)2 ms
1 (64—34);(1—#4)2 my
12 (61*Sz)X(hréhl/\(m\/#z)))z i
13 <€2*S3)X(hzfghz/\(ﬂzvﬂsmz i
14 (63*S4)X(hréhﬂ(%\/m)))z i

TABLE III

AREAS AND CENTROID OF THE TRIANGLES MAKING UP FOUR
INTERSECTING NON-CONTAINED SYMMETRICAL TRIANGLES.

achieve a reduction in the computation time of a large
scale data retrieval application where all terms which
can be precomputed are precomputed.

11 13
a— Y A+ Y A

P— YA+ ¥ A
i=8 i=12

We now examine the computational complexity of
our novel implication and defuzzification operation. We
compare the number of operations required to compute
the centroid using this new operation with the standard
level of discretisation used in Matlab. Matlab by default
will divide a consequent domain into 201 discrete
points. For four Mamdani rules this will require the
minimum of each point with the firing strength to be
taken, the maximum of all these needs to be taken
before the weighted sum of each pair is calculated. We
also consider a much lower level of discretisation: 11
discrete points in the domains which we consider to be
too coarse to be practical, but useful in the comparison
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i 153

Fig. 8.
Number of Operations
Operation | Novel Approach | 201 Points | 10 Points
+ 14 402 22
— 7 0 0
X 21 201 11
/ 8 1 1
A 3 804 44
V 3 603 33
TABLE IV

A COMPARISON OF THE COMPUTATIONAL COMPLEXITY OF OUR
APPROACH WITH THE STANDARD APPROACH WITH TWO LEVELS
OF DISCRETISATION.

of computational complexity. Table IV summarises the
number of operations required for each approach in
terms of +, —, x, /, A and V. Clearly our novel
approach has a much lower computational complexity
which we go on to demonstrate within an application
in the following section. In terms of the accuracy of
the results, as the approach taken is geometric the
results are completely accurate [14], by definition more
accurate than any discrete approach can be.

IV. TESTING

In order to measure the performance improvement
offered by our geometric implementation, the overall
co-reference identification system was run using both
defuzzification approaches and the time required for it
to finish processing was recorded in each case.

It was expected that the processing time required
would increase exponentially as the number of records

Four Fully Contained Symmetrical Triangular Fuzzy Sets.

being processed increased. It was also expected that
the geometric defuzzification approach would produce
significantly faster processing times.

The system was run against groups of 10, 55, 100,
550, 1000, 5500 and 10000 records. The same records
were used in testing both defuzzification methods and
each test was run 10 times to produce a mean average
for each set of records processed.

Testing was conducted on an Intel 3.10GHz quad
core machine (i5-2400) with 8GB of RAM. As the
co-reference identification software is multi-threaded,
it was allowed to use all cores. When defuzzifying
using a discrete approach, 201 points were used for
each centroid calculated.

The average processing time results can be seen in
table V. Based on our results we are able to make
predictions for the time required to process full sets
of records. Assuming 1.4 million records and using
the discrete defuzzification approach, a total processing
time of 3525517 seconds (40.8 days) is predicted. Using
geometric defuzzification, that time is reduced to only
849318 seconds (9.8 days).

V. CONCLUSION

In this paper we have given a novel method for
calculating the implication and centroid in a Mamdani
system using triangular membership functions and min-
imum and maximum. We have not examined every case,
however we have covered every circumstance required
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TABLE V
AVERAGE PROCESSING TIME REQUIRED.

Time (seconds)
Records Discrete  Geometric

10 10.92 9.87
55 11.00 9.99
100 11.10 10.13
550 12.84 11.82
1000 15.99 14.16
5500 125.13 73.19

10000 375.56 196.97

55000 6368.61 2040.13
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Fig. 9. Number of records processed versus time.

in our particular application, information matching and
retrieval across museum collections. Our method re-
quires less computation than a discrete approach re-
sulting in a significant increase of processing speed in
our application. In future work we will show how the
approach can be used, how it can be generalised and
what the performance implications of doing so are.
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