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Abstract—In this paper, the role of local finiteness of truth
values domain of fuzzy automata is analyzed, in which the truth
value domain of fuzzy automata is the (commutative) lattice-
ordered monoid. We introduce a hierarchy of lattice-valued fuzzy
finite automata and the languages which were recognized by
these automata. Besides, the role of local finiteness of truth value
domain of fuzzy languages to the hierarchy of fuzzy automata,
the role of some special archimedean t-norms in the hierarchy of
fuzzy automata and the decidability of lattice-valued languages
are also discussed.

I. INTRODUCTION

Classical computation theory aims at the deterministic
computing environment, but the reality of computing environ-
ment or computing system, especially the environment that has
relation to human activities, often contains uncertainty. Since
1960s, the research of computing theory under uncertainty
environment has become an important research topic. The
computing problem of fuzzy environment was first introduced
by L.A.Zadeh who put forward the question of fuzzy language
and fuzzy computing models. The notion of fuzzy automata
was produced by Wee in 1967 (see[1] for the detail introduc-
tion of classical fuzzy automata). The notion of lattice-valued
fuzzy automata put forward by Li and Pedrycz is one of the
most well-known fuzzy automata currently (see [2],[3],[4],[5]).
The lattice-valued fuzzy automata have many unique proper-
ties. For instance, it holds that nondeterministic fuzzy finite
automata is equivalent to deterministic fuzzy automata, but it
is not valid for lattice-valued fuzzy automata; The family of
lattice-valued fuzzy languages is not closed under complement
operation and so on. The languages accepted by lattice-valued
automata are called lattice-valued fuzzy regular languages. Kli-
mann and S.Lombardy have studied the hierarchy of weighted
automata and their languages in tropical semiring (see[6]).
As we all know, for two regular languages L1 and L2, the
problems L1 = L2 and L1 ≤ L2 are decidable, KROB has
discussed these problems for weighted regular languages in
the tropical semiring (see[7]). In this paper, wee will study
these problems for the lattice-valued regular languages and
the hierarchy of lattice-valued fuzzy automata.

II. PRELIMINARIES

Definition 2.1: [2] Let L be a bounded lattice, the least and
largest elements will be denoted by 0 and 1. There is a binary
operation · on L such that (L, ·, e) is a monoid with identity
e ∈ L, if it satisfies the following three conditions for arbitrary
a, b, x ∈ L:

(1) a · 0 = 0 · a = 0;

(2) a ≤ b ⇒ a · x ≤ b · x and x · a ≤ x · b;
(3) a·(b∨c) = (a·b)∨(a·c) and (b∨c)·a = (b·a)∨(c·a).

then we call L a lattice-ordered monoid or l-monoid.

Definition 2.2: [2] Let ∗ is a binary operation on [0, 1], if
it satisfies the following conditions:

(1) ∀a, b ∈ [0, 1], a ∗ b = b ∗ a;

(2) ∀a, b, c ∈ [0, 1], (a ∗ b) ∗ c = a ∗ (b ∗ c);
(3) ∀a, b, c, d ∈ [0, 1] and a ≤ c, b ≤ d ⇒ a ∗ b ≤ c ∗ d;

(4) ∀a ∈ [0, 1], 1 ∗ a = a.

then we call ∗ a t-norm, if ∗ is continuous and ∀a ∈ (0, 1), a∗
a < a, then ∗ is called an Archimedean t-norm.

Here are a few examples of l-monoid:

(1) ([0, 1],∨,∧, 0, 1);
(2) ([0, 1],∨, ∗, 0, 1),in which∗ is a t-norm.

Definition 2.3: [2] An L−fuzzy finite automata (L−FFA,
for short) is a five tuple, A = (Q,Σ, δ, I, T ), where Q,Σ are
finite nonempty sets, the elements of Q,Σ denote states and
input symbols respectively, δ : Q × Σ × Q → L is called a
fuzzy transition function and I, T : Q → L are respectively
called fuzzy initial and final mappings.

Definition 2.4: [2] Let A be an L−FFA, the language
recognized by A is denoted by |A | : Σ∗ → L, which is
defined as, ∀θ = σ1σ2 · · ·σk , |A |(θ) = ∨{I(q0)·δ(q0, σ1, q1)·
· · · · δ(qk−1, σk, qk) · T (qk)|q0, q1, . . . , qk ∈ Q}.
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For a fuzzy language f : Σ∗ → L, if there exists a finite
automaton A such that |A | = f , then f is called a lattice-
valued fuzzy regular language, we use L − Reg to represent
the set of fuzzy regular languages.

III. HIERARCHY OF LATTICE-VALUED FUZZY AUTOMATA

Suppose that A = (Q,Σ, δ, I, T ) is an L−FFA, we can
classify it as follows:

(1) Deterministic fuzzy automaton L−DFA: δ : Q ×
Σ → Q is deterministic transition function, and
I = {q0}, q0 ∈ Q.

(2) Sequential fuzzy automaton L−Seq: A = (Q,Σ,
δ, I, T ) such that, there exists a unique q ∈ Q satisfies
I(q) > 0, and for any q ∈ Q, σ ∈ Σ, there exists a
unique p ∈ Q such that δ(q, σ, p) > 0.

(3) Unambiguous fuzzy automaton L−NAmb: There is a
unique successful path ρ for any word θ ∈ supp(|A |),
and ρ = q0q1 . . . qk such that |A |(θ) = I(q0) ·
δ(q0, σ1, q1) · · · · · δ(qk−1, σk, qk) · T (qk), where θ =
σ1σ2 . . . σk .

(4) Finitely ambiguous automaton L−FAmb: If there ex-
ists some n ∈ N such that for any word θ ∈
supp(|A |), there are at most n successful paths of
label θ, ρ1 = q10q11 . . . q1k , ρl = ql0ql1 . . . qlk , l ≤
n, such that ri = I(qi0) · δ(qi0 , σ1, qi1) · · · · ·
δ(qik−1

, σk, qik) · T (qik) > 0(1 ≤ i ≤ n), where
θ = σ1σ2 . . . σk , and |A |(θ) = ∨n

i=1ri. The minimal
such n is called the ambiguity degree of the automa-
ton.

Considering an L−Reg f . The language f is deterministic
(resp. sequential, unambiguous, finitely ambiguous) if there
exists a deterministic (resp. sequential, unambiguous, finitely
ambiguous) fuzzy automaton recognizing it. The language f is
infinitely ambiguous if there exists no finitely ambiguous fuzzy
automaton recognizing it. The degree of ambiguity of a finitely
ambiguous language is the minimal degree of ambiguity of an
automaton recognizing it. The set of deterministic, sequential,
unambiguous, finitely ambiguous language are denoted, re-
spectively, by L−DFA,L− Seq, L−NAmb,L− FAmb.
In the following, we will discuss the relationship between these
languages.

IV. HIERARCHY OF LATTICE-VALUED FUZZY REGULAR
LANGUAGE

Theorem 4.1: For any L −NFA A , there exists an L −
NFA B with crisp initial state such that |A | = |B|.

Proof: Assume that A = (Q,Σ, δ, I, T ) is an L −NFA,
we construct a automaton B = (Y,Σ, η, y0, TY ), let Y =
I ∪Q, y0 = I, η : Y × Σ× Y → Y , such that:

η(y1, ε, y2) =

{
e, y1 = y2;
0, y1 �= y2.

η(y1, σ, y2) =

{ ∨q∈QI(q) · δ(q, σ, y2), y1 = I, y2 ∈ Q;
δ(y1, σ, y2), y1, y2 ∈ Q;
0, y1 ∈ Q, y2 = I.

TY (y) =

{ ∨q∈QI(q) · T (q), y = I;
T (y), y ∈ Q.

then |B|(ε) = ∨y∈Y η
∗(y0, ε, y) · TY (y) = η∗(y0, ε, y0) ·

TY (y0) = ∨q∈QI(q) · T (q) = |A |(ε).
When θ = μ1, |B|(θ) = ∨y∈Y η(y0, μ1, y)·TY (y) = ∨y∈Q

η(y0, μ1, y) · TY (y)
∨∨y=Iη(y0, μ1, y) · TY (y) = ∨I(q) ·

δ(q, θ, y) · T (y) = |A |(θ).
Assume that it holds for |θ| = n, so when |θ| = n+ 1,

|B|(θ) = ∨y′ ,y1,...yn+1∈Y I(y
′
) · η∗(y′

), θ, y) · TY (y)

= ∨y1,...,yn+1∈QI(y0)·η∗(y0), θ, yn+1)·TY (yn+1)
∨
0

= ∨q∈QI(q) · δ∗(q, θ, yn+1) · T (yn+1)

= |A |(θ)
So we can also get that |B|(θ) = |A |(θ).
Theorem 4.2: [2] The following conditions are equivalent

for an L−Reg f .

(1) f can be recognized by an L−DFA;

(2) Im(f) is finite and fγ is regular for any γ ∈ Im(f),
where fγ = {θ ∈ Σ∗|f(θ) ≥ γ};

(3) Im(f) is finite and f[γ] is regular for any γ ∈ Im(f),
where f[γ] = {θ ∈ Σ∗|f(θ) = γ}.

Theorem 4.3: [2] The following conditions are equivalent.

(1) For any L−NFA A , there exists an L−DFA B,
such that |A | = |B|.

(2) L is locally finite.

Lemma 4.4: Assume L is a commutative l-monoid, then
L is not locally finite iff there is a ∈ L such that ai �= aj

whenever i �= j.

Proof: “If” part is obvious. Conversely, let L
′′

= 〈L′〉,
where L

′
is a finite subset of L. Then L

′′
= {∨n

i=1mi|mi ∈
T, i = 1, 2, · · · , n, n ≥ 1}, T = {al11 · al22 · · · · · alkk :
l1, l2, · · · , lk ≥ 0}, L′

= {a1, a2, · · · , ak : 0 ≤ k ≤ n}. So
L

′′
is infinite iff T is infinite iff there exists a ∈ L

′
such that

{al : l ≥ 0} is infinite. The necessary condition is equivalent
to ai �= aj whenever i �= j.

Clearly, “deterministic” implies “sequential”, which im-
plies “unambiguous”, the last implies “finitely ambiguous”.

In the sequel we assume that L is commutative, and Σ is
an alphabet.

Theorem 4.5: If L is commutative, we can get
L−DFA ⊆ L− Seq ⊆ L−NAmb ⊆ L− FAmb ⊆
L−Reg.

Theorem 4.6: If L is not locally finite, then the above in-
clusion is proper, i.e., L−DFA � L− Seq � L−NAmb �
L− FAmb � L−Reg.

Proof: Since Theorem 4.5 is obviously holds, so we only
need to give examples to explain the above inequalities hold.
Since L is not locally finite, we can choose a in L such that
ai �= aj whenever i �= j as declared by Lemma 4.4.
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q

/a x

Fig. 1. An automaton that shows L−DFA �= L− Seq

(i) The automata in Fig.1 is an L− Seq, and

|A |(xk) =

{
1, k = 0;
ak, k �= 0.

Obviously, Im(|A |) is infinite, but the image of language
which is accepted by L −DFA is finite, so |A | can not be
accepted by any L−DFA.

1 / x

1 / x

1q 2q 3q 4q

/a x

/a x

Fig. 2. An automaton that shows L− Seq �= L−NAmb

(ii) The automata in Fig.2 is an L−NAmb, for any word
ω, there is only one successful path can be accepted by the
automaton, and

|A |(xk) =

{
ak, k = 2m;
1, k = 2m+ 1.

Assume there is an L− SeqB such that |A | = |B|, let B =
(Q,Σ, δ, I, T ) and I = b/q0, hence

b·δ(q0, x, q1)·. . .·δ(qn−1, x, qn)·T (qn) =
{

ak, k = 2m;
1, k = 2m+ 1.

so |B|(xn) = b · δ(q0, x, q1) · . . . · δ(qn−1, x, qn) · T (qn) =
1, whenever n = 2m + 1, then b = 1, δ(q0, x, q1) = . . . =
δ(qn−1, x, qn) = T (qn) = 1, thus T (qn+1) = an+1. And, T :
Q → L, Q is finite, so Im(f) is finite. However, {an+1|n =
2m+1} is infinite set and a contradictory occurs. Thus, there
is no L− SeqB such that |A | = |B|.

(iii) The automaton in Fig.3 is an L − FAmb, and
|A |(μ) = amin{|μ|x,|μ|y}. For any μ ∈ Σ∗, there are at
most two successful paths: q1

−→μ q1, q2
−→μ q2, i.e., the ambiguity

degree of the automaton is 2. Now we assume there exists an
L−NAmb B = (Q,Σ, δ, I, T ) such that |A | = |B|, thus

|B|(μ) =
{

1, μ = xkoryk;
μ = xkyl, l ≤ k.

So there is only one path q0q1 . . . qk can be accepted by

1q 2q

/ ,1 /a x y 1 / , /x a y

Fig. 3. An automaton that shows L−NAmb �= L− FAmb

B whenever μ = xk. Thus, if μ = xk, |B|(μ) = I(q0) ·
δ(q0, x, q1) · . . . · δ(qk−1, x, qk) · T (qk) = 1, then we can get
I(q0) = δ(q0, x, q1) = . . . = δ(qk−1, x, qk) = T (qk) = 1; If
μ = xky, |B|(μ) = I(q0) · δ(q0, x, q1) · . . . · δ(qk, y, qk+1) ·
T (qk+1) = a, so δ(qk, y, qk+1) · T (qk+1) = a; If μ =
xk+1, T (qk+1) = 1, then we can get δ(qk, y, qk+1) = a. But,
if μ = yk+1, |B|(μ) = |B|(yk) · δ(qk, y, qk+1) · T (qk+1) =
1 · a · 1 = a, however this is contradict with |B|(μ) = 1, thus
|A | can not be accepted by an L − Seq, i.e., the number of
initial state is larger than 2. And, |B|(ε) = 1, thus there is only
one state q0 satisfies I(q0) = T (q0) = 1. Besides, |B|(xk) =
|B|(yk) = 1, here we assume k ≥ |Q| = n, so there must be
i ≤ j satisfies qi = qj , and the membership of each transfer
value is 1; |B|(xkyl) = al, |B|(ykxl) = al, n ≤ l ≤ k, then
there exists cycles and the membership of each transfer value is
a. So if there exists an L−NAmb B such that |A | = |B| iff
for any i, j, η(qi, x, qj) = η(qi, y, qj) = 1, and I(qi), T (qi) =
{1, a, a2, . . .}, but |Q| is finite, so Im(I), Im(T ) is finite.
Hence, there doesn’t exist an L − NAmb B such that
|A | = |B|.

1q 2q
/a z

/a z

/ ,1 / , /a x y a z 1 / , / , /x a y a z

Fig. 4. An automaton that shows L− FAmb �= L−Reg

(iv) The automaton in Fig.4 is an L −NFA, so we only
need to show A is infinite unambiguous. The successful paths
of A is 2k+1 when μ = xnymzk, but {2k+1} is an infinite
set, thus there is no integer n satisfies n is larger than all the
elements of {2k+1}. Hence, we can get A is not an L−FAmb.
So, L− FAmb �= L−Reg.

Theorem 4.7: If L is commutative and L is locally fi-
nite, then the above inclusion is equality, i.e., L−DFA =
L− Seq = L−NAmb = L− FAmb = L−Reg.

Proof: According to Theorem 4.5, it is available that
L−DFA ⊆ L− Seq ⊆ L−NAmb ⊆ L− FAmb ⊆
L−Reg, so we just need to prove L−Reg ⊆ L−DFA. By
Theorem 4.3, L−NFA ⊆ L−DFA, so the theorem holds.

Theorem 4.8: The following conditions are equivalent:

(1) For any L−NFA A , there exists an L−Seq B such
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that |A | = |B|;
(2) L is locally finite.

Proof: (2) ⇒ (1) : According to Theorem 4.3, for any
L−NFA A , there must be an L−DFA B such that |A | =
|B|, and L−DFA is a special L−Seq, so the condition (1)
holds.

(1) ⇒ (2) : Assume that L is not locally finite, then there
exists a ∈ L such that ai �= aj whenever i �= j. Define f :
Σ∗ → L as follows:

f(an) =

{
an, n = 2m;
1, n = 2m+ 1.

and for any θ �= σn, f(θ) = 0. Then f can be accepted by the
automata in Fig.2, but it can not be accepted by any L−Seq.

Theorem 4.9: The following conditions are equivalent:

(1) For any L−Seq A , there exists an L−DFA B such
that |A | = |B|.

(2) L is locally finite.

Proof: (2) ⇒ (1) : It is obviously by [2], because L−Seq
is a special L−NFA.

(1) ⇒ (2) : Assume that L is not locally finite, then there
exists a ∈ L such that ai �= aj whenever i �= j. Constructing
an L − SeqA = ({q},Σ, δ, {q}, {q}) such that for any σ ∈
Σ, δ(q, σ, q) = a, then

|A |(σ1σ2 · · ·σk) =

{
1, k = 0;
ak, k > 0.

Clearly, Im(|A |) is an infinite set, but the image of L−DFA
is finite, so the language accepted by A can not be accepted
by any L−DFA. This shows that L is locally finite.

In the following, we assume that L is the unit interval [0, 1]
equipped with an Archimedean t-norm.

Theorem 4.10: Let f ∈ L − Reg, then for any α > 0, fα
is regular and Im(f ∨ α) is finite.

Proof: According to [9] we can know fα is regular for any
α > 0.

Im(f ∨ α) =Im(f) ∨ α ⊆ {f(θ)|θ ∈ Σ∗, f(θ) ≥ α} =
Imα. Assume D =Im(δ)∪Im(σ), then Im(f) ⊆ S(D),
thus Imα(f) ⊆ Sα(D), where S(D) denotes the subset
of [0,1] generated by D with the Archimedean t-norm and
maximum operations, and Sα(D) = {a ∈ [0, 1]|a ≥ α}. For
Archimedean t-norm, it is weakly finitely generated(for any
finite subset D of [0, 1] and any a ∈ [0, 1], Sα(D) is finite), so
Sα(D) is finite, and Im(f ∨α) ⊆ Imα(f), hence Im(f ∨α)
is finite.

Theorem 4.11: The following conditions are equivalent for
an L− fuzzy regular language f :

(1) f can be recognized by an L−DFA A ;

(2) Im(f) is finite.

Proof: (1) ⇒ (2) : It is obvious.

(2) ⇒ (1) : It is reality to see that fα is regular for any
α > 0 according to Theorem 10. What’s more, we can show
the theorem holds from Theorem 4.2.

Theorem 4.12: The following conditions are equivalent for
an L− fuzzy regular language f :

(1) 1− f is an L−fuzzy regular language;

(2) Im(f) is finite;

(3) f can be recognized by an L−DFA A .

Proof: By Theorem 4.11, it suffices to show that the
condition (2) and (3) are equivalent.

(3) ⇒ (1) : Because f ∈ L−DFA, so we can assume
A can be accepted by an L − DFA A = (Q,Σ, δ, q0, σ1),
then |A | = σ1(δ

∗(q0, θ)). Constructing an L − NFA B =
(Q,Σ, δ1, {1/q0}, 1− σ1) such that:

δ1(q, μ, p) =

{
1, δ(q, μ) = p;
0, δ(q, μ) �= p.

and |B|(θ) = 1− |A |(θ) = 1− f.

(1) ⇒ (2) : By Theorem 4.10, Im(f∨α) and Im((1−f)∨
(1−α)) are finite. Im(f ∨α) = Im(f)∨α, Im((1−f)∨(1−
α)) = Im(1 − f) ∨ (1 − α), so the sets D1 = {f(θ)|f(θ) >
α}, D2 = {(1 − f)(θ)|(1 − f)(θ) > (1 − α)} are finite. It is
reality to see D2 is equivalent to D3 = {f(θ)|f(θ) < α}, so
D3 is finite. In this case, Im(f) = D1 ∪D3 is finite.

V. THE DECIDABILITY OF FUZZY REGULAR LANGUAGES

In this section, we assume that L is an l−monoid, Σ is
an alphabet. Let us consider the four problems of equality,
inequality, local inequality and local equality for L−Reg(Σ):

f, g ∈ L−Reg(Σ), f = g?(Eq)

f, g ∈ L−Reg(Σ), f ≤ g?(Ineq)

f, g ∈ L−Reg(Σ), ∃ω ∈ Σ∗, f(ω) ≤ g(ω)?(LocalIneq)

f, g ∈ L−Reg(Σ), ∃ω ∈ Σ∗, f(ω) = g(ω)?(LocalEq)

Lemma 5.1: [5] Let L = 〈N ∪ {+∞},min,+,+∞, 0〉
be a tropical semiring, Σ is an alphabet, then Eq, Ineq,
LocalIneq, LocalEq are undecidable when |Σ| ≥ 2.

Lemma 5.2: [5] L = 〈N ∪ {+∞},min,+,+∞, 0〉 is
a tropical semiring, Σ is an alphabet, then Eq, Ineq,
LocalIneq, LocalEq are decidable when |Σ| = 1.

In the following, we assume that L is commutative but not
locally finite.

Theorem 5.3: If L is not locally finite, then there exists an
injective homomorphism ϕ : (N ∪ {+∞}) → L defined by
ϕ(i) = ai, where a ∈ L satisfies ai �= aj whenever i �= j.

Proof: Since ai �= aj whenever i �= j, then ϕ(i · j) =
ϕ(i + j) = ai+j = ai · aj = ϕ(i) · ϕ(j) for any i, j ∈ N∞.

Theorem 5.4: Eq is decidable in L−Reg(Σ) for |Σ| = 1.

Corollary 5.5: Eq, Ineq, LocalIneq, LocalEq is undecid-
able in L−Reg(Σ) for |Σ| ≥ 2.
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Theorem 5.6: Let L be an l−monoid, and for any a, b, c ∈
L, k ≥ 2 if ab = ac ⇒ abk = ack is decidable, then for any
f, g ∈ L−Reg, f = g is decidable when |Σ| = 1.

To prove theorem 5.6 we need the following lemma.

Lemma 5.7: If A is an automata over Σ = {σ}, then |A |
can be accepted by a L− Seq.

Proof: Let A = (Q, {σ}, δ, q0, F ), so |A |(θ) =
∨q1,q2···qkδ(q0, σ, q1) ·δ(q1, σ, q2) · · · · ·δ(qk−1, σ, qk) ·F (qk) =
δ(q0, σ, qi1) · δ(qi1 , σ, qi2 ) · · · · · δ(qik−1

, σ, qik) · F (qik) when
θ = σk, where q0qi1 · · · qik is a successful path of σk.
Then we construct a L − Seq B = (Q,Σ, δ1, q0, F1). Then
classify Q into k + 1 categories, in which Z0 = {q0}, Zj =
{qj |δ(qj−1, σ, qj) �= 0}, Zk+1 = {q|F (q) �= 0}, 1 ≤ j ≤ k,
δ1 : 2Q × Σ × 2Q → L, F1 : 2Q → L. δ1(Zj , σ, Zj+1) =
δ(qij , σ, qij+1 ), F1 = F (qij ), then we can show |B|(θ) =
|A |(θ).

If f can be accepted by an L − SeqA , then there exists
a, b ∈ L, k, d ∈ N , for any m ∈ N, |A |(σd+km) =
abm. Where A = (Q, {σ}, δ, q0, F ), a = δ(q0, σ, q1) · . . . ·
δ(qd−1, σ, qd) ·F (qt+1), b = δ(qd, σ, qd+1) · · · · · δ(qt, σ, qt+1),
t = d + km, d + k = |Q|. So, A must have the following
form:

Fig. 5. The fuzzy automaton in Lemma 5.7

Now the proof process of Theorem 5.6 is as follows:

Proof: Assume f, g ∈ L−Reg, then f, g can be accepted
by L − Seq specially when |Σ| = 1. Note that f(σd+km) =
abm, g(σd+km) = chm, hence f = g iff abm = chm, i.e.
a = c, ab = ch, ab2 = ch2, · · · , abk = chk. Thus, f = g
is decidable when ab = ac ⇒ abk = ack for any k ≥ 2 is
decidable.

Here we use ≺ to represent two kinds of relations of the
fuzzy language ≤,=.

Theorem 5.8: L is locally finite, and f, g ∈ L − Reg(Σ),
then f ≺ g iff for any r ∈ Im(f) ∪ Im(g), fr ≺ gr.

Proof: We give the proof of the case≺=≤, the proof of
the case= is similar.

⇒ Since f ≺ g, then f(θ) ≤ g(θ) for any θ ∈ Σ∗, hence
it is obviously holds for any r ∈ Im(f) ∪ Im(g), fr ≺ gr.

⇐ Because fr ⊆ gr, then rfr ⊆ rgr, which implies rfr ⊆
∪r∈Lrgr , the last implies ∪r∈Lrfr ⊆ ∪r∈Lrgr. Besides, for
any f ∈ L− Reg, f = ∨r∈Im(f)rfr when L is locally finite,
so we can get f ≺ g.

For regular language L1, L2, it is decidable for L1 =
L2, L1 ⊆ L2. And, Im(f), Im(g) is finite when L is locally
finite, So we can get the following corollary.

Corollary 5.9: If L is locally finite, then for any f, g ∈
L−Reg(Σ), it is decidable for f ≺ g.

Corollary 5.10: If f, g can be accepted by L−DFA, then
it is decidable for f ≺ g.

If L is locally finite, then for any f, g ∈ L − Reg(Σ),
there must be L−DFA Af ,Ag such that |Af | = f, |Ag| = g.
According to [5], we can let the two automata have a minimum
number of states, so whether f = g depends on whether Af =
Ag , and there is a algorithm to solve the latter question.

For constant function, a will present the lattice fuzzy
regular language with constanta for any input. We have the
following results.

Corollary 5.11: If L is locally finite, f ∈ L−Reg(Σ), a ∈
L, then f = a is decidable.

For a lattice fuzzy regular language f , if L is locally finite,
then fa, f[a] are regular languages for any a ∈ L. Then we have
the following results.

Theorem 5.12: If L is locally finite, for any f ∈ L −
Reg(Σ), a ∈ L, whether there exists θ ∈ Σ∗ satisfies a ≺ f(θ)
is decidable.

Theorem 5.13: If L is commutative and locally finite, A =
(Q,Σ, δ, I, F ) is an L −NFA, for any θ ∈ Σ∗, |θ| < n, n =
|Q|, if |A |(θ) = 0, then |A | = 0.

Proof: By hypothesis, if |θ| < n, |A |(θ) = 0; If
|θ| ≥ n, |A |(θ) = ∨q0,q∈QI(q0) ·δ∗(q0, θ, q) ·F (q). Assume
q0q1 · · · qk is a successful path of θ = σ1σ2 · · ·σk when k ≥ n,
so there exists qi, qj ∈ Q satisfies qi = qj when i < j.
Let x = σ1 · · ·σi, y = σi+1 · · ·σj , z = σj+1 · · ·σn, and
θ1 = xz, |θ1| < |θ|, then q0 · · · qiqj+1 · · · qk is a successful
path for θ1. If |θ1| < n, then I(q0) ·δ∗(q0, x, qi) ·δ∗(qj , z, qk) ·
F (qk) = 0, which implies I(q0) · δ∗(q0, x, qi) · δ∗(qi, y, qj) ·
δ∗(qj , z, qk)·F (qk) = I(q0)·δ∗(q0, x, qi)·δ∗(qj , z, qk)·F (qk)·
δ∗(qj , z, qk) = 0; If |θ1| ≥ n, we can repeat the above steps
to segment θ1, because the length of θ1 is finite, so |A | = 0.

Corollary 5.14: If L is commutative and locally finite, then
for any f ∈ L−Reg, f(θ) = 0 is decidable.

VI. CONCLUSION

In this paper, the lattice-valued fuzzy automata are divided
into five types, that is, deterministic, sequential, unambiguous,
finitely ambiguous and infinitely ambiguous respectively. And
we discuss the relationship between the fuzzy languages ac-
cepted by these fuzzy automata. We get the following conclu-
sions: L−DFA ⊆ L− Seq ⊆ L−NAmb ⊆ L− FAmb ⊆
L − Reg. What’s more, when the lattice is locally finite,
the contains relation are completely equal; when the lattice
is not locally finite, we can get L−DFA � L− Seq �
L−NAmb � L− FAmb � L − Reg. In section 5, the
decidability of lattice valued fuzzy language is discussed, the
decidability is related to the locally finite monoid and the
number of characters in the alphabet.
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