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Abstract— In this paper a novel predictive control scheme
based on Takagi-Sugeno model whose consequences include
second order terms is proposed. Fuzzy models are used in order
to approximate the non-linear behavior present on industrial
dynamic systems. Quadratic approximations are used in the
consequences because several systems has restricted controllable
regions in the states domain. Thus, even fuzzy models may not
be enough for representing the system dynamics in that regions,
producing unexpected closed loop-behavior and loss of perfor-
mance. The main difference between the proposed scheme and
the ones reported in the literature is that iterative procedures
and/or point to point approximation is not required. Reducing
the computational burden of the controller. A continuous stirred
tank reactor is used for testing the proposed control scheme.

I. INTRODUCTION

DEVELOPMENT of mathematical models for real pro-
cesses is an important task due to the capabilities they

bring for making analysis, design, forecasting among other
important issues inside engineering. But, with modeling there
are several pending troubles to be addressed. For instance,
the compromise between accuracy and interpretability of the
models. In this way, fuzzy modeling arises as a feasible alter-
native to represent nonlinear systems through a set of rules
and consequences. Many studies have been developed about
fuzzy modeling, highlighting Takagi and Sugeno work [1].
Regarding this work, the specialized literature has been ded-
icated to Takagi-Sugeno models with linear consequences,
with a wide use in systems identification. For example, in
[2] the authors proposed a methodology for identification of
fuzzy models with linear consequences; and in [3], an opti-
mal methodology for the same models is proposed. Although
these methodologies (and the others reported in the literature)
have successfully demonstrated their applicability in systems
identification and representation, in control theory linear
models still having a restricted applicability. Such restricted
applicability is because of only when the control inputs has
an effect on the system state trajectories and outputs they
can be used, e.g., when the system is controllable. Therefore,
there are several operating points belonging to the feasible
operating space where the system cannot be driven, because
linear models fails in their representation of the system
dynamics. For tackling this drawbacks (even present in fuzzy
models with linear consequences) in [4] pointed out the use
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of non-linear terms in Takagi-Sugeno models for control
systems design. Following the same line, in [5] the authors
proposed the use of second order approximations of the
system model with the purpose of increasing the controllable
space. In this approach, at each time step the second order
approximation of the system model was computed around
the current operating point.

Regarding control applications, there are several fuzzy
model based control strategies. Nowadays, the fuzzy based
control strategy that highlights is the fuzzy based predictive
control. In this control technique a fuzzy model is used to
predict the behavior of the system several time steps ahead.
Then, according to the prediction the control actions to be
applied to the system are determined based on a minimization
of a cost function (see [6] for details about model predictive
control). This kind of strategy has increased its use in the
industry lately due to its ability to manage with system
constraints [7]. The wide use of fuzzy modeling in predictive
control is motivated by the fact that often linear models are
used in this control strategy, and they are not adequate for
handling with strongly nonlinear systems that often are found
in the industry. Indeed, several non-linear predictive control
schemes have been reported, e.g., the ones proposed in [8],
[9], [10], [11], [12], [13]. In all these approaches, iterative
procedures are proposed to approximate the solution of the
non-linear programming problem resulting from the model
predictive control (MPC) formulation, or proposed the use
of the Hamilton-Jacobi-Bellman equation to approximate the
solution. In the first case, the iterative procedures are highly
time consuming, making them sometimes not feasible for
real time implementations. In the second case, the solution
is restricted to non-linear affine systems. Therefore its appli-
cability in real systems is highly reduced.

Since computational burden is a pending issue in both
fuzzy based and non-linear model based predictive control
(see e.g., [2], [14]), alternatives based on evolutionary al-
gorithms have also been proposed. In [15] proposed the
use of genetic algorithms for implementing non-linear pre-
dictive controllers, while in [16] the authors proposed a
solution based on particle swarm optimization technique.
Although both solutions were successfully evaluated in terms
of accuracy and computational cost, they cannot assure the
convergence to the optimum value of the control solutions.
Hence, the stability of the closed-loop system cannot be
assured. In order to tackle the drawbacks associated with the
computational burden of non-linear MPC, as well as with the
model representation in this work the use of second order
fuzzy models as prediction models in an MPC strategy is
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proposed (here second order fuzzy models are understood
as fuzzy models with second order consequences). The use
of fuzzy models allowed avoiding the computation of the
gradients and Hessians of the second order model at each
time step (procedure required in the approach proposed in
[5]). Also, the addition of the second order terms allow
increasing the domain where the system is controllable.
Moreover, since often the predictive control cost function
is quadratic and the model is quadratic convexity properties
can be derived in order to have an efficient algorithm for
computing the optimal control actions to be applied to the
system. The remaining of this paper is organized as follows:
Section II presents a motivation for using second order
approximations; Section III presents the proposed second
order fuzzy model; Section IV presents the formulation of
the model predictive control strategy based on second order
fuzzy models; Sections V and VI gather with the simulation
results and concluding remarks.

II. MOTIVATION

Consider the ideal continuous stirred tank reactor (CSTR)
described by (1). In such tank a reversible exothermic re-
action 𝐴 ⇄ 𝐵 take place, with kinetic constants 𝑘1(𝑡) for
the reaction 𝐴→ 𝐵, and 𝑘2(𝑡) for the reaction 𝐴← 𝐵. Let
𝑥1(𝑡), 𝑥2(𝑡), and 𝑥3(𝑡) denote the conversion, reactor temper-
ature, and level of the liquid inside the reactor respectively.
Let 𝑢1(𝑡) and 𝑢2(𝑡) be the inlet flow of reactants and the
temperature of the inlet flow of cooling fluid respectively.
As in [5], in this case it was assumed 𝑥3(𝑡) constant and
equals to 0.16, which means that 𝑢1(𝑡) is constant as well
and equals to 1. Accordingly, the only manipulated variable
in this reactor is the temperature of the inlet flow of cooling
fluid. That is 𝑢(𝑘) = 𝑢2(𝑘) in the remaining of this paper.
Parameters used for these simulations were taken from [5].

�̇�1(𝑡) = −0.16𝑥1(𝑡)𝑥
−1
3 (𝑡)𝑢1(𝑡)

+ 𝑘1(𝑡)(1− 𝑥1(𝑡))− 𝑘2𝑥1(𝑡)

�̇�2(𝑡) = −0.16𝑢1(𝑡)𝑥
−1
3 (𝑡)𝑢2(𝑡)− 0.16𝑥2(𝑡)𝑥

−1
3 (𝑡)𝑢1(𝑡)

+ 5(𝑘1(𝑡)(1− 𝑥1(𝑡))− 𝑘2𝑥1(𝑡))

𝑘1(𝑡) = 𝑘o1 exp

(−𝐸1

𝑥2(𝑡)

)

, 𝑘2(𝑡) = 𝑘o2 exp

(−𝐸2

𝑥2(𝑡)

)

(1)

The objective of the CSTR described by (1) is to maximize
the conversion without overtaking the capacity limits of the
reactor. From [5] the CSTR under study has a maximum of
conversion equals to 0.509, value used in the current paper as
a reference for evaluating the performance of the controllers.
Specifically, in order to regulate the conversion of the reactor
to its maximum value a model predictive control strategy was
used. This control strategy had the aim of manipulating the
temperature of the coolant to provide favorable conditions
inside the reactor for increasing the conversion. With this
purpose, two models were used for predicting the trajectories
of the conversion and the temperature of the reactor: a
linear and a second order model. Figure 1 shows the results
obtained through simulations for the closed-loop operation

of the CSTR. It is worth to point out that for implementing
the predictive controllers, at each time step 𝑘 the linear
and second order approximations of the system model were
computed. In Figure 1 the MPC with linear prediction model
is called linear MPC while the MPC with second order terms
prediction model is called quadratic MPC.
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Fig. 1. Closed-loop behavior of the conversion in the CSTR described by
(1). Here, the performance of predictive controllers with linear and quadratic
prediction models is done.

It can be noticed that the predictive control with the second
order prediction model was able to drive the system to the
desired value, while the predictive controller with linear
prediction model cannot be able to drive the system to the
maximum conversion conditions. Mathematically, this result
can be justified from the formulation of the optimization
problem. In this case, for both controllers a quadratic cost
function as (2) was used.

𝐿(𝑥(𝑘), 𝑢(𝑘)) = 𝑒𝑇 (𝑘)𝑄𝑒(𝑘) + Δ𝑢𝑇 (𝑘)𝑅Δ𝑢(𝑘) (2)

In (2) 𝑒(𝑘) = 𝑦ref(𝑘) − 𝑦(𝑘), and Δ𝑢(𝑘) = 𝑢(𝑘) − 𝑢o(𝑘),
𝑦(𝑘) being the predicted output trajectory and 𝑢o(𝑘) the input
value corresponding to the operating point at time step 𝑘,
and 𝑄,𝑅 > 0 weighting matrices. In the system described
by (1) the output is the conversion, i.e., 𝑦(𝑘) = 𝑥1(𝑘). Let
𝐶 = [0, 1] and 𝑥(𝑘) = [𝑥1(𝑘), 𝑥2(𝑘)]

𝑇 . Then 𝑦(𝑘) = 𝐶𝑥(𝑘).
Let 𝐽x(𝑘) and 𝐽u(𝑘) be the Jacobians of the CSTR model
with respect to the states and the inputs respectively. Hence,
the linear CSTR prediction model becomes

𝑦(𝑘) = 𝐶 (𝑓(𝑥o(𝑘), 𝑢o(𝑘)) + 𝐽x(𝑘)Δ𝑥(𝑘) + 𝐽u(𝑘)Δ𝑢(𝑘))
(3)

with Δ𝑥(𝑘) = 𝑥(𝑘) − 𝑥o(𝑘), 𝑥o(𝑘) being the measured
state at time step 𝑘, and 𝑓(𝑥o(𝑘), 𝑢o(𝑘)) the value at
(𝑥o(𝑘), 𝑢o(𝑘)) of the non-linear vector function describ-
ing the CSTR dynamics. Assuming the predictive control
implementation without constraints, the analytic solution
of the corresponding optimization problem (when a linear
prediction model is used) is given by

Δ𝑢∗(𝑘) = −𝑄(𝑦ref(𝑘)− [𝐶(𝑓(𝑥o(𝑘), 𝑢o(𝑘))

+ 𝐽x(𝑘)Δ𝑥(𝑘) + 𝐽u(𝑘)Δ𝑢(𝑘))])𝐶𝐽u(𝑘)
(4)
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Notice that in (1) the trajectory of the conversion is indepen-
dent of the control input 𝑢2(𝑘), which is the decision variable
in the optimization problem. Therefore, 𝐽u(𝑘) can be written
as 𝐽u(𝑘) = [0, 𝑘]𝑇 with 𝑘 ∈ ℝ a constant determined by
the current operating point. Since 𝐶 = [0, 1] the resulting
optimal control is given by Δ𝑢∗(𝑘) = 0, ∀𝑘. Hence, the
control actions do not change along the simulation. If con-
straints over the control actions are added, the corresponding
Lagrange function is

𝕃(𝑢(𝑘), 𝜆) = 𝐿(𝑥(𝑘), 𝑢(𝑘)) + 𝜆𝑇 𝑔(𝑢(𝑘)) (5)

where 𝑔(𝑢(𝑘)) = [(Δ𝑢(𝑘)−𝑢max(𝑘)), (𝑢min(𝑘)−Δ𝑢(𝑘))]𝑇 .
Thus the Kuhn-Tucker conditions for the constrained opti-
mization problem are

2𝑅Δ𝑢(𝑘) + 𝜆1 − 𝜆2 = 0

𝑔(𝑢(𝑘)) ≤ 0

𝜆𝑇 𝑔(𝑢(𝑘)) = 0

𝜆1, 𝜆2 ≥ 0

(6)

According to the Kuhn-Tucker conditions, the feasible solu-
tions for the optimization problem are

Δ𝑢∗(𝑘) = −𝑄(𝑦ref(𝑘)− 𝑦(𝑘))𝐶𝐽u(𝑘) (7)

Δ𝑢∗(𝑘) = 𝑢min − 𝑢o(𝑘) (8)

Δ𝑢∗(𝑘) = 𝑢max − 𝑢o(𝑘) (9)

obtaining again the trivial control action Δ𝑢∗(𝑘) = 0, ∀𝑘
as the solution of the optimization problem. This is why
the predictive control strategy with linear prediction model
cannot be able to drive the system to appropriate conditions
for reaching the maximum conversion (here 𝑢min and 𝑢max

denote the maximum and minimum values for the control
actions). Indeed, including second order terms avoids the
vanishment of the control action Δ𝑢∗(𝑘). Thereby, the
capabilities of driving the system to the desired values is
increased. These facts motivate the proposed control scheme,
in which models with second order terms are used for
predicting the state and/or output trajectories. As a con-
sequence of the use of models with second order terms,
an increasing on the complexity of the control strategy is
expected. But as will be shown, the region where second
order approximations are valid is greater than the same
region for linear approximations. Thus, the complexity of the
proposed control strategy is not higher than the complexity of
similar strategies in which linear models are used. In sections
below the proposed approach is described.

III. SECOND ORDER FUZZY MODELING

Let start the current section introducing some notation
required for the remaining of this paper. Let 𝑥(𝑘) ∈ ℝ𝑛,
𝑢(𝑘) ∈ ℝ𝑚 and 𝑦(𝑘) ∈ ℝ𝑧 denote the state, inputs, and
outputs of a dynamical system at time step 𝑘. Let 𝐹 :
ℝ
𝑛+𝑚 → ℝ

𝑛 and 𝐺 : ℝ𝑛+𝑚 → ℝ
𝑧 be 𝐶∞ functions

defining the discrete-time dynamic evolution of 𝑥(𝑘) and
𝑦(𝑘) respectively, namely,

𝑥(𝑘 + 1) = 𝐹 (𝑥(𝑘), 𝑢(𝑘))

𝑦(𝑘) = 𝐺(𝑥(𝑘), 𝑢(𝑘))
(10)

Let introduce the Morse Lemma. This Lemma will be used
to derive the expressions for the second order approximations
used in the new fuzzy models.

Lemma 1: Morse Lemma [5]:
Consider a function 𝑓 : ℝ𝑝 → ℝ with a non-degenerate
critical point at 𝑧 = 𝑧o. Then, in the neighborhood of the
critical point, there is a smooth local change of coordinates
to 𝑦1(𝑧), . . . , 𝑦𝑝(𝑧) such that 𝑦1(𝑧) = . . . = 𝑦𝑝(𝑧) = 0 and
𝑓(𝑧) takes the exact form

𝑓(𝑧) = 𝑓(𝑧o) +
1

2

∑

𝑖,𝑗

𝐻𝑖𝑗(𝑧o)𝑦𝑖𝑦𝑗

with 𝑖, 𝑗 = 1, . . . , 𝑝 and 𝐻𝑖𝑗(𝑧o) the Hessian of 𝑓(⋅) with
respect to the coordinates 𝑖, 𝑗 evaluated at 𝑧o.

It is worth to point out that in this paper the regular
perturbation technique will be used to derive the linear and
quadratic approximations of the system model. Even, the
resulting expressions will be used in order to obtain a fuzzy
model whose consequences include second order terms. This
is motivated by comparison reasons, namely, for having
models and predictive controllers whose performance can be
compared with the models and controllers derived in [5].

A. Second Order Approximation

Given a discrete-time dynamic model as (10), functions
𝐹 (.) and 𝐺(.) can be interpreted as vectors whose elements
are defined by nonlinear functions. For instance, consider
the vector field 𝐹 (.), which can be expressed as the vector
𝐹 (.) = [𝑓1(.), . . . , 𝑓𝑛(.)]

𝑇 , where 𝑓𝑖 : ℝ𝑛+𝑚 → ℝ, 𝑖 =
1, . . . , 𝑛. Let 𝑥p1(𝑘) and 𝑥p2(𝑘) denote the vectors of state
trajectories defined (respectively) by perturbations 1 and
2, viz., 𝑥p1(𝑘) = [𝑥1,1(𝑘), . . . , 𝑥𝑛,1(𝑘)]

𝑇 and 𝑥p2(𝑘) =
[𝑥1,2(𝑘), . . . , 𝑥𝑛,2(𝑘)]

𝑇 . Following the procedure proposed
in [5], the second order perturbation approximation of the
original system can be written as

𝑥p1(𝑘 + 1) =

𝐹 (𝑥o(𝑘), 𝑢o(𝑘)) + 𝐽x(𝑘)𝑥p1(𝑘) + 𝐽u(𝑘)Δ𝑢(𝑘)
(11)

𝑥p2(𝑘 + 1) =

𝐽x(𝑘)𝑥p2(𝑘) + Ξ(𝑥p1(𝑘),Δ𝑢(𝑘)) (12)

where the initial conditions for 𝑥𝑖,1(𝑘) and 𝑥𝑖,2(𝑘) are set to
0, and the 𝑗-th element of Ξ(𝑥𝑖,1(𝑘),Δ𝑢(𝑘)) is determined
by the expression

Ξ𝑗(𝑥p1(𝑘),Δ𝑢(𝑘)) =

1

2

(
𝑥𝑇p1(𝑘)𝐻xx(𝑘)𝑥p1(𝑘) + 𝑥𝑇p1(𝑘)𝐻xu(𝑘)Δ𝑢(𝑘)

+Δ𝑢𝑇 (𝑘)𝐻ux(𝑘)𝑥p1(𝑘) + Δ𝑢𝑇 (𝑘)𝐻uu(𝑘)Δ𝑢(𝑘)
)

where 𝐻xx(𝑘), 𝐻xu(𝑘), 𝐻ux(𝑘), and 𝐻uu(𝑘) are defined as
in [5]. Then, according to (11) and (12) the predicted state
trajectory is defined by (13).

𝑥(𝑘+𝑙) = 𝑥(𝑘)+𝑥p1(𝑘+𝑙)+𝑥p2(𝑘+𝑙), 𝑙 = 1, 2, 3 . . . (13)
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In fact, following the procedure in [5] and applying the
Morse Lemma the one-step-ahead predicted trajectory of
each state can be computed as

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝜓𝑖(𝑘)𝑓𝑖(𝑘) + Γ𝑖(𝑘)𝛿𝑢(𝑘) + 𝜓𝑖(𝑘)𝜂(𝑘)

where the 𝑗-th element of 𝜂(𝑘) is computed as

𝜂𝑖(𝑘) = 𝜂𝑖,0(𝑘) + 𝜂𝑖,1(𝑘)Δ𝑢(𝑘) + Δ𝑢𝑇 (𝑘)𝜂𝑖,2(𝑘)Δ𝑢(𝑘)

𝜂𝑖,0(𝑘) =
1

2
𝜆2(𝜓𝑖(𝑘)𝑓𝑖(𝑘))

𝑇𝐻xx(𝑘)(𝜓𝑖(𝑘)𝑓𝑖(𝑘))

𝜂𝑖,1(𝑘) = 𝜆(𝜓𝑖(𝑘)𝑓𝑖(𝑘))
𝑇 (𝜆𝐻xx(𝑘)Γ𝑖(𝑘) +𝐻xu)

𝜂𝑖,2(𝑘) =
1

2

(
𝜆2Γ𝑇𝑖 (𝑘)𝐻xx(𝑘)Γ𝑖(𝑘) + 𝜆Γ𝑇𝑖 (𝑘)𝐻xu(𝑘)

+𝜆𝐻ux(𝑘)Γ𝑖(𝑘) +𝐻uu(𝑘))

with 𝜓𝑖(𝑘), Γ𝑖(𝑘), and 𝜆 defined as in [5].

B. Takagi-Sugeno Fuzzy Models

Takagi and Sugeno in [1] described a type of fuzzy models
suitable for the approximation of non-linear systems. The
premises are based on fuzzy sets, and the consequences are
often linear models for representing different operating points
of the system. Let 𝑀TS denotes the number of rules of the
Takagi-Sugeno model. Let 𝑧(𝑘) = [𝑥𝑇pf(𝑘), 𝑥

𝑇 (𝑘)]𝑇 denotes
the vector of model input variables, where 𝑥pf(𝑘), 𝑥(𝑘) ∈
𝑧(𝑘) denote respectively the vector of premises and the
consequences at time step 𝑘. Let 𝛽𝑗(𝑥pf(𝑘)) be the nor-
malized membership function of the 𝑗-th rule. Such func-
tion assigns a value between zero and one to each model
depending on the fulfillment of each rule. The normalized
activation degree satisfies 𝛽𝑗(𝑥pf(𝑘)) > 0, 𝑗 = 1, . . . ,𝑀 ,
and

∑𝑀
𝑗=1 𝛽𝑗(𝑥pf(𝑘)) = 1. Let 𝜃𝑗 denotes the vector of

parameters of the linear model associated with the 𝑗-th rule.
Then, at time step 𝑘 the output of the TS model is given
by (14) (see [17] for notation details and how to compute
𝛽𝑗(𝑥pf(𝑘))).

𝑦(𝑘) =

𝑀TS∑

𝑗=1

𝛽𝑗(𝑥pf(𝑘))𝜃𝑗𝑥(𝑘) (14)

At time step 𝑘, let 𝑦(𝑘) denotes the measured outputs of
the system to be modeled. The procedure for identifying
the structure and parameters of the fuzzy model is shown
in Figure 2. This procedure is based on the methodology
proposed in [3]. In such procedure, the first step is to make a
data selection for training, testing, and validation, the second
step is to select the relevant variables, the third step is to
optimize the structure by e.g. sensitivity analysis, the fourth
step is to perform a parameter identification procedure, and
the fifth step is to validate the resulting model.

C. Second Order Takagi-Sugeno Fuzzy Models

Although Takagi-Sugeno fuzzy models have been widely
used as universal approximators, in control field they have
the same pending issues as the linear models (see Section
I of the current paper for details). Namely, they may have
consequences where the input effect is not reflected into

Data Selection

Relevant Input 
Variables Selection

Structure 
Optimization

Parameter 
Identification

Model Validation

Fig. 2. Methodology used for Takagi-Sugeno model identification.

the state trajectory. Hence, if the premises are inside the
domain of such consequence the controller may not drive the
system to the desired operating conditions. An improvement
respect to the often used Takagi-Sugeno fuzzy models is
the use of consequences with second order terms instead of
consequences with linear terms.

Consider a dynamic system whose dynamic evolution can
be represented as (10). Let 𝑦(𝑘) denotes the output of the
fuzzy model. Based on [1] a general implication 𝑅 for (10)
is defined as

R: If 𝑥r1(𝑘) is 𝐴1 and 𝑢r1(𝑘) is 𝐵1 . . .

. . . and 𝑥r𝑀 (𝑘) is 𝐴𝑀 and 𝑢r𝑁 (𝑘) is 𝐵𝑁

Then 𝑦(𝑘) = Γ̄(𝑥r(𝑘), 𝑢r(𝑘))

(15)

with Γ̄(⋅) a non-linear function, 𝑥r(𝑘) and 𝑢r(𝑘) being the
premises associated with the states and the control inputs.
In (15) 𝐴𝑚, 𝑚 = 1, . . . ,𝑀 and 𝐵𝑛, 𝑛 = 1, . . . , 𝑁 denote
the membership function of the fuzzy sets in the premises,
with 𝑀 and 𝑁 the number of states and control inputs
respectively. From (13) the trajectory of the states of the
dynamic system can be expressed as

𝑥(𝑘 + 1) = 𝑥(𝑘) + 𝑥p1(𝑘 + 1) + 𝑥p2(𝑘 + 1)

which corresponds to a second order approximation of 𝐹 (⋅).
Thus, assuming second order consequences for the Takagi-
Sugeno model yields

Γ̄(𝑥r(𝑘), 𝑢r(𝑘)) = 𝐶(𝑥(𝑘) + 𝑥p1(𝑘 + 1) + 𝑥p2(𝑘 + 1))

where 𝐶 is an observation matrix. Therefore, the Takagi-
Sugeno fuzzy model representing the dynamic evolution of
the states of (10) is

R1: If 𝑥r1(𝑘) is 𝐴1
1 and 𝑢r1(𝑘) is 𝐵1

1 . . .

. . . and 𝑥r𝑀 (𝑘) is 𝐴1
𝑀 and 𝑢r𝑀 (𝑘) is 𝐵1

𝑁

Then 𝑦1(𝑘) = 𝐶(𝑥(𝑘) + 𝑥1
p1(𝑘 + 1) + 𝑥1

p2(𝑘 + 1))

...

Rq: If 𝑥r1(𝑘) is 𝐴𝑞1 and 𝑢r1(𝑘) is 𝐵𝑞
1 . . .

. . . and 𝑥r𝑀 (𝑘) is 𝐴𝑞𝑀 and 𝑢r𝑀 (𝑘) is 𝐵𝑞
𝑁

Then 𝑦𝑞(𝑘) = 𝐶(𝑥(𝑘) + 𝑥𝑞p1(𝑘 + 1) + 𝑥𝑞p2(𝑘 + 1))
(16)
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𝑞 being the maximum number of rules defining the fuzzy
model. As in the case of the original Takagi-Sugeno model,
in this case the output is computed as the weighted sum
of the outputs of each rule. It is worth to point out that
the proposed fuzzy model with second order consequences
does not require computing the Hessians and Jacobians of
𝐹 (⋅) at each time step. Instead, in the fuzzy identification
methodology the parameters of both are identified from
input output data at different operating points. Therefore,
the computational burden associated with the solution of
the second order model is reduced. This fact increases the
possibility of using second order Takagi-Sugeno models in
real time implementations of predictive control strategies.
Next section presents the formulation of the model predictive
control with second order fuzzy models as prediction model.

IV. PREDICTIVE CONTROL STRATEGY DESIGN

As in Section III, consider a non-linear system whose dy-
namic behavior can be described by the discrete-time model
(10). The general idea of non-linear model predictive control
(NMPC) is to determine the sequence of control actions
for the system under control by solving an optimization
problem considering the predicted trajectories given by the
non-linear discrete time model (10). Commonly, a quadratic
cost function (that may be interpreted as the total energy of
the system) is used to measure the performance of the system

𝐿(𝑥(𝑘), 𝑢(𝑘)) =

𝑁p∑

𝑙=1

[
𝑒𝑇 (𝑘 + 𝑙∣𝑘)𝑄𝑒(𝑘 + 𝑙∣𝑘)]

+

𝑁u∑

𝑙=0

[
𝑢𝑇 (𝑘 + 𝑙)𝑅𝑢(𝑘 + 𝑙)

]
(17)

where the superscript 𝑇 denotes the transpose operation,
𝑒(𝑘 + 𝑙∣𝑘) denotes the predicted value of 𝑒 at time step
𝑘 + 𝑙 given the conditions at time step 𝑘, 𝑢(𝑘 + 𝑙) denotes
the control input 𝑢 at time step 𝑘 + 𝑙, 𝑥(𝑘) = [𝑥𝑇 (𝑘 +
1∣𝑘), . . . , 𝑥𝑇 (𝑘 + 𝑁p∣𝑘)]𝑇 , 𝑢(𝑘) = [𝑢𝑇 (𝑘), . . . , 𝑢𝑇 (𝑘 +
𝑁u), . . . , 𝑢

𝑇 (𝑘 + 𝑁p)]
𝑇 , where 𝑥(𝑘∣𝑘) = 𝑥(𝑘), and 𝑢(𝑘 +

𝑙) = 𝑢(𝑘 +𝑁u), for 𝑙 = 𝑁u, . . . , 𝑁p; 𝑄 and 𝑅 are diagonal
matrices with positive diagonal elements, and 𝑁u, 𝑁p are the
control and prediction horizon respectively, with 𝑁u ≤ 𝑁p.

Let 𝕐 ⊂ ℝ𝑛 and 𝕌 ⊂ ℝ𝑚 denote the feasible sets for the
outputs and inputs of the system, i.e., 𝑦(𝑘) ∈ 𝕐, 𝑢(𝑘) ∈ 𝕌
(these sets are determined by the physical and operational
constraints of the system). Then, the NMPC problem can be
formulated as the non-linear optimization problem:

min
𝑢(𝑘)

𝐿(𝑥(𝑘), 𝑢(𝑘))

s.t:

𝑥(𝑘 + 𝑙 + 1) = 𝐹 (𝑥(𝑘 + 𝑙), 𝑢(𝑘 + 𝑙))

𝑦(𝑘 + 𝑙) = 𝐺(𝑥(𝑘 + 𝑙), 𝑢(𝑘 + 𝑙))

𝑦(𝑘 + 𝑙) ∈ 𝕐; 𝑢(𝑘 + 𝑙) ∈ 𝕌

(18)

This optimization problem corresponds to the centralized
formulation of the NMPC problem. Although widely stud-
ied, the solution of (18) is hard to compute in real time.

Therefore, approximations of 𝐹 (⋅) and 𝐺(⋅) are often used.
The most widely used approximation is the linear. However,
those approximations cannot be enough for representing the
system dynamics. This is why in this paper the second order
fuzzy model derived in Section III is used to predict the
system output. Then, from [1] the output of the fuzzy model
can be computed as

𝑦(𝑘 + 𝑙) =

𝑞∑

𝑗=1

𝛽𝑗(𝑥r(𝑘), 𝑢r(𝑘))𝑦𝑗(𝑘 + 𝑙) (19)

where 𝛽𝑗(𝑥r(𝑘), 𝑢r(𝑘)) denotes the degree of activation of
the 𝑗-th rule, and 𝑦𝑗(𝑘) the local second order approach
derived in Section III. Notice that in (19) 𝛽𝑗(𝑥r(𝑘), 𝑢r(𝑘)) is
independent of the time counter 𝑙. Thus, it is assumed that
the premises remains constant along the prediction horizon,
and only are updated at each time step 𝑘. That assump-
tion allows reducing the computational burden associated
with the fuzzy predictive controller. However, some loss of
performance is expected, which might not be significantly
because of approximations based on nonlinear functions has
wider ranges of validity than the approximations done with
linear functions. Moreover, it is also expected that the control
actions do not move the system far away from the current
operating point during the computation of the control actions
over the prediction horizon. Therefore, 𝑦(𝑘+ 𝑙) has a matrix
representation more suitable for NMPC implementation pur-
poses. In this sense, the predicted output can be expressed
as the linear relationship

𝑦(𝑘 + 𝑙) = ℬ𝑦rules(𝑘 + 𝑙) (20)

where 𝑦rules(𝑘 + 𝑙) = [𝑦𝑇1 (𝑘 + 𝑙), . . . , 𝑦𝑇𝑞 (𝑘 + 𝑙)]𝑇 and ℬ =
[𝛽1(𝑥r(𝑘), 𝑢r(𝑘)), . . . , 𝛽𝑞(𝑥r(𝑘), 𝑢r(𝑘))]. Thus, the NMPC
optimization problem (18) becomes

min
𝑢(𝑘)

𝐿(𝑥(𝑘), 𝑢(𝑘))

s.t:

𝑦(𝑘 + 𝑙) = ℬ𝑦rules(𝑘 + 𝑙)

ℬ𝑦rules(𝑘 + 𝑙) ∈ 𝕐; 𝑢(𝑘 + 𝑙) ∈ 𝕌

(21)

It is worth to point out that since the elements of 𝑦rules(𝑘+𝑙)
are the second order approximations of the dynamic behavior
of the system (21), they can be considered convex with
respect to 𝑢(𝑘) in almost all the feasible space. Indeed, if the
system is operating at a point where the model has non-zero
gradient, then 𝑦(𝑘 + 𝑙) = ℬ𝑦rules(𝑘 + 𝑙) tends to be a linear
approach of the system dynamics, i.e., the proposed fuzzy
model becomes an original Takagi-Suggeno model. But, if
the system is operating at points where the model has zero
gradient, then by the Morse Lemma 𝑦(𝑘+𝑙) = ℬ𝑦rules(𝑘+𝑙)
tends to be a quadratic approach of the system dynamics. In
both cases, the resulting cost function is convex with respect
to 𝑢(𝑘). There exists an alternative set of regions where the
contribution of both the gradient and the Hessian is similar.
In those cases an in depth analysis must be done. Here a
detailed analysis of the convexity of (21) is not included
because is beyond of the scope of the current work. In the
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next section, the proposed model predictive control technique
will be applied to the stirred tank reactor presented in Section
II.

V. CASE STUDY

In order to evaluate the performance of the proposed
second-order fuzzy predictive control scheme, the reactor
described in Section II was used. As in [5] a one step
ahead prediction horizon was considered. The selection of
such prediction horizon obeys to comparison purposes. The
idea is to compare the performance of the fuzzy predictive
controller designed in this paper with the predictive con-
trollers proposed in [5], whose performance was presented
in Figure 1. It is worth to notice that the selection of the
prediction horizon does not restricts the use of the proposed
second order fuzzy predictive control. Indeed, the formula-
tion presented in Sections III and IV is general and can be
applied for any prediction horizon. Since the fuzzy predictive
control strategy requires a prediction model, an identification
procedure was carried out. Figure 3 presents the signal used
for the identification procedure and the system response. In
this Figure is evident that several steady state was reached
during the experiment as well as several operating modes
were exited, which is desirable in any identification process.
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Fig. 3. Input-output data used for the system identification procedure. In
this case slower dynamics has a time constant about 5s.

Once obtained the input-output data, the fuzzy modeling
was done, following the procedure presented in Figure 2.
Since the linear model presented in Section II did not
represent the behavior of the system, two fuzzy models
were identified for performance comparison: one with linear
consequences and one with second order consequences.
Both were used as prediction models of 1 inside a model
predictive control strategy. Figure 4 presents the results of
the identification procedure for the fuzzy model with second
order terms. In that Figure, the validation data is compared
with the output of the fuzzy model. A root mean square error
of 0.0051 in the output of the fuzzy model was obtained
after the training procedure. It is worth to remark that com-
pared with Takagi-Sugeno models with linear consequences,
including the second order terms allowed decreasing the

number of rules required to represent the system behavior.
The reduction of the number of rules comes form the fact
that approximations done with nonlinear functions (e.g., with
models including second order terms) have a wider range of
validity than the approximations done with linear functions.
For instance, the model with second order terms has only
two rules while the model with linear consequences has
seventh rules. Hence a trade off between complexity and
identificability of the model is achieved. That is, although
the model with second order terms has more parameters to
be identified, there are significantly less rules than in the
models with linear consequences. Thus, the identificability
of the model whose consequences have second order terms
is not an issue.
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Fig. 4. Comparison of the real output of the system and the output of the
fuzzy model after the training procedure.

Figure 5 presents the simulation results obtained for the
experiment introduced in Section II. In this Figure is clear
that although linear fuzzy model improves the represen-
tation of the system behavior, which is reflected in the
enhancement of the closed-loop performance of the system,
linear approximations are not enough for capturing all the
interactions among the states and inputs. This fact is evident
in the permanent deviation of the conversion respect to its
desired value. Such deviation is not present in the closed-
loop behavior of the system when the prediction is performed
using the second order fuzzy model.

Finally, with the aim of determining the improvement
achieved with the second order fuzzy model respect to
the conventional second order approximation, a uniformly
distributed signal in the range of −5 and +5 was added in
the manipulated variable. Figure 6 shows the obtained results.
In this Figure, after 30s the predictive control using conven-
tional second order approximation model cannot maintain the
conversion at its desired level. This does not happens when
the control actions were computed using the proposed second
order fuzzy model as a prediction model. In this way, at least
for disturbances in the manipulated variable the proposed
model provides an increasing in the system robustness.
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Fig. 5. Simulation results. Here the performance of predictive control with
both linear and quadratic fuzzy prediction models is compared.
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Fig. 6. Simulation results. Here the performance comparison between an
MPC with conventional second order approximation model with an MPC
with the proposed second order fuzzy prediction model is presented.

VI. CONCLUDING REMARKS

In this paper a novel approach based on second order
fuzzy models for model predictive control was proposed.
This model selection is motivated by the fact that often
linear models result very restrictive form the control point
of view, even in the neighborhood of the equilibrium point
where they were computed. This implies a shrinking of the
domain where the system can be controlled. In this paper,
adding second order term allows increasing the controllable
space of the system. Moreover, using second order fuzzy
models enhance the robustness of the system and reduces the
computational burden of the second order model predictive
controller. Namely, with the second order fuzzy model is
not required computing the gradients and the Hessians at
each time step. This is the main difference between the
proposed predictive control scheme with the approaches
already reported in the literature.
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