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Abstract— The aircraft landings scheduling problem at an
airport has become very challenging due to the increase
of air traffic. Traditionally, this problem has been widely
studied by formulating it as an optimization model solved
by various operation research approaches. However, these
approaches are not able to capture the dynamic nature of the
aircraft landing scheduling problem appropriately and handle
uncertainty easily. A systems approach provides an alternative
to solve such a problem from a systematic perspective. In
this regard, the concept of general systems problem solving
(GSPS) was first introduced in 1970s, and yet the power of
the GSPS methodology is not fully discovered as it had only
been applied to few domains. In this paper, a new general
systems problem solving framework integrating computational
intelligence techniques (GSPS-CI) is introduced. The two main
functions of the framework are: (1) adaptive network based
fuzzy inference system (ANFIS) to predict flight delays, and (2)
fuzzy decision making procedure to schedule aircraft landings.
The effectiveness of the GSPS-CI framework is tested on the
JFK airport in USA, one of the most complex real-life systems.

I. INTRODUCTION

A IR transport has become one of the fundamental modes
of transportation for personal and business traveling,

and commercial delivery [1], therefore, the demand of air
transportation has been increased for multiple purposes. This
increase of airtraffic has caused a drastic increase in number
of aircraft takeoffs and landings within a given time period
at a certain airport, that results in an overload issue in
terms of airport capacity and a delay issue in terms of
aircraft scheduling. Moreover, airline companies lose profits
because customers are not satisfied with delayed traveling
and delivery. In short, considering the increased air traffic the
efficient management and scheduling of the aircraft takeoffs
and landings (given limited resources such as time, budget,
and etc.) has become more challenging and complex to the
air traffic controllers.

The purpose of air traffic control (ATC) is to control the
flow of traffic in order to prevent collisions and delays.
The ATC is usually operated by humans and involve certain
human errors [2]. Automated intelligent systems are being
developed to control air traffic without human control [3].
Intelligent systems can also be used to optimize the airport
capacity usage by assigning unused airspace and airport ca-
pacity to additional air traffic [4]. Additionally, the automated
intelligent system can help airports save cost by less staff
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hiring, while helping airline companies to increase customer
satisfactions by minimizing the delay time. To understand
the importance of having such a system, it is worth pointing
out that Federal Aviation Administration (FAA) has recently
planned to stop funding 149 air traffic control towers in USA
because of the budget cuts [5].

As mentioned previously, an important part of the ATC
is aircraft landing scheduling, which is also the focus of
this study. Aircraft landing scheduling can be defined as
giving priority to different aircraft, which need to land at
a certain time period in a specific runway. The problem
becomes more significant for busy airports where lots of
aircraft are intended to land at each time period and the
resources (runways) are limited. Different objective functions
based on different perspectives (i.e. airliners and airport
managers perspective) can be defined for this problem.
Considering the airport management perspective the main
objective is to maximize the airport capacity usage (utilize
runway usage), where as considering the airliners perspective
the main objective is to minimize the deviation from targeted
landing time. Ultimately, both objectives are related to cost
and the final objective is to minimize direct and indirect
costs associated with aircraft landing for both airliners and
airport managers. The problem becomes more complex when
considering the huge number of different parameters that
are involved in this optimization process, such as flight
delays, safety, customer satisfaction and etc. Further more,
as aircraft landing scheduling contains so many uncertainties,
the scheduling can constantly change based on the arrival of
new information; this makes aircraft landing scheduling a
highly dynamic problem.

The aircraft scheduling problem has been widely studied
in operation research community, where it is formulated as
an optimization problem such as minimizing the cost or
delay time [2], [6]–[8]. However, most of these methods
are not able to optimally solve the scheduling problem in
real world settings, because of the increasing complexity
and dynamic nature of this problem. As an alternative,
adaptive intelligence systems are able to capture the dynamic
nature of the aircraft (landing or takeoff) scheduling appro-
priately and handle uncertainty easily. In this paper, a new
systems approach that integrates computational intelligence
techniques is proposed to address the three main difficulties
of aircraft landing scheduling problem including uncertainty,
vast number of parameters, and conflicting objectives of
airliners and airport managers. The main goal is to find
an optimal landing sequence based on the expected delays,
and the number of passengers that will utilize the airport
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capacity usage (runway usage) and customer satisfaction.
As the proposed framework is based on systems concepts,
additional parameters such as time and distance between
two planes can be easily added to the model to extend its
capabilities.

The organization of the paper is as follows. In Section
2, a background of aircraft landing scheduling problem is
described and related work is briefly reviewed. In section
3, the proposed GSPS framework integrating computational
intelligence techniques is illustrated. In Section 4, a real-life
case of inbound flight scheduling at JFK airport is studied
and solved by the proposed framework. In Section 5, the
paper is concluded.

II. BACKGROUND

In this section an overview of the common methods
for aircraft landing scheduling is provided. Several models
based on statistical and operations research concepts have
been developed for different aspects of the flight scheduling
problem.

Ernst and later Beasley [9], [10] have considered the
problem from operations research perspective with the ob-
jective of minimizing cost (time), in a static case. Ernst
uses a specialized simplex model inspired by machine job
scheduling problem, and Beasle approaches this problem
using mixed-integer zero-one formulation. Later, Beasley
[11] have considered the same problem from decision making
perspective and applied concepts of displacement problem
for aircraft landing scheduling problem.

Abela and Sommer [12], [13] have considered the dynam-
ics of the problem as well, which makes their approaches
more applicable in real world situation. Abela considers the
cost for the air traffic controller and proposes an approach
based on genetic algorithm and mixed integer programming
[13], whereas Sommer, considers the cost for the airliners
and applies a heuristic local search method to this problem
[12].

Considering the nature of air traffic management problem,
using computational intelligence techniques can be helpful
as these methods are very practical for non linear prob-
lems; additionally, because of the flexibility of computational
intelligence models, they can be easily updated when the
nature and condition of the problem changes [14]. This
makes computational intelligence models suitable for dy-
namic problems. In this regards, Ciesielski and later Hansen
have applied genetic algorithms to solve certain complexi-
ties associated with air traffic control and aircraft landing
scheduling [7], [15].

III. METHODOLOGY

In this section the proposed GSPS-CI framework for
scheduling the landing of aircraft is introduced. First, three
fundamental components of this framework including GSPS,
ANFIS and fuzzy decision making are briefly discussed,
followed by working mechanisms of the overall framework.

A. General Systems Problem Solving (GSPS)

GSPS methodology, which was introduced by George
Klir [16] is a general expert system framework for solving
systems based problems in a way that is independent of
the structure of the system [17]. The objective of this
methodology is to build a problem solving technique that
can be applied to different problems without considering the
context of the problem. In other words, the objective is to
study the relations instead of studying the objects themselves
[16], [18]. In this regards, the GSPS approach models a real
world system by identifying the support invariant relation
among different variables of that system [19]. GSPS is
based on mask analysis, which is a technique developed by
George Klir using information theory concepts [20]. GSPS
methodology is very practical for multidisciplinary problems
where it is difficult to assign a problem to specific domain.

The GSPS framework consist of 5 different levels where
each level corresponds to a new knowledge level that gives
specific information about the object of investigation [19]; in
other words, each level is an epistemological category of the
system under investigation. These epistemological categories
are partially ordered according to their information content
[21]. This ordering indicates that each level contains all the
information obtained from lower levels and adds some new
information about the object of investigation. Each level of
GSPS framework is briefly described as follows:

1) Level 0: Source System (sometimes referred as exper-
imental frames): The source system is a descriptive list of
components for the system under investigation. This means
the investigator (system expert) needs to identify the basic
and support variables for the system under investigation [21].
Basic variables are chosen based on the object of interest
and nature of the problem, while the support variables (such
as time and space) include parameters that represent change
in the state of the basic variables. It can be concluded
from the definition of the source system that two systems
are comparable if they have the same source system [21].
Typically, before defining source system, premethodological
consideration is performed, which is a cyclic approach to
understand the objective of investigation (definition of prob-
lem).

2) Level 1 Data System: As the name implies, data system
is about collecting the necessary data for each basic variable
identified in the source system, by means of observation or
measurement. The data should represent the state of the basic
variables that correspond to the support state.

3) Level 2 Behavior System (sometimes called generative
systems): Level two is based on the concept of mask
sampling. Mask sampling can be considered as the process
of moving a window among the basic variables of the
system to identify the state of a basic variable and its
neighbors at certain support state. In this regards, one of
the important issues of behavior system is choosing the
depth of the sampling mask which determines the amount
of observable interactions in the behavior system; therefore,
choosing the depth of sampling mask is a trade off between
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complexity and information availability. The larger sam-
pling mask size results in a more computationally complex
system, but the system analyst receives more information
from it. In addition to choosing the sampling mask size,
the investigator should be clear about whether relationship
within observation or among observations is desired for the
model. For the relationship within observation, a sampling
mask of depth one (memory-less mask is suitable) [18].
After choosing the sampling mask, behavior of the system
is analyzed by identifying the patterns in data system using
mask sampling. Hence, in this level, the system scientist are
looking for relation among the basic variables of the system
in support invariant format [21]. Finally, after analyzing
the behavior of the data system, mask analysis provide a
solution set to determine the number of sampling variables
to be used. This process is done by giving the best selection
of sampling variables for different amount of complexities
up to the full mask (which gives the maximum amount of
information). The mask analysis gives the best solution set
(best predictability) based on generative entropy, which is
symbolized by H(G|G). The formula for generative entropy
is given by H(G|G) = H(C)H(G), where H(C) = total
amount of uncertainty in the entire system [18]. Based on
the information retrieved from mask analysis, the field expert
should choose the number of sampling variables considering
the complexity-information trade off.

4) Level 3 Structure System: Structure system is the act of
identifying subsystems that can generate the overall system
behavior [22]. In other words, in this level, the investigator is
trying to identify which subsystem can produce the required
information with minimal cost. Therefore, the investigator
analyzes all different structures of subsystems at different
levels of sampling mask (reconstructability analysis) to see
how much information will be lost by breaking the struc-
ture (simplifying). The two simplification methods that are
used in reconstructability analysis are C-refinement and G-
refinement [18]. After reconstructability analysis and finding
the simplified subsystem structures with least amount of
information loss, the next step is to use relational joint to
combine these subsystems for building a hypothetical overall
model. To test this hypothetical model, the information
distance is used as a goodness of fit measurement. If the input
and output variables of the system are not initially defined
and they are unknown, the control uniqueness technique can
be applied to determine the input and output variables of
each subsystem [18].

5) Level 4 Meta System: Meta system introduces changes
to the overall system. In other words, meta system is the evo-
lution of the original system with the same core components,
but with some new attributes and purposes.

B. Adaptive Network Based Fuzzy Inference System (ANFIS)

Modeling complex systems is one of the most useful
and most challenging tasks in the field of systems analysis,
especially, considering the fact that most systems include
human expert knowledge that is difficult to integrate into the
model. Fuzzy logic was introduced by Lotfi Zadeh [23] to

address this issue. Fuzzy Inference System (FIS) is a fuzzy
logic procedure which is designed to enable analysts extract
the human expertise using linguistic variables and integrate
them into their model [24]. Despite all the advantages of
fuzzy inference system, one of the main challenges of FIS
is to design an approach for defining fuzzy If-Then rules
and the related membership functions based on input-output
data [25]. Sugeno and Kang were among the first who
tried to develop such a system [26], [27] and soon others
followed their path. Adaptive Network based Fuzzy Inference
System (ANFIS) developed by Jyh-Shing Roger Jang [28] is
a method to facilitate the learning procedure of Sugeno model
using neural network approaches. ANFIS model is based on
two general concepts of gradient decent and least square
error [28], and consists of five layers that are illustrated in
Fig. 1. Each layer is briefly discussed here, the readers can

Fig. 1. ANFIS structure for two inputs

refer to Jang’s original article about ANFIS model [28] for
more details. Layer one generates membership grades for
each of the linguistic variables in the system, which are
adjusted using Gradient Descent (GD). Layer two uses a
fuzzy conjunction operation to demonstrate the strength of
each rule. Layer three is used to normalize the fuzzy rules,
which represent the strength of each fuzzy rule relative to the
total strength. At layer four, the contribution of each fuzzy
rule towards the overall output is calculated. Finally, the sum
of these contributions (the overall output of the system) is
calculated at layer five [29].

C. Fuzzy Decision Making

One of the fundamental decision making methods is Multi
Criteria Decision Making (MCDM) [30]. In this method,
each criterion Cj has a weighting (importance) wj , and each
alternative Ai has a utility value aij relating to criterion
Cj . A decision value dvi is computed for alternative Ai as
follows:

dvi =
n∑

j=1

wjαij (1)

Alternatives are prioritized based on their decision values.
Table I represents a typical decision table. Using matrix
multiplication dv = ACT the decision values of different
alternatives are obtained. These values represent the priority
A1 > A3 > A2. In this table, the negative weight of criterion
C4 denotes that this criterion is inhibitive (For example cost).
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TABLE I
WEIGHTS OF CRITERIA AND UTILITY VALUES OF A TYPICAL EXAMPLE

Criteria→ C1 C2 C3 C4
Weights→ .4 .3 .7 −.6

A1 .8 .6 .3 .4
A2 .3 .5 .7 .8
A3 .7 .4 .5 .6

In fuzzy decision making the weights of criteria and
utilities are fuzzy values [31]–[33]. The fuzzy values are
calculated using bell shape membership function

µA(x) =


1

1 + d(x−m)2
, (m− b

2 ) ≤ x ≤ (m+ b
2 );

0, Otherwise;
(2)

where x is an element of universe of discourse, d is
the shape factor (controlling the width of bell shape), m
is the median (the element of universe with maximum
membership), and b is the base of bell shape. For example,
for universe of discourse u = {0, 0.1, 0.2, . . . , 0.9, 1.0}, d =
20, b = 0.4, and m = 0.5, the values for the medium verbal
value are:

md = {0
0
,
0

.1
,
0

.2
,
0

.3
,
.625

.4
,
1

.5
,
.625

.6
,
0

.7
,
0

.8
,
0

.9
,
0

1
}

To use a simple and fast logical method for fuzzy com-
putations in decision making, each criterion is considered
as an object. This way, the multi criteria decision making
problem is analyzed from multi objective decision making
perspective. Considering this perspective, for object Cj with
weight wj , the alternative Aj is chosen to achieve the object
Cj with utility aij . In other words, the decision for choosing
Ai is influenced by wj . That is:

dij ≡ wj → αij or dij ≡ wj ∪ αij = max (1− wj , αij),
(3)

where dij is decision to choose alternative Ai for achieving
object Cj with weight wj [34]. To achieve all objects C1,
C2, . . . , Cn by choosing alternative Ai , the decision value
dvi is obtained as:

dvi = di1, di2, . . . , din

=⇒ dvi =
n

min
j=1

(dij) =⇒ dvi =
n

min
j=1

(max(1− wj), αij))

(4)
This procedure for computing decision values of different
alternatives is more suitable for problems with fuzzy values.
Consider the simple illustrative example presented by Table
II. The universe of discourse for all criteria and utilities
is u = {1, 2, 3}. The fourth criterion is inhibitive, so the
logical not of its original value ([.3,.4,.8]) is used. The fuzzy
decision value for alternative A1 is computed as µDV1(x) =
min{max([.7, .4, .8], [.7, .8, .5]),max([.7, .2, .6], [.4, .6, .2]),
max([.3, .5, .7], [.1, .3, .7]),max([.3, .4, .8], [.1, .4, .6])}

µDV1(x) = min{[.7, .8, .8], [.7, .6, .6], [.3, .5, .7], [.3, .4, .8]}

TABLE II
FUZZY DECISION MAKING DATA

Criteria→ C1 C2 C3 C4
Weights→ [.3, .6, .2] [.3, .8, .4] [.7, .5, .3] [.7, .6, .2]

A1 [.7, .8, .5] [.4, .6, .2] [.1, .3, .7] [.1, .4, .6]
A2 [.1, .3, .5] [.3, .5, .7] [.4, .7, .3] [.3, .8, .5]
A3 [.4, .9, .8] [.2, .9, .8] [.1, .8, .4] [.1, .6, .9]

µDV1
(x) = [0.3, 0.4, 0.6],

that is
DV1(x) = {

0.3

1.0
,
0.4

2.0
,
0.6

3.0
},

and after defuzzifying by center of gravity method:

dv1 =
(0.3)× 1 + (0.4)× 2 + (0.6)× 3

0.3 + 0.4 + 0.6
= 2.2308

Using the same procedure, the fuzzy and crisp decision
values of alternatives A2 and A3 is calculated as:

DV2(x) = {
0.3

1.0
,
0.4

2.0
,
0.7

3.0
}, dv2 = 2.2857

DV3(x) = {
0.3

1.0
,
0.6

2.0
,
0.7

3.0
}, dv3 = 2.2500

representing the priority A2 > A3 > A1.
In traditional applications, the utilities are fixed and pre-

defined (crisp or fuzzy) as shown in Tables I and II; but
in real world applications there are cases where the utilities
depend on independent variables such as time. For example,
the utility (satisfaction of passengers) decreases when the
variable (delay time of departure for a flight) increases. This
phenomenon can be modeled by the response of a first order
transfer function to a step input as shown in Fig. 2. [35]. In

Fig. 2. First order transfer function model of dynamics of satisfaction level

this figure, k=1 is affecting factor, τ=10 is the time constant
of the system, and S(t) = 1−y(t) represents the satisfaction
level. As an example, the level of satisfaction in this system
will be 0.3 for a delay of t = 12 minutes. Conceptually, the
unity step input to the system represents the unity impact on
the satisfaction level of passengers caused by the delay time.
In fuzzy decision making, this model can be used to find the
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medians of fuzzy utilities. An example of this procedure is
provided using illustrative case study in the results section.

D. Computational Intelligence based GSPS framework
(GSPS-CI)

Applying computational intelligence to GSPS model is not
a new idea and it roots goes back as far as GSPS model
itself. One of the most important examples is the Fuzzy
Inductive Reasoning (FIR). Fuzzy inductive reasoning was
introduced in 1979 [21] and is a tool for qualitative modeling.
In this paper, a mixed quantitative and qualitative modeling
technique based on GSPS methodology and computational
intelligence (ANFIS and Fuzzy decision making) is devel-
oped to address the prediction and decision making problems
in different systems. For the prediction problem, the support
invariant relations of variables are studied using the GSPS
model, and using these information the best input set for
computational intelligence model (in this case ANFIS) is
selected. Next, ANFIS model is used for support invariant
prediction. For the the decision making problem a fuzzy
decision making procedure is introduced as the meta system
of GSPS framework. The overall framework is illustrated in
Fig. 3. Here each of these steps are discussed.

Fig. 3. GSPS-CI Framework

1) Step 1 Premethodological Consideration: At this step,
the investigator should analyze the problem to understand
what is the purpose and objective of investigation. As the
proposed framework is intended for prediction and decision
making problems, the objective of investigation should in-
clude at least one of these elements. Also, It should be noted
that this step is a cyclic approach and it should be repeated
until a satisfactory description of the problem is achieved.

2) Step 2 Source System: At this step, the basic and
support variables (and their corresponding state sets) that
are related to the prediction objective should be identified. It
should be noted that the state sets of the variables should be
discrete and it is recommended that no more than five state
sets be chosen for any given basic variable. This is a key
factor for reducing the computational time and complexity
in next steps of the GSPS-CI model.

3) Step 3 Data System: Considering the identified basic
and support variables in step two, the investigator should
gather the data that represent the states of the basic variables
corresponding to support set. As mentioned previously, for
GSPS model the data set should be discrete, so if the original
data set is in continues format a preprocessing step is re-
quired to discretize the data set. Additionally, a simplification
process is recommended to reduce the number of discrete
state sets to less than five for reducing the computational
time. For example, if the basic variable is altitude, the values
of this variable can be discretized and simplified to three
states of high, medium, and low.

4) Step 4 Behavior System (Mask Analysis): Three main
tasks for this step are deciding the sampling mask size, iden-
tifying patterns by applying mask sampling, and selecting the
best generative subsystem. For deciding the sampling mask
size, as the purpose of behavior system in this framework
is feature selection for the prediction model, therefore, the
memory less mask (mask of depth one) should be used. In
order to consider a structure for the system, the identified
patterns using mask sampling should be less than the total
possible patterns. Finally, a solution set should be chosen
for next steps of the framework based on the results of mask
analysis. For data sets with small number of variables, a full
mask (a sampling mask that includes all the variables) is
recommended to get the maximum amount of information.

5) Step 5 Structure System (Reconstructability Analysis):
This step is an iterative step of breaking down the sys-
tem to different structures and comparing them based on
the information loss parameter. In this step, the simplified
subsystem structure with least amount of information loss
is identified using C-refinement and G-refinement. Using
relational joint and control uniqueness techniques of the
GSPS model are unnecessary in this framework, because the
input-output variables are predefined and overall system has
been observed during the data collection.

6) Step 6 ANFIS: In this step, the ANFIS model is used
for the prediction objective. Considering the previous step,
the input variables of the ANFIS model are selected based
on the identified subsystem structure with least amount of
information loss. Identifying other parameters of the ANFIS
model such as number of epoch are out of the scope of
this paper. Readers can refer to Jang’s original article about
ANFIS model for more details [28].

7) Step 7 Meta System (Fuzzy Decision Making): The
Meta system in the proposed framework is used for the deci-
sion making objective, therefore, all the additional variables
that are relevant to decision making process should be added
to the original data system. After developing the new data
system based on the original data system, the introduced
fuzzy decision making process is applied for prioritizing
different alternatives.

IV. RESULTS

In this section, the introduced GSPS-CI framework will be
applied to a case study of inbound flight scheduling of JFK
airport. The GSPS methodology was implemented using R
GSPS package developed by Doug Elias [18], and the ANFIS
model was implemented using MATLAB ANFIS toolbox.

A. Step 1 Premethodological Consideration

For the pre-methodological consideration, the overall pur-
pose of investigation for this case study is to increase the
efficiency of airport traffic management. One of the important
elements of airport traffic management is scheduling the
landing of aircraft and this task is defined as our system, so
the object of investigation is to schedule the inbound flights
in an efficient manner. This objective requires two main
tasks of flight delay prediction (Steps 2-6 of the proposed
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framework) and decision making (step 7 of the proposed
framework).

B. Step 2 Source System

The source system consists of five basic variables and
two time-based support variables. Variables one to four
are considered as input and variable five is considered as
output of the overall system. Table III shows the basic
variables of this system and the corresponding state sets.
For support variables, two support bases include Day of

TABLE III
BASIC VARIABLES FOR AIRCRAFT LANDING SCHEDULING CASE STUDY

Criteria→ Variable Variable ID
Origin of Departure V1 5 Digit Airport ID

Departure T ime V2 [00 : 01− 24 : 00]
Delay at Departure V3 [00 : 01− 24 : 00]

Scheduled Arrival T ime V4 [00 : 01− 24 : 00]
Delay at Arrival V5 [00 : 01− 24 : 00]

Month and Scheduled Departure Time. The support state
sets include [1 − 31] for day of month and [0 − 1439] for
the scheduled departure time. The schedule departure time
has been preprocessed to be used in the GSPS procedure
by multiplying hours to 60 and adding up the minutes. For
example for time 13:40 we have (13 × 60) + 40 = 820.
Additionally, the state set of basic variables in Table III are
simplified in order to make them suitable for next steps of
the GSPS-CI framework. State set of V1 is simplified into
four different categories, and state sets of the rest of variables
are simplified into three different categories.

C. Step 3 Data System

For the data system, the inbound flight info of JFK airport
in January 2012 and January 2013 were retrieved from The
Bureau of Transportation Statistics (BTS) [36]. The data
is preprocessed and organized to meet the requirements
mentioned in step 2 of the proposed GSPS-CI framework.
Considering the large data size, a sample of the data system
is represented in Table IV.

TABLE IV
SAMPLE DATA SYSTEM FOR JFK CASE STUDY

DAY OF MONTH → 1 1 1 1
CRS DEP TIME → 420 440 520 525

V 1 13303 10721 13204 14843
V 2 831 747 1059 913
V 3 91 27 139 28
V 4 950 835 1105 1145
V 5 71 17 129 21

D. Step 4 Behavior System (Mask Analysis)

As mentioned previously, considering the prediction objec-
tive, the memory less mask (mask of depth 1) is used. The
behavior system indicates that a total of 210 patterns exist in
our system. This is less than the total 324 possible patterns,
which means a structure exist in this system. Furthermore,

the probability distribution of these patterns is suitable for
processing the next steps of GSPS-CI framework. A sample
of the results of behavior system is presented here:

[1] : 21111@0.01273885

. . . . . . . . .

[210] : 11322@0.0009099181,

which represent the identified patterns and their associated
probability. After understanding the behavior of the system,
mask analysis is used to determine the best generative system
that can generate the identified patterns. The mask analysis
for our system indicates that a full mask should be used to
get the maximum amount of information. The solution set
that is obtained from mask analysis is shown in Table V.

TABLE V
SOLUTION SET

Complexity Generative Entropy Mask
5 7.197283 1, 2, 3, 4, 5

E. Step 5 Structure System (Reconstructability Analysis)

The purpose of this step is to analyze the information loss
of different subsystems. For this purpose, two methods of
C-Refinement and G-Refinement are applied to the system
of scheduling inbound flights. The results show that the least
amount of information loss in the system occurs at 1 2 3 4/1
2 3 5/1 2 4 5/1 3 4 5/2 3 4 5 structure where only 0.2% of
information will be lost. As the input and output variables
of the system are already known, using control uniqueness
method is unnecessary. Furthermore, as the overall system
has been observed for data collection, using relational joint
technique is unnecessary. The resulting system based on this
information is shown in Fig. 4.

Fig. 4. Structure of subsystems with least amount of information loss

F. Step 6 ANFIS

Now that the structure of subsystems with least amount
of information loss has been identified, an ANFIS model
based on this structure and the overall system (including all
input variables) will be developed to compare their accuracy.
It should be noted that as the overall system’s output is V5,
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only the subsystems that include this variable will be consid-
ered for ANFIS model. Before applying the ANFIS model,
the data system should be further preprocessed to make it
suitable for the ANFIS model. The data is preprocessed as
follows:

V1 (ID code of origin airport) is converted to a number
between 1 to 53 (number of available origin airports in the
data set). V3 and V4 (delay times) are normalized to a value
between 0 and 1.

The ANFIS model is trained based on the inbound flight
data of JFK airport at January 2013 (using 3 triangular mem-
bership functions and 100 epochs). Next, the model is tested
using inbound flight data of JFK airport at January 2012.
The results of ANFIS model based on the overall system
and identified subsystems are shown in Table VI. As it can

TABLE VI
THE ERROR VALUE FOR DIFFERENT ANFIS MODELS

ANFIS Model Based on Average Training Error Average Test Error
All variables 0.012216 0.047236

f2 0.0126 0.044129
f3 0.047722 0.10722
f4 0.012592 0.039209
f5 0.012448 0.042394

be seen in this table, the ANFIS model based on all variables
gives the minimum training error, however, the testing error
is minimum for ANFIS model based on f4 subsystem. This
indicates that the ANFIS model based on f4 subsystem can
be more efficient in terms of generalization. Based on these
results, it can be concluded that V2 (Departure Time) does
not have a significant affect on the output variable.

Additionally, the results indicate that the testing accuracy
of ANFIS model based on all subsystems (except f3) are
better than the ANFIS model based on all input variables.
Considering these results, an ANFIS model based on sub-
system f4 results in higher accuracy and has less complexity
when compared to ANFIS model based on all input variables.

G. Step 7 Meta System (Fuzzy Decision Making)

The objective of the meta system in this case study is
to make decision about the landing privilege of inbound
flights of JFK airport. For this objective, a new data system
based on the original data system is introduced. In this
new data system, flight number (V1) is the number given
to all the incoming flights to the airport within 12 Hours.
Time to arrival (V2) is defined as how much time is left
for the aircraft to arrive at the airport (calculated based on
the predicted delay at arrival time (V5) from previous step).
Origin of departure (V3) is an ID assigned to each origin
airport, and Number of passengers (V4) is a new hypothetical
variable introduced for the decision making process.

As an illustrative example, the trained ANFIS model is
used for predicting the flight delays of JFK airport at 18:30.
Five flights with scheduled arrival times 18:15 to 18:45 are
presented for landing scheduling. The estimated delay time

for these flights are presented in Table VII, where time to
arrival represents the difference between estimated arrival
time and current time (18:30). Fig. 5 shows the dynamic

TABLE VII
INFORMATION FOR INCOMING FLIGHTS

Flight
No.

Time to Arrival
(min)

Origin
Value

No. Passengers Delay at Ar-
rival (min)

1 14 0.82 92 72
2 20 0.59 106 44
3 5 0.78 110 41
4 18 0.82 260 56
5 8 0.55 160 28

system representation of fuzzy utility dynamics. The weights

Fig. 5. Dynamic system representation of fuzzy utility dynamics

of criteria are considered to be predefined by following
respective verbal values:

{c1, c2, c3, c4, c5, c6, c7, c8} = {sm, vb,md, bg,md, vs, bg, sm}
The utility values of different flights are computed in two
steps:

1) Feed the information of each flight to system dynamics
of Table VII to compute the medians of fuzzy utilities.
For number of passengers, normalize the data by
dividing them to 400 (max. no. of passengers).

2) Find the memberships of utilities using Eq. 2.
For example, the utility of flight 1 for time to arrival criterion
is computed as:

1) Using MATLAB commands:
�response=step (tf([15 0], [15 1]), 14);
�m11=response(length(response)); % Resulting
m11 = 0.3932

2) Considering u = [0, 0.1, 0.2, . . . , 0.9, 1], d = 20, b =
0.4 and m = 0.3932, we obtain the fuzzy utility from
Eq.2.

α11 = {0
0
,
0

.1
,
.0348

.2
,
.6684

.3
,
1

.4
,
.5833

.5
,
0

.6
,
0

.7
,
0

.8
,
0

.9
,
0

1
}

Other fuzzy utilities of decision table have been calculated
in the same manner. Then, the fuzzy decision values for
different flights have been obtained using the fuzzy decision
making procedure. Fig. 6 shows the fuzzy values of weights
of criteria, utilities, and decision values for data of Table
VII. After defuzzifying the decision values by center of
gravity method, the following crisp decision values will be
obtained: dv1 = 0.6211, dv2 = 0.2923, dv3 = 0.4101,
dv4 = 0.4655 and dv5 = 0.3016; representing the landing
privilege: A1 > A4 > A3 > A5 > A2

1584



Fig. 6. Fuzzy values of weights of criteria, utilities, and decision values
for data of Table VII

V. CONCLUSIONS

A systems approach of scheduling the landing of aircraft
based on GSPS, ANFIS and fuzzy decision making proce-
dures (GSPS-CI) was introduced. The proposed framework
considers the dynamics of the inbound flight scheduling
problem, and is able to handle the related uncertainty. As
a case study, the framework was applied to schedule the
inbound flights of JFK airport. Arrival flights of JFK airport
during the time 18:30-18:45 were simulated using randomly
defined weights of criteria, and then, fuzzy decision making
procedure was applied to prioritize the arriving flights based
on factors such as expected possible delay. The expected
possible delay was predicted using ANFIS model, where
input variables were identified by GSPS methodology. This
paper presents how the GSPS methodology can be applied
to complex dynamic problems to solve them using systems
perspective.
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[21] À. Nebot and F. Mugica, “Fuzzy inductive reasoning: a consolidated
approach to data-driven construction of complex dynamical systems,”
International Journal of General Systems, vol. 41, no. 7, pp. 645–665,
2012.

[22] L. Skyttner, General systems theory: Problems, perspectives, practice.
World Scientific, 2005.

[23] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp.
338–353, 1965.

[24] ——, “Outline of a new approach to the analysis of complex sys-
tems and decision processes,” Systems, Man and Cybernetics, IEEE
Transactions on, no. 1, pp. 28–44, 1973.

[25] J.-S. Jang, “Inverse learning for fuzzy controller design,” in Control
Applications, 1995., Proceedings of the 4th IEEE Conference on.
IEEE, 1995, pp. 335–340.

[26] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modeling and control,” Systems, Man and Cybernetics,
IEEE Transactions on, no. 1, pp. 116–132, 1985.

[27] M. Sugeno and G. Kang, “Structure identification of fuzzy model,”
Fuzzy sets and systems, vol. 28, no. 1, pp. 15–33, 1988.

[28] J.-S. Jang, “Anfis: adaptive-network-based fuzzy inference system,”
Systems, Man and Cybernetics, IEEE Transactions on, vol. 23, no. 3,
pp. 665–685, 1993.

[29] ——, “Input selection for anfis learning,” in Fuzzy Systems, 1996.,
Proceedings of the Fifth IEEE International Conference on, vol. 2.
IEEE, 1996, pp. 1493–1499.

[30] T. J. Stewart, “A critical survey on the status of multiple criteria
decision making theory and practice,” Omega, vol. 20, no. 5, pp. 569–
586, 1992.

[31] C. Carlsson and R. Fullér, “Fuzzy multiple criteria decision making:
Recent developments,” Fuzzy sets and systems, vol. 78, no. 2, pp.
139–153, 1996.

[32] S. Khanmohammadi and S. Lotfi, “A new fuzzy approach for defining
multi-purpose criticality of activities in pert,” in Emergency Manage-
ment and Management Sciences (ICEMMS), 2010 IEEE International
Conference on. IEEE, 2010, pp. 428–433.

[33] S. Khanmohammadi and J. Jassbi, “A fuzzy approach for risk analysis
with application in project management,” in Fuzzy Inference System -
Theory and Applications. InTech, 2012, pp. 41–62.

[34] T. J. Ross, Fuzzy logic with engineering applications. John Wiley &
Sons, 2009.

[35] B. C. Kuo and M. F. Golnaraghi, Automatic control systems. John
Wiley & Sons New York, 2003, vol. 4.

[36] Research and I. T. A. (RITA), “Airline on-time data,”
http://www.transtats.bts.gov/DL SelectFields.asp?Table ID=
236&DB Short Name=On-Time, accessed: 2013-04-12.

1585




