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Abstract—Soft subspace fuzzy clustering algorithms have 

been successfully utilized for high dimensional data in recent 
studies. However, the existing works often utilize only one 
distance function to evaluate the similarity between data items 
along with each feature, which leads to performance 
degradation for some complex data sets. In this work, a novel 
soft subspace fuzzy clustering algorithm MKEWFC-K is 
proposed by extending the existing entropy weight soft 
subspace clustering algorithm with a multiple-kernel learning 
setting. By incorporating multiple-kernel learning strategy into 
the framework of soft subspace fuzzy clustering, MKEWFC-K 
can learning the distance function adaptively during the 
clustering process. Moreover, it is more immune to ineffective 
kernels and irrelevant features in soft subspace, which makes 
the choice of kernels less crucial. Experiments on real-world 
data demonstrate the effectiveness of the proposed MKEWFC-K 
algorithm. 

Keywords—soft subspace clustering; fuzzy clustering; 
multiple-kernel learning 

I.  INTRODUCTION 

Fuzzy clustering, which partitions data sets into several 
fuzzy clusters, has been widely applied in many fields. 
Recently, soft subspace fuzzy clustering has emerged as a hot 
research topic [1-5]. Under the classical fuzzy clustering 
framework, it groups data objects in the entire data space but 
assign different weights to different dimensions of clusters 
based on the importance of the features in identifying the 
corresponding clusters. Due to its assigning different vector 
of feature weights to each cluster, the soft subspace clustering 
is more suitable for the data sets in which different clusters 
are correlated with different subsets of features. 

Up to now, several soft subspace fuzzy clustering 
algorithms have been proposed [1-5]. Generally speaking, 
these algorithms can be unified as the problem of finding the 
local minimum of the objective function. 
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total weighted distance of each data object to cluster centers 
and the second term Η is a penalty term which is often used 
to optimize the performance of the algorithm. In the first 
term of Eq.(1), djih

2 is a dissimilarity measure of the jth 
cluster center zj and the data point xi on the hth feature. In 
most existing works, it is usually computed as Euclidean 
distance, i.e. djih

2=(xih- xjh) 2. In some cases of recent works, 
it can also be evaluated with other distance functions such as 
the Minkowski distance function [6], the alternative distance 
function [2] and the kernelized distance function [7]. As 

reported in literatures, these soft subspace clustering 
algorithms can successfully cluster high dimensional data in 
soft subspaces and achieve more ideal clustering results than 
some conventional fuzzy space fuzzy clustering approaches. 

Although current soft subspace fuzzy clustering 
algorithms are able to cluster some high dimensional data 
well, these methods may be ineffective for some complex 
data. For example, the data item along with a particular 
feature could exhibit quite complex relationships with the 
corresponding feature of the cluster center, and thus, the 
similarities computed with current dissimilarity measure will 
not reflect the actual relationships between them and this 
will degrade the performance of the learning algorithm. In 
this work, the above problem will be investigated by 
integrating kernel tricks into the framework of soft subspace 
clustering. Like kernel methods in literatures, a crucial step 
in the kernelized soft subspace fuzzy clustering is the 
selection of the best kernels for each feature among an 
extensive range of possibilities [7]. Unfortunately, it is 
unclear which kernels are more suitable for a particular 
feature since this step is often heavily influenced by prior 
knowledge about the data and by the patterns we expect to 
discover [8-9]. 

Instead of a single fixed kernel, multiple-kernel learning 
methods have been extensively studied in recent years [8, 
11-13]. Recent developments in multiple-kernel learning 
have shown that the construction of a kernel from a number 
of basis kernels allows for more flexible encoding of domain 
knowledge from different sources or cues. In this work, 
multiple-kernel learning will be incorporated into the 
framework of soft subspace fuzzy clustering and a novel soft 
subspace fuzzy clustering algorithm named MKEWFC-K 
will be proposed accordingly. MKEWFC-K simultaneously 
locates clusters in kernel space spanned by different kernels 
and the optimal kernel weights for a combination of a set of 
kernels. The incorporation of multiple kernels and the 
automatic adjustment of kernel weights make the similarities 
between data items along with each feature to be adaptively 
computed. In this way, the performance of the learning 
method can be improved effectively. 

The rest of the paper is organized as follows. In Section 
II, we derive the MKEWFC-K and, in Section III we report 
experimental results on both synthetic and real data. The 
conclusions are given in Section IV. 

II. ALGORITHM MKEWFC-K 

A. Objective function incorporating multiple kernels 

For better modeling and discovering nonlinear 
relationships among data, kernel methods use a non-linear 
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mapping � that maps the input data from the original feature 
space to a new space of higher dimensionality, i.e. kernel 
space [10]. The kernel space could possibly be of infinite 
dimensionality. Given two data points xi and xj in the 
original feature space, the kernel method takes advantage of 
the fact that the dot product between �(xi) and �(xj) in the 
kernel space can be expressed by a Mercer kernel K given 
by 

K(xi, xj) = �(xi)T�(xj) (2)
Kernel methods rely on the kernel function which used to 

project data in the original space into the high dimensional 
kernel-induced feature space. A good choice of the kernel 
function is therefore imperative to the success of the learning 
problem. However, it is often unclear which kernel is the 
most suitable for a particular learning task, which has 
become one of the central problems in kernel methods. 
Recent studies on kernel methods have shown that 
constructing the kernel from a number of homogeneous or 
even heterogeneous kernels can improve the performance of 
the learning problem effectively, which are often referred as 
multiple-kernel learning in literatures [11-16]. This provides 
extra flexibility and allows domain knowledge from possibly 
different sources to be incorporated. Consider a set of 
unknown mappings, Φ={�1, …, �p}, each of which, i.e. �t, 
maps the hth feature xih of the input data xi as a Lt-
dimensional vector �t(xih) in kernel space. Let {K1, K2, …, 
Kp} be the Mercer kernels corresponding to these implicit 
mappings respectively, then we have 

Kt(xih,xjh) = �t(xih)T�t(xjh) (3)

which used to compute the similarity between xi and xj along 
with the hth feature in the kernel space. In order to combine 
these kernels, a new set of independent mappings, Φ = {Φ1, 
Φ2, · , Φp}, is constructed from the original mappings as 
follows: 
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which converts xih into a L-dimensional vector, where L 
=

1

p
tt

L
=∑  and Lt is the dimensionality of �t. Although the 

implicit mappings �ts do not have the same dimensionality, 
the kernel spaces spanned by Φts have the same 
dimensionality. In this way, their linear combination can be 
well defined. ( )t ihxΦ s form a set of orthogonal bases in the 
high dimensional kernel space, i.e., 
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Thus, any L-dimensional vector 
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x v x
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Ψ = Φ∑ , j = 
1,2, …, c, in the kernel space can be expressed as a non-
negative linear combination of the basis kernels Φt and it can 
be viewed as a mapping which maps the data on each feature 
to the kernel space. 

For kernelized fuzzy clustering algorithms, there are two 
general categories to perform clustering tasks [9]. The first 
category retains the prototypes in the feature space during 
clustering process, which is often denoted as KFCM-F 
(Kernel-based FCM with prototypes in Feature space). On 
the other hand, the second category implicitly leaves the 
prototypes in the kernel space during clustering process and 
an inverse mapping must be performed to obtain prototypes 
in the feature space. The algorithms in this category are 
often denoted as KFCM-K (Kernel-based FCM with 
prototypes in Kernel space). In this work, we only 
investigate soft subspace fuzzy clustering with multiple-
kernel learning setting under the framework of the second 
category and denote the proposed algorithm MKEWFC-K 
(Entropy weighting fuzzy clustering with multiple-kernel 
learning). 

Let 
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Ψ = Φ∑ , j = 1,2, …, c. By integrating the 

idea of multiple-kernel learning into the framework of soft 
subspace clustering, the objective function of MKEWFC-K 
can be constructed as follows: 

( ), , ,MKEWFC KJ − U W V Z

 

( ) ( )
1 1 1

( ) ( )
c n s Tm

ji jh j ih jh j ih jh
j i h

u w x z x z
= = =

= Ψ − Ψ −∑∑ ∑  

2 2

1 1 1 1

log log
pc c s

jt jt jh jh
j t j h

v v w wγ η
= = = =

+ +∑∑ ∑∑  (5) 

subject to 

1
1c

jij
u

=
=∑ , [ ]0,1jiu ∈ ，m>1 

1
1s

jhh
w

=
=∑ , j = 1, 2, …, c 

2
1

1p
jtt

v
=

=∑ , j = 1, 2, …, c 
where Z=[zjh] is the cluster center matrix, W = [wjh] is a c×s 
feature weight matrix, V=[vjt] is a c×p kernel weights matrix 
and U=[uji] is the fuzzy partition matrix. 

The main idea of MKEWFC-K is to minimize the sum of 
the within cluster dispersions as well as the negative weight 
entropy in Eq.(5), which contains three terms, i.e. the within-
cluster compactness in the kernel space, the negative entropy 
of both feature weights and kernel weights. The positive 
parameters γ and η are used to control the influences of the 
entropy of both wjh and vjt.  

In literatures, the Euclidean norm 
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is commonly used for features in soft subspace clustering 
algorithms. After introducing the mapping Ψ, which is 
combined with multiple kernels, into the algorithm, the 
dissimilarity between the jth cluster center zj and the ith data 
point xi on the hth feature can be computed as follows: 
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denotes the dissimilarity between data xi and the cluster 
center zj on the hth feature in the kernel space induced by the 
implicit mapping �t. For brevity, dji is introduced to denote 
the weighted distance between data xi and the cluster center 
zj, i.e. 

2 2
1

s
ji jh jihh

d w d
=

=∑  (7) 

In this way, it is possible to obtain memberships and 
weights without implicitly evaluating cluster centers. 
Moreover, the similarities between data items along with 
each feature can be computed adaptively since 2

jtv  can be 
updated during the clustering process. 

B. The proposed algorithm MKEWFC-K 

Minimization of the objective function in Eq.(5) with the 
constraints forms a class of constrained nonlinear 
optimization problems. The usual method toward 
optimization of JMKEWFC-K is to use the partial optimization 
for U, W, V and Z. Similar with FCM-like algorithms, the 
objective function defined in Eq.(5) can be minimized by 
iteratively solving the following three minimization 
problems: 

1. Problem P1: Fix U, W and Z, solve the reduced 
problem ( ), , ,MKEWSC KJ − U W V Z ; 

2. Problem P2: Fix U, V and Z, solve the reduced problem 
( ), , ,MKEWSC KJ − U W V Z ; 

3. Problem P3: Fix W, V and Z, solve the reduced 
problem ( ), , ,MKEWSC KJ − U W V Z . 

Problem P1 is solved by 
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Theorem 1. Given matrices U, W and Z are fixed, 
JMKEWFC-K is minimized if V is computed as 
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Proof: The objective function defined in Eq.(5) can be 

rearranged as: 

( ), , ,MKEWFC KJ − U W V Z
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By taking the derivative of Eq.(9) respect to vjt
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Theorem 2. Given matrices U, V and Z are fixed, 

JMKEWFC-K is minimized if W is computed as 
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Similar to FCM-like algorithms, by forming the Lagrange 
function with Lagrange multipliers for constraint 
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in which dji is computed with Eq.(7).  
Theorem 3. Given matrices W and V are fixed, JCKS-EWFC-K 

is minimized if U is computed as Eq.(13). 
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By forming the Lagrange function with Lagrange multipliers 
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By setting the gradient of Eq.(14) with respect to uji and ζi to 
zero, we have: 
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Substituting Eq.(15) into Eq.(16), we can eliminate ζi and 
obtain the closed-form solution for uji as 
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Thus, the theorem is proved. 
Although the cluster centers are in the implicit kernel 

space and directly evaluating them may not be possible, the 
above derivation makes the cluster centers be eliminated 
from the objective function so that MKEWFC-K do not need 
to implicitly evaluate cluster centers, which are potentially 
not computable. 

The proposed algorithm is developed based on the 
objective function defined in Eq.(5). Since the cluster 
centers are eliminated from the objective function, 
MKEWFC-K does not need to implicitly evaluate cluster 
centers, which are potentially not computable for relational 
data sets. Table I summarizes the MKEWFC-K algorithm. 
The algorithm starts with initializing the memberships and 
feature weights, and then repeats updating the kernel weights 
by fixing the memberships and feature members, updating 
the feature weights by fixing the memberships and kernel 
weights and updating the memberships by fixing the feature 
weights and kernel weights. The process is repeated until the 
amount of change per iteration in the membership matrix 
falls below a given threshold. 

TABLE I THE PSEUDO-CODE OF THE MKEWFC-K ALGORITHM 

Algorithm: MKEWFC-K 
Require: D—the data set, k—the number of clusters 
1: Randomly initialize membership matrix and initialize W with wjh = 1/s 
2: for iter = 1: maxIter 
3:  Update V according to Eq.(8); 
4:  Update W according to Eq.(12); 
5:  Update U according to Eq.(13); 
6:  Calculate the objective function J; 
7  if |J-Jold| < ε, break; 
8: end for 
9: Output W, Z and U. 

III. EXPERIMENTAL RESULTS 

The proposed algorithm MKEWFC-K has been evaluated 
with a large number of experiments on real data sets and its 
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performance is compared with several classical soft 
subspace clustering algorithms as well as fuzzy clustering 
algorithms. 

In our experiments, two measures, the rand index (RI) 
[17] and the normalized mutual information (NMI) [18] are 
used for evaluating the performance of the clustering 
algorithms. 

A. Experiments results on UCI data 

We tested these algorithms on the data sets which are 
selected from the UCI repository. For each set, only the 
extracted feature vectors are available — not the raw data. 
All these data sets are described by a data matrix of “objects 
× features”. Table II shows the details. 

TABLE II.  DETAILS OF UCI DATA SETS 

Data set Number of 
instances 

Number of 
features 

Number of 
clusters 

Balance Scale 625 4 3 
Breast Tissue 106 9 6 

Bupa 345 6 2 
Glass 214 9 6 
Heart 270 13 2 
Iris 150 4 3 

Parkinsons 195 23 2 
Pima Indians 

Diabetes 768 8 2 

Vehicle 846 18 4 
Wine 178 13 3 

Kernels are often used to address the problems of 
ineffective features and similarity measures. As kernel 
functions are essentially similarity measures for pairs of 
data, they can be used in many different ways, and multiple 
kernels sets can be constructed in various ways. Since the 
feature vectors for data points have been provided in this 
work, we measured the similarities between data items along 
with each feature in different nonlinear spaces by mapping 
data to these spaces with different kernels. In our 
experiments, the provided feature vectors are substituted into 
the chosen kernels to calculate pairwise similarities along 
with each feature. Since optimal kernel choice is still an 
open problem, in this work, following the strategy of other 
multiple-kernel learning approaches, we select a set of 
reasonable kernels that are frequently used by kernel 
methods. In our experiments, one polynomial kernel with 
θ=1 and p=2, one linear kernel and several Gaussian kernels 
were utilized. We varied the bandwidth for Gaussian kernel 
over {log(0.1), log(0.05), log(0.01), log(0.005), log(0.001), 
log(0.0005), log(0.0001)} to obtain seven Gaussian kernels. 
Table III shows the details on the kernels adopted in our 
experiments. After the kernel matrices were generated for 
the whole data set, the elements’ values were normalized to 
the range of [0, 1]. 

TABLE III.  BASIS KERNEL INFORMATION 

id kernel type Parameters settings 

K1 
Polynomial kernel 

( )1 2 1 2( , )
pTk θ= +x x x x  p=1, d=2 

K2 
Gaussian kernel 

σ=log(0.1) 
K3 σ=log(0.05) 
K4 σ=log(0.01) 

K5 2
1 2

1 2 2( , ) exp
2

k
σ

⎛ ⎞−
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

x x
x x  σ=log(0.005) 

K6 σ=log(0.001) 
K7 σ=log(0.0005) 
K8 σ=log(0.0001) 

K9 
Linear kernel 

1 2 1 2( , ) Tk =x x x x  / 

We compared the performance of MKEWFC-K with those 
of AWA [19], EWKM [20], FWKM [21] and FCM [22]. 
Table IV shows the parameters utilized in the experiments, 
from which we can observe that a wide range of parameters 
have been tried. We also run MKEWFC-K with only one 
basis kernel (denoted as KEWFC-K) so that the advantage of 
kernel combination can be fully discovered. 

TABLE IV. PARAMETERS USED IN THE EXPERIMENTS 

Algorithms Parameters settings 

MKEWFC-K 
m=1.05 or 1.2 

γ = 1;5;10;50;100;1000 
η = 1;5;10;50;100;1000;10000 

KEWFC-K The parameters m, γ and η take values with which 
MKEWFC-K obtained its best performance 

EWKM γ = 1;5;10;50;100;1000;1000 
FWKM β = 1.25; 1.5; 1.75; 2.0; 2.25; 2.5; 3.0 
AWA β = 1.25; 1.5; 1.75; 2.0; 2.25; 2.5; 3.0
FCM m=1.2; 1.4; 1.6; 1.8; 2.0; 2.2; 2.4; 2.6; 2.8; 3.0 

In order to evaluate soft clustering results with RI and 
NMI measure, the fuzzy membership degrees were 
converted to hard assignments by assigning each data to the 
cluster with the highest membership degree. All the 
algorithms use data with the same dimensions (specified by 
the #features attribute in Table II). In the experiment, each 
algorithm was repeated 10 times under a fixed parameters 
setting and the average performance was calculated. 
Different parameters settings for each algorithm were tried 
in our experiments and the best average performance over all 
the parameter settings was reported in Table V and Table VI, 
respectively. The average performance over all the data sets 
(aRI and aNMI) of each algorithm as well as its rank is 
shown in the last row of both tables. 

From Table V and Table VI, it can be observed that there 
is no algorithm always ranked first for all the data sets. 
However, on average, MKEWFC-K performs the best and 
yields stable performance. For real-world applications, we 
have no cues in advance as to which algorithm will work best 
for the given problem. MKEWFC-K can help us to obtain 
more reasonable results in general. From both tables, it can 
be also observed that MKEWFC-K as well as other soft 
subspace clustering algorithms do not outperform the 
classical FCM algorithm for the case “Balance Scale” and 
“Glass”. We wonder that this is because the inner structures 
of the clusters within both data sets are so strange and 
puzzling that the existing soft subspace clustering algorithms 
cannot work on it well. In our future work, we will further 
investigate this problem. 

 

190



 
 

 

TABLE V.  BEST AVERAGE RI PERFORMANCE FOR DIFFERENT ALGORITHMS 

Data sets MKEWFC-K KEWFC-K (MKEWFC-K with single basis kernel) EWKM FWKM AWA FCM K1 K2 K3 K4 K5 K6 K7 K8 K9 
Balance 

Scale 
mean 
std 

0.5879  
0.0142 

0.5755 
0.0025 

0.5882 
0.0111 

0.5834 
0.0142

0.5896 
0.0116

0.5913 
0.0124

0.5903 
0.0142

0.5906 
0.0146

0.5899 
0.0150

0.5875 
0.0164 

0.5895 
0.0109 

0.5885 
0.0111

0.5901 
0.0117

0.6243 
0.0612

Breast 
Tissue 

mean 
std 

0.8100  
0.0227 

0.7433 
0.0262 

0.7991 
0.0194 

0.7910 
0.0245

0.8011 
0.0189

0.8028 
0.0208

0.7990 
0.0260

0.8009 
0.0272

0.8029 
0.0225

0.7722 
0.0173 

0.7140 
0.0216 

0.6097 
0.0411

0.7027 
0.0420

0.6729 
0.0080

Bupa mean 
std 

0.5154  
0.0024 

0.5026 
0.0000 

0.5037 
0.0000 

0.4994 
0.0009

0.5136 
0.0025

0.5096 
0.0008

0.5122 
0.0000

0.5121 
0.0003

0.5113 
0.0019

0.5031 
0.0000 

0.5107 
0.0005 

0.4997 
0.0003

0.5044 
0.0033

0.5037 
0.0000

Glass mean 
std 

0.6875  
0.0083 

0.6790 
0.0064 

0.6901 
0.0046 

0.6886 
0.0028

0.6861 
0.0060

0.6844 
0.0083

0.6801 
0.0099

0.6788 
0.0097

0.6771 
0.0087

0.6804 
0.0056 

0.6932 
0.0193 

0.6664 
0.0275

0.5874 
0.0519

0.7238 
0.0053

Heart mean 
std 

0.6971  
0.0000 

0.6731 
0.0047 

0.6952 
0.0044 

0.6888 
0.0029

0.6860 
0.0023

0.6906 
0.0032

0.6901 
0.0024

0.6897 
0.0032

0.6948 
0.0025

0.5850 
0.0207 

0.6579 
0.0640 

0.5708 
0.0171

0.5043 
0.0000

0.5213 
0.0000

Iris mean 
std 

0.9267 
 0.0000 

0.8923 
0.0000 

0.7735 
0.0131 

0.8123 
0.0726

0.8820 
0.0730

0.8882 
0.0934

0.9044 
0.0665

0.8879 
0.0627

0.8843 
0.0603

0.9495 
0.0000 

0.8590 
0.0467 

0.9003 
0.0207

0.9342 
0.0484

0.8859 
0.0000

Parkinsons mean 
std 

1.0000   
0.0000 

1.0000 
0.0000 

0.6021 
0.0000 

0.5975 
0.0000

0.5929 
0.0000

0.5929 
0.0000

0.6027 
0.0073

0.6104 
0.0160

0.6095 
0.0464

1.0000 
0.0000 

0.6949 
0.1501 

0.5427 
0.0238

0.4975 
0.0000

0.6167 
0.0000

Pima Indians 
Diabetes 

mean 
std 

0.6153  
0.0012 

0.6154 
0.0004 

0.5466 
0.0000 

0.5466 
0.0000 

0.5458 
0.0000 

0.5458 
0.0000 

0.5465 
0.0003 

0.5466 
0.0000 

0.5474 
0.0000 

0.5592 
0.0008 

0.5450 
0.0000 

0.5388 
0.0282

0.5390 
0.0000

0.5507 
0.0000

Vehicle mean 
std 

0.6625  
0.0039 

0.3698 
0.1066 

0.6604 
0.0138 

0.6645 
0.0127

0.6622 
0.0043

0.6631 
0.0030

0.6659 
0.0064

0.6597 
0.0178

0.6522 
0.0212

0.5977 
0.0780 

0.6135 
0.0140 

0.6482 
0.0393

0.6663 
0.0105

0.6523 
0.0003

Wine mean 
std 

0.9318  
0.0000 

0.8972 
0.0000 

0.9114 
0.0030 

0.9301 
0.0031

0.9036 
0.0000

0.8855 
0.0026

0.8787 
0.0021

0.8834 
0.0064

0.8779 
0.0020

0.9133 
0.0036 

0.6864 
0.0080 

0.7095 
0.0483

0.6744 
0.0542

0.7156 
0.0097

aRI 0.7434 
(1) 

0.6948 
(3) 

0.6770 
(10) 

0.6802 
(9) 

0.6863 
(5) 

0.6854 
(7) 

0.6870 
(4) 

0.6860 
(6) 

0.6847 
(8) 

0.7148 
(2) 

0.6564 
(11) 

0.6275 
(13) 

0.6200 
(14) 

0.6467 
(12) 

TABLE VI.  BEST AVERAGE NMI PERFORMANCE FOR DIFFERENT ALGORITHMS 

Data sets MKEWFC-K KEWFC-K (MKEWFC-K with single basis kernel) EWKM FWKM AWA FCM 
K1 K2 K3 K4 K5 K6 K7 K8 K9 

Balance 
Scale 

mean 
std 

0.1173 
 0.0287 

0.0952 
0.0110 

0.1168 
0.0227 

0.1091 
0.0285 

0.1167 
0.0228 

0.1191 
0.0243 

0.1171 
0.0265 

0.1179 
0.0277 

0.1164 
0.0279 

0.1133 
0.0292 

0.1202 
0.0237 

0.1173 
0.0188

0.1205 
0.0195

0.1774 
0.1029

Breast 
Tissue 

mean 
std 

0.4856 
 0.0218 

0.4794 
0.0181 

0.2700 
0.0285 

0.2756 
0.0210 

0.2734 
0.0281 

0.2730 
0.0296 

0.2695 
0.0319 

0.2695 
0.0319 

0.2708 
0.0302 

0.5503 
0.0112 

0.2606 
0.0203 

0.3409 
0.0261

0.3050 
0.0291

0.3889 
0.0129

Bupa mean 
std 

0.0196 
 0.0000 

0.0000 
0.0000 

0.0093 
0.0011 

0.0006 
0.0003 

0.0034 
0.0004 

0.0009 
0.0006 

0.0013 
0.0008 

0.0026 
0.0019 

0.0031 
0.0017 

0.0002 
0.0001 

0.0113 
0.0011 

0.0134 
0.0000

0.0062 
0.0033

0.0129 
0.0000

Glass mean 
std 

0.3663 
 0.0370 

0.3418 
0.0187 

0.3796 
0.0389 

0.3755 
0.0409 

0.3508 
0.0320 

0.3421 
0.0178 

0.3388 
0.0186 

0.3371 
0.0171 

0.3382 
0.0150 

0.3487 
0.0169 

0.3721 
0.0359 

0.4308 
0.0247

0.2224 
0.0684

0.4264 
0.0066

Heart mean 
std 

0.3062 
 0.0000 

0.2648 
0.0075 

0.3016 
0.0071 

0.2911 
0.0047 

0.2875 
0.0039 

0.2959 
0.0053 

0.2953 
0.0038 

0.2946 
0.0050 

0.3038 
0.0038 

0.1309 
0.0214 

0.2827 
0.1047 

0.1037 
0.0280

0.0496 
0.0569

0.0304 
0.0000

Iris mean 
std 

0.8513  
0.0000 

0.8058 
0.0000 

0.5649 
0.0251 

0.6366 
0.1205 

0.7767 
0.0801 

0.7998 
0.0850 

0.8081 
0.0588 

0.7828 
0.0529 

0.7806 
0.0488 

0.8642 
0.0000 

0.7416 
0.0291 

0.7882 
0.0292

0.8387 
0.0805

0.7582 
0.0000

Parkinsons mean 
std 

1.0000   
0.0000 

1.0000 
0.0000 

0.3212 
0.0000 

0.3160 
0.0000 

0.3109 
0.0000 

0.3109 
0.0000 

0.3218 
0.0082 

0.3303 
0.0180 

0.3130 
0.0965 

1.0000 
0.0000 

0.3206 
0.0142 

0.0905 
0.0611

0.1144 
0.0000

0.1265 
0.0000

Pima Indians 
Diabetes 

mean 
std 

0.1306 
 0.0021 

0.1381 
0.0007 

0.0096 
0.0000 

0.0096 
0.0000 

0.0052 
0.0000 

0.0052 
0.0000 

0.0091 
0.0014 

0.0096 
0.0000 

0.0139 
0.0000 

0.0617 
0.0012 

0.0204 
0.0000 

0.0619 
0.0435

0.0204 
0.0000

0.0337 
0.0000

Vehicle mean 
std 

0.1836  
0.0425 

0.1334 
0.0317 

0.1656 
0.0457 

0.1658 
0.0250 

0.1749 
0.0129 

0.1785 
0.0031 

0.1648 
0.0501 

0.1826 
0.0314 

0.1629 
0.0419 

0.1214 
0.0057 

0.1385 
0.0038 

0.1949 
0.0104

0.1813 
0.0662

0.1860 
0.0025

Wine mean 
std 

0.8181  
0.0000 

0.7532 
0.0000 

0.7639 
0.0062 

0.8023 
0.0070 

0.7673 
0.0000 

0.7328 
0.0054 

0.7204 
0.0058 

0.7256 
0.0108 

0.7090 
0.0024 

0.8056 
0.0054 

0.4641 
0.0031 

0.4142 
0.0140

0.3428 
0.1433

0.4273 
0.0047

aNMI 0.4279 
(1) 

0.4012 
(2) 

0.2903 
(10) 

0.2982 
(9) 

0.3067 
(4) 

0.3058 
(5) 

0.3046 
(7) 

0.3053 
(6) 

0.3012 
(8) 

0.3996 
(3) 

0.2662 
(11) 

0.2556 
(13) 

0.2201 
(14) 

0.2568 
(12) 

 

B. Can we always gain from the multiple-kernel version of 
soft subspace fuzzy clustering? 

As can be seen from Table V and Table VI, with one fixed 
basis kernel, KEWFC-K did not always obtain better 
performance than classical soft subspace clustering algorithms 
did. Given a fixed basis kernel, KEWFC-K would have better 
performance for some data sets. However, it could perform 
worse in other cases. This phenomenon implies that there is no 
basis kernel that is suitable for all the data sets because data 
items along with each feature may have various relationships 
which cannot be evaluated with only one dissimilarity 
measure. 

The integration of multiple-kernel learning into the 
framework of soft subspace fuzzy clustering helped to 
improve the clustering results by automatically selecting the 

effective kernels along with each feature. In this way, we can 
utilize the multiple-kernel version of soft subspace fuzzy 
clustering in practice, without wondering which basis kernel is 
the most suitable one. 

Another observation from both Table V and Table VI is that 
the best average performance of MKEWFC-K is always 
determined by the best results of KEWFC-K over different 
kernels when it run with the same parameters setting as 
MKEWFC-K did, which implies that introducing an effective 
kernel into the basis kernel sets helps to improve the 
performance of MKEWFC-K. 

C. The scalability of MKEWSC-K with respect to Kernel 
numbers 

The scalability of MKEWSC-K with respect to the kernel 
numbers is also investigated. In our experiment, MKEWSC-K 
with different kernel numbers was tested by adding one more 

191



 
 

kernel to the algorithm. Fig. 1 and Fig. 2 show the average 
time in seconds spent by MKEWSC-K, as well as the average 
RI returned by MKEWSC-K, on the ten data sets in Table II. 
The basis kernels in Table III were adopted and details on 
kernel combination were shown in Table VII. 

As can be seen from both figures, the running time of 
MKEWFC-K increased linearly with the increment of the 
kernel number. On the other hand, the performance of 
MKEWFC-K goes steady although the kernel numbers become 
larger and larger. Another observation from Fig. 2 is that the 
addition of an effective kernel always improved the 
performance of the algorithm while an ineffective kernel 
affected little on its performance. This is because MKEWSC-K 
is immune to ineffective kernels. 

TABLE VII.  DETAILS ON KERNEL COMBINATION 

Kernel 
numbers Kernel information 

1 K1 
2 K1,K2 
3 K1,K2, K3 
4 K1,K2, K3, K4 
5 K1,K2, K3, K4, K5 
6 K1,K2, K3, K4, K5, K6 
7 K1,K2, K3, K4, K5, K6, K7 
8 K1,K2, K3, K4, K5, K6, K7, K8 
9 K1,K2, K3, K4, K5, K6, K7, K8, K9 

 

 
Fig. 1 The relationships between the kernel number and running time

of MKEWFC-K 

 

 
Fig. 2 The relationships between the kernel number and clustering 

accuracy of MKEWFC-K 

IV. CONCLUSIONS AND FUTURE WORK 

The existing soft subspace fuzzy clustering algorithms often 
utilize only one distance function to evaluate the similarity 
between data items along with each feature, which leads to 
performance degradation for some complex data sets. By 
introducing the mechanism of multiple-kernel learning, a 
novel entropy weighting subspace clustering algorithm named 
MKEWFC-K is proposed in this paper. The proposed 
algorithm can learn distance functions along with each feature 
adaptively during the clustering process. Moreover, it is easy 
to implement and provides convincing results that are immune 
to irrelevant, redundant, ineffective, and unreliable features 
and kernels. Experiments show that the method effectively 
incorporates multiple kernels and yields better overall 
performance. These characteristics make it useful for real-
world applications. 

This work involves the following aspects: (1) a novel 
learning criterion integrating the framework of soft subspace 
fuzzy clustering with multiple-kernel learning is proposed; (2) 
MKEWFC-K is developed with this learning criterion and its 
properties are investigated; (3) comprehensive experiments are 
carried out to evaluate the performance of the MKEWFC-K 
algorithm. The findings in this study demonstrate that the 
proposed MKEWFC-K algorithm is more effective in subspace 
clustering than the existing algorithms in general. 

This study will be further extended to improve the 
performance of the existing subspace clustering algorithms by 
making use of the mechanism of multiple-kernel learning. For 
example, the multiple-kernel versions of the existing fuzzy 
weighting subspace clustering algorithms can be developed. In 
addition, a theoretical study on the parameter setting of the 
MKEWFC-K algorithm will be conducted, which will be of 
great importance in providing useful and convenient guidelines 
for the MKEWFC-K algorithm to be more practical in real 
world applications. 
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