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Abstract— Information granules emerging as a result of an 
abstract and more condensed and global view at numeric data 
play an essential role in various pattern recognition pursuits. In 
this study, we investigate an idea of granular prototypes 
(representatives) and discuss their role in the realization of 
classification schemes. A two-stage procedure of a formation of 
information granules is discussed. We show how the commonly 
used clustering methods are viewed as a prerequisite for the 
construction of granular prototypes. In this regard, a certain 
version of the principle of justifiable granularity is investigated. 
In the sequel, a characterization of information granules 
expressed in terms of their information (classification) content 
is provided and its usage in the realization of a classifier is 
studied. Experimental studies involving both synthetic and 
publicly available data are reported.   
 
Keywords— pattern classification, information granules, 
Granular Computing, clustering, principle of justifiable 
granularity, Fuzzy C-Means 

I. INTRODUCTION 
Clustering and classification algorithms are predominantly 
realized at the numeric level. Classification schemes along 
with their linear and nonlinear discrimination functions are 
numeric constructs and in their design we usually use 
numeric data. Granular Computing [1- 4] with its underlying 
concept of information granules [5], establishes a different 
view at classification processes and classification results. 
Interestingly enough, information granules have been 
studied from different perspectives resulting in different 
terminology and conceptual focus; one can refer here to so-
called symbolic data [6]. Clustering has been a synonym of 
information granulation. Depending upon the nature of the 
detailed clustering algorithm, we refer to fuzzy clustering, 
rough clustering, etc. Irrespectively of the mechanisms being 
involved there, the produced entities are numeric. In this 
study, we propose to move further along this line by building 
upon such numeric results of clustering (say, numeric 
prototypes) and form granular representatives (granular 
prototypes) of more general character and exploit them in 
the ensuing classification pursuits. Our key objective of this 
study is to establish a general conceptual and design 
framework of granular representation of numeric data. A 
formation of granular prototypes (representatives) of data 
consists of two main phases. First, we move from numeric 
data to a collection of numeric prototypes. Second, we 
augment (abstract) the prototypes by making them granular. 

The intent is also to arrive at the characterization of such 
granular prototypes in terms of its information content 
(classification-oriented) and investigate classification 
mechanisms. Through this characterization, granular 
prototypes can also deliver a sound and comprehensive 
description of the data and in this way may serve as a sound 
data analysis vehicle. In comparison with the existing 
literature, the study exhibits several evident aspects of 
originality: (i) we identify a genuine and fully legitimate 
need behind an emergence of information granules and their 
function in the representation of numeric data, (ii) we deliver 
a systematic development environment in which initially 
formed numeric representatives (formed as a result of 
clustering or fuzzy clustering) are made granular by 
invoking the principle of justifiable granularity, and (iii) the 
diversity of data are quantified in terms of information 
granularity.     
The study is structured as follows. We look at the 
construction of information granules by discussing a two-
phase development process (Section II) and then elaborate 
on at the characterization of granular prototypes (Section 
III). The ensuing classification mechanism is discussed in 
Section IV. Numeric experiments are reported in Section V. 
Conclusions are covered in Section VI.   

II. CONSTRUCTION OF INFORMATION GRANULES 
The development of information granules is realized in two 
main phases. First, numeric data xk positioned in Rn are 
clustered in the sequel giving rise to some condensed 
numeric description of the structure. A common 
characterization of the structure of data is provided in terms 
of a finite number of prototypes (centroids, medoids or other 
meaningful representatives of the data) that can be deemed 
as a family of concise descriptors of the data. Prototypes are 
distributed in the data space in a way they capture  the 
essence of the data (commonly they are localized in the 
regions where we encounter the highest density of data). In 
case of fuzzy clustering, the results of clustering are 
conveyed in the form of the prototypes and a fuzzy partition 
matrix capturing information about membership grades.   
There is a plethora of clustering and fuzzy clustering 
algorithms including such commonly used techniques as K-
Means and Fuzzy C–Means (FCM) [7][8] and their 
numerous variants. Irrespectively from the algorithmic 
details of the methods being considered, the commonly 
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reported results come as numeric prototypes and a numeric 
partition matrix [7-10]. Given the data set comprising “N” 
data (patterns) x1, x2, …, xN located in the n-dimensional 
space of real vectors, Rn, clustering these data into c clusters 
produces prototypes v1, v2, …, vc and the fuzzy partition 
matrix U =[uik], i=1, 2, ,…, c; k=1, 2, …, N  where uik ∈
[0,1] with the two “standard” requirements as to the 
allocation of membership values across the clusters. More 

specifically, for the k-th data point  one has 1
1

=u
c

i=
ik∑   and the 

boundary conditions with respect to the content of  the i-th 

cluster  stating that  <Nu0
N

k=1
ik∑<  

As remarked in [11], it is somewhat surprising to see that the 
representatives (such as prototypes) of the numeric data are 
only numeric entities. One might have anticipated that in 
order to fully reflect the diversity of the represented data, the 
representatives themselves could have been sought as 
constructs emerging at the higher level of abstraction, viz. 
coming in the form of information granules. Information 
granularity becomes inherent as a conceptual vehicle to 
quantify the diversity of numeric data embraced by the 
information granule. To adhere to this line of thought, 
starting with the numeric prototypes, we build information 
granules around the numeric ones. 
The principle of justifiable granularity discussed in [2] 
delivers a general design methodology by emphasizing and 
forming a sound tradeoff between justifiability of the granule 
(being viewed in terms of the numeric evidence, namely the 
data being embraced by the constructed information granule) 
and the specificity of the granule itself. If the experimental 
justifiability is of primary concern, we look at the σ-count of 
the information granule. Let us consider an interval-valued 
prototype and discuss its realization along the individual 
coordinates. . By moving to the right from the j-th coordinate 
of the i-th prototype, we determine the endpoint of the 
interval, say bij such that the value of the following ratio  

                                p
u

u

ijkj

ijijkj

≥vk:x
ik

],,b[vk:x
ik

≥
∑

∑
∈                      (1)                                                      

 
does not fall below a certain predetermined threshold p,  p 
∈  [0,1]. In the analogous way, we form the lower bound of 
the interval aij. Note that the expression standing in the 
nominator of (1) is a total sum of all elements (data) falling 
within the interval.   
An overall scheme discussed above is illustrated in Figure 1. 
While the increasing values of p give rise to larger (more 
abstract, general) information granules, these intervals 
should not overlap so this restricts the admissible values of p 
to the range [0, pmax]  where pmax is the maximal value of the 
ratio shown above for which none of the two prototypes 
overlap each other.   
 
  

numeric 
representatives 

(prototypes) 

data

granular
representatives 

(granular 
prototypes) 

 
Figure 1. The essence of the two-phase development of information 
granules: from numeric data – numeric prototypes and their granular 

counterparts 

III. A CHARACTERIZATION OF GRANULAR PROTOTYPES  
The information granules – granular prototypes formed in 
the way described above, can be described by looking at its 
(i) information content, and (ii) size (volume).  Information 
content depends on the nature of the data themselves. In 
classification problems where data come with class labels, 
the mixture of data (patterns) embraced by the granular 
prototype determine information content of the granular 
prototype. More specifically, for the ith granular prototype, 
we count the number of patterns falling within the bounds of 
the granular prototype and belonging to different classes. 
This result in the vector of class membership fi. Ideally, 
given “r” classes encountered in the classification problem, 
the granular prototype could include only patterns belonging 
to the same class. The signature of this prototype is then a 
Boolean vector fi =[0 ….0 1 0…0]. In the worst case where a 
substantial mixture of pattern occurs, the entries of the above 
vector are getting close to 1/r. Of course, when the values of 
p get higher (and the size of the information granules 
increases), the likelihood of having a more visible mixture of 
classes present within the granular prototype increases.  
The size (volume) of the granular prototype is another 
important descriptor. We express it by taking a product of 
the ratios of the length of the interval and the ranges of the 
corresponding variables. For each coordinate (variable), we  
form the granular (interval-valued) prototype V1, V2, …, Vc 
and  

                       Vol(Vi)  = ∏
n

j jrange

|ij-aij|b

1=
             (2)                                

where rangej is the range of the values assumed by the j-th 
variable.  
Having a collection of information granules of the 
prototypes, we invoke a classification mechanism.   

IV. CLASSIFICATION WITH THE USE OF GRANULAR 
PROTOTYPES  

The classification of any new pattern x is carried out in two 
steps. First, a membership degree of x to each Vi is 
determined. As usual, any ensuing computing involves a 
determination of distance of x from the corresponding 
information granule. We discuss here a detailed optimization 
problem that to a significant extent resembles what has been 
done in the optimization completed by the FCM itself. 
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Furthermore because of the granular nature of the entity used 
in the computation of distances, it is apparent that a degree 
of membership of x to Vi (no matter how it is determined) 
has to be reflective of the fact that such distance could be 
granular (not numeric) and in the simplest case should 
exhibit an interval nature of possible values, say ui= [ui

-, ui
+]. 

Second, the granular (interval-valued) membership are 
aggregated with the information content of the 
corresponding prototypes. 
 
Computation of interval-valued membership grades of 
matching 
Before proceeding with the granular prototypes, it is 
instructive to briefly recall a way in which the degrees of 
membership are determined when dealing with numeric 
prototype, Considering the prototypes V1, V2, …, Vc and a 
certain pattern x, we formulate the following optimization 
problem whose solution is a set of optimal degrees of 
membership (activation levels). Note that the critical point of 
the method is related with the determination of the distance 
between x and Vi (which itself is interval-valued). It 
becomes apparent that there is no single distance one can 
deem to be fully reflective of the distance between a numeric 
data and the granular prototype. Sound boundaries of the 
distance (optimistic and pessimistic) can be formed by 
looking at the shortest and longest distance as determined for 
the individual variables of the prototype. Denoting the 
interval-valued coordinates of Vi, say Vij =[vij

-, vij
+], j=1, 2, 

…, n,  and assuming the Euclidean type of distance, we use 
the following self-explanatory expression, see also Figure 2. 
Here we have 
||x-Vi||min = (x1- bi1)2 + (x2-ai2)2    
||x-Vi||max = (x1- ai1)2 + (x2-bi2)2  

 

Vi 

x 

ai2 

bi2 

ai1 bi1 

 
Figure 2.  Computing bounds of the distance from the interval-valued 

prototype; shown is a 2-dimensional case (n=2) 
Obviously, if xj is included in the interval [vij

-, vij
+] and this 

inclusion occurs for all the variables, the corresponding 
distance becomes equal to zero. The bounds of the distance 
result in the matching levels (membership grades) computed 
as  
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where m is a fuzzification coefficient, m >1. Subsequently 
we form the bounds of the membership grades ui=[ui

-, ui
+] in 

the following form, 
 ui

-=min(wi
*, wi

**)  ui
+=max(wi

*, wi
**) 

 
Aggregation of information content of granular prototypes  
In light of the construction discussed above, the result of 
classification is expressed as an aggregation of interval-
valued class assignment. More specifically, we develop a 
vector of interval-valued class membership Ω in the 
following form 

                         )(
1

ii∑
⊕
=

⊗=Ω
c

i
fu                         (4) 

(the symbols shown in circles underline that the computing 
involves information granules, say fuzzy numbers,  rather 
than plain numeric entities) [12]. In other words, as a result 
of this computing we obtain the interval-valued membership 
intervals in the form  
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In the classification rule we distinguish between the 
following two situations: 
(i) x is located inside a certain prototype Vi0; then a vector of 
class membership Ω  is given as Ω = fi0 (so the class 
membership vector is fully inherited from the class content 
of the prototype), 
(ii) x is positioned outside all Vis. Then the formula shown 
above is invoked. The interval–valued of the L-th entry of 
the class membership is computed as follows 

],[],[
11
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+

=
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i
i

c

i
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Interestingly, by looking at these rules, it becomes apparent 
that in this way we have generalized the well-known K-NN 
classification rule exploited in pattern recognition. As the 
class membership grades are interval-valued, to arrive at a 
single numeric value and thus identify a single class (say, 
L0), a simple alternative is to find the maximal upper 
coordinate of Ω, namely  L0 = arg maxL ωL

+ 

V. EXPERIMENTAL STUDIES 
In this section, we evaluate the proposed granular intervals 
on two collections of data: synthetic data and machine 
learning repository datasets. 
(1) Synthetic dataset: two-class two dimensional 1,800 
instances of patterns have been generated randomly using 
normal distributions with different means and standard 
deviations, and then divided into the training (1,200) and 
testing(600) sets. The data are shown in Figure 3. 
We process the data with the use of the FCM algorithm with 
c=5. Then the obtained prototypes are: 
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x1 x2 

v1 0.433 0.933 

v2 0.943 0.807 

v3 -0.094 -0.183 

v4 -0.598 1.247 

v5 0.5 0.45 
The interval prototypes, Figure 4, are generated for selected 
values of p (0.1, 0.12, 0.14,…..); we keep varying p until no 
intersection among intervals of the prototypes (pmax=0.58) 
occurs. 
 
In an ideal case, each interval-valued prototype would 
embrace data coming from the same class. The classification 
error ε is defined in three ways by looking at the patterns 
positioned  (i) inside interval-valued prototypes (εin), (iii) 
outside intervals (εout),  (iii) located anywhere (εg). 
 

 
Figure 3: Synthetic training dataset 
 

Table 1 shows the classification errors for the individual 
interval-valued prototypes along with the total volumes of 
the prototypes reported for some selected values of ps.   
The classification errors inside and outside intervals for 
training and testing dataset are shown in Figure 5. 

 

 
Figure 4: Interval prototypes of synthetic dataset  (c=5, p=0.1, 0.12,         

0.14 , …0.58). 

 
The classification error εg for the training data at (pmax = 
0.58) is 0.1425 and the minimum εg is 0.1292 occurs at (popt 
= 0.42) for the same set. The total volume of interval-valued 
prototypes increases with p, but this does not guarantee 
lower classification errors in a sense increasing the interval 
volumes might aggregate data from both classes. Table 2 
shows εg for training and testing data set when considering 
different values of c. 
In general, as the number of the prototypes increases, the 
classification error εg decreases for both pmax and popt, 
however, increasing the number of prototypes does not 
guarantee the decrease of the classification error as it will be 
shown for the machine learning datasets. 
 
(2) Machine learning repository datasets: Four data sets have 
been chosen from UCI repository for machine learning 
datasets  [13]. 

 
(a)  

 
(b) 

Figure 5: Classification error as a function of p: (a) training dataset            
(b) testing data set 

Each dataset has been divided (60-40% split) into the 
training and testing sets. The description of the selected 
dataset is shown in Table 3.  
Figure 6 displays the values of the classification errors (εin, 
εout and εg) for the Iris dataset with respect to p for c=3 and 
c= 4 (left vertical axis). The plots also show the total volume 
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of the interval prototype with respect to p (right y axis). As 
the Iris dataset contains three classes, we start with three 
interval prototypes hoping that three clusters  could be 
enough to differentiate between the classes in the sense that 
each prototypes is reflective of an individual class  (εin=0- at 
p=0.58 for c=3 and p=0.44 for c=4). 
The intervals starts intersect (overlap) at p=0.7 and 0.64 
where the values of εg are equal to 0.108 and 0.084 for c=3 
and c=4, respectively. However, the minimum value of ε 
occurred at popt= 0.34 (c=3) and 0.62 (c=4). 

 
Table 4 shows the classification error εg for machine 
learning datasets at pmax and popt along with the values of c. 
In most of the cases, the minimum value of εg does not occur 
at pmax, Also,  considering more prototypes in the 
classification process might improve the process to a certain 
extent, however it depends on the nature of the data. 
 

p V1 V2 V3 V4 V5 εin εg Total Vol (Vi) 

0.1 fi 0.25 0 0 0 0 0.07 0.22 0.002 Vol(Vi) 0 0 0 0.001 0.001

0.3 fi 0.424 0 0 0 0.24 0.16 0.14 0.022 Vol(Vi) 0.002 0.002 0.002 0.011 0.005

0.4 fi 0.333 0 0 0 0.239 0.13 0.14 0.04 Vol(Vi) 0.003 0.004 0.003 0.02 0.01 

0.58 fi 0.326 0.007 0 0.041 0.437 0.19 0.13 0.1 Vol(Vi) 0.009 0.009 0.008 0.053 0.021
Table 1: Interval-valued prototype for  the training data: fi, Vol(Vi), ε and  Total Vol(Vi) 

 
 

Table 2: classification error εg for different value of c for synthetic dataset. 

 

Dataset Number of 
instances 

Number of 
variables 

Number of 
classes 

Training 
set 

Testing 
set 

Iris 150 4 3 75 75 
Page Blocks Classification 

 5473 10 5 2736 2737 

Breast Cancer Wisconsin 
(Diagnostic) 569 30 2 284 285 

Seeds 210 7 3 105 105 
Table 3: Description of the selected machine learning datasets. 

 

   
                                                           (a)                                                                                                                               (b) 
                                                                 Figure 6: Classification error for the Iris data --training data: (a) c=3 (b) c=4 
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c pmax 
Training 

(pmax) 
Testing 
(pmax) popt 

Training 
(popt) 

Testing 
(popt) 

2 0.60 0.167 0.167 0.52 0.159 0.168 
4 0.64 0.129 0.145 0.16 0.112 0.112 
7 0.52 0.133 0.143 0.14 0.108 0.108 
9 0.46 0.128 0.128 0.14 0.105 0.105 
11 0.48 0.127 0.128 0.20 0.123 0.130 
15 0.54 0.098 0.098 0.54 0.098 0.098 
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Dataset c pmax Training set Testing set popt Training set Testing set 

 
Iris 

3 0.7 0.108 0.119 0.34 0.048 0.090 
4 0.64 0.084 0.149 0.62 0.060 0.134 
7 0.7 0.108 0.119 0.34 0.048 0.090 

Page Blocks Classification 
 

5 0.76 0.093 0.095 0.74 0.093 0.095 
7 0.64 0.093 0.095 0.54 0.093 0.095 
10 0.52 0.093 0.096 0.52 0.093 0.096 

Breast Cancer Wisconsin (Diagnostic) 
2 0.82 0.064 0.070 0.82 0.064 0.070 
4 0.68 0.121 0.137 0.68 0.121 0.137 
8 0.60 0.067 0.078 0.60 0.067 0.078 

Seeds 
3 0.66 0.106 0.106 0.66 0.106 0.128 
5 0.58 0.069 0.074 0.58 0.069 0.074 
9 0.46 0.106 0.106 0.46 0.106 0.106 

Table 4: Classification error εg obtained for selected machine learning datasets versus different number of prototypes. 
 

Dataset Prototypes intervals 
(c, p) Other methods reported in the literature 

 
Iris 

0.090 
(7,0.48) 

0.0447 [14] 
0.033 +- 2.3 [15] 

0.0133 [16] 

Page Blocks Classification 
 

0.095 
(7, 0.54) 

0.0305 [17] 
0.0272 [18] 
0.1446 [19] 

Breast Cancer Wisconsin (Diagnostic) 0.078 
(8, 0.60) 

0.0228 [20] 
0.0190+- 0.005 [21] 
0.038 +-0.014 [22] 

Seeds 0.074 
(5, 0.58) 

0.04 [23] 
0.0810 [24 ] 

Table 5: Comparison of classification error rates εg for selected machine learning data
.     

The granular classifier competes with other methods 
reported in the literature as shown in Table 5. It is worth 
mentioning that the value of p plays an important role in the 
overall process. In the current experiments, the value of this 
parameter is fixed for all prototypes and for all input 
variables. In other words, there could be different volumes 
of interval prototypes for the same value of prototypes 
depending on the distributions of data around the prototypes.  

VI. CONCLUSIONS 
The idea of building granular prototypes viewed as sound 
general and non-numeric representatives of data and being 
inherently associated with classification problems helps re-
formulate the essence of the classifiers and make sense of 
the nature of classification results. Granular prototypes can 
be treated as generalized landmarks in the feature space 
while the way in which the determination of class 
assignment is completed generalizes an idea of condensed 
K-NN (K- nearest neighborhood) classification rule with the 
objects exhibiting well-defined information content (class 
characterization).  
 
 As the study brings forward some initial concepts along 
with algorithmic considerations, there are several clearly 
delineated directions worth pursuing. First, the construction 

of granular prototypes involves setting a value of the crucial 
parameter (p), which is common across all granules and all 
variables. In this sense, a growth of information granules is 
the same and is limited by the non-overlap requirement. 
Second, our focus was on interval constructs (which was 
predominantly motivated by the readability of the resulting 
concept). We are, however, well poised to consider more 
advanced formalisms of information granules (fuzzy sets, 
rough sets, etc.). Also, optimizing the value of p along each 
variable (feature) would lead to higher classification rates 
reported for the patterns located within the intervals of the 
prototypes.  

 ACKNOWLEDGMENTS 
This study was funded by King Abdulaziz University 
(KAU), under grant No. (4-135-1434/HiCi). The authors, 
therefore, acknowledge technical and financial support of 
KAU. 

REFERENCES   
[1] A. Bargiela, and W. Pedrycz, Granular Computing: An 
Introduction. Kluwer Academic Publishers, Dordrecht, 
(2003). 

437



[2] W. Pedrycz,  Granular Computing: Analysis and 
Design of Intelligent Systems, CRC Press/Francis 
Taylor, Boca Raton, (2013). 
[3] L.A. Zadeh, "Towards a theory of fuzzy information 
granulation and its centrality in human reasoning and fuzzy 
logic". Fuzzy Sets and Systems, 90, 1997, pp. 111-117. 
[4] L.A Zadeh, "From computing with numbers to 
computing with words-from manipulation of measurements 
to manipulation of perceptions". IEEE Trans. on Circuits 
and Systems, 45, 1999, pp. 105-119 
[5] L.A. Zadeh, "A note on Z-numbers", Information 
Sciences, 181, 2011, pp. 2923-2932. 
[6] L. Billard, and E. Diday, Symbolic Data Analysis. J. 
Wiley, Chichester, 2006. 
[7] J.C. Bezdek, Pattern Recognition with Fuzzy Objective 
Function Algorithms, New York, Plenum, 1981. 
[8] W. Pedrycz, Knowledge-Based Clustering: From Data to 
Information Granules. J. Wiley, Hoboken, 2005. 
[9] W. Pedrycz, and J. Valente de Oliveira, “A development 
of fuzzy encoding and decoding through fuzzy clustering”, 
IEEE Trans. Instrum. Meas, vol. 57, no. 4, 2008, pp. 829–
837.  
[10] R. Xu, and D. Wunsch, "Survey of clustering 
algorithms", IEEE Transactions on Neural Networks 16, 3,  
2005, pp. 645–678. 
[11] W. Pedrycz, A. Bargiela, "An optimization of allocation 
of information granularity in the interpretation of data 
structures: toward granular fuzzy clustering", IEEE Trans on 
Systems, Man, and Cybernetics, Part B, 42, 2012, pp. 582-
590. 
[12] W. Pedrycz, and F. Gomide, Fuzzy Systems 
Engineering: Toward Human-Centric Computing. John 
Wiley, Hoboken, NJ, 2007. 
[13] Machine Learning Repository : 
http://archive.ics.uci.edu/ml/ 
[14] E. Bauer, and R. Kohavi. "An empirical comparison of 
voting classification algorithms: Bagging, boosting, and 
variants", Machine Learning, 36, 1999, pp. 105–139.  
[15] H. Cevikalpa, and B. Triggs, “Hyperdisk based large 
margin classifier", Pattern Recognition, Volume 46, Issue 6, 
2013, pp. 1523–1531. 
[16] F. J. de Souza, M. M. B. R. Vellasco, and M. A. C. 
Pacheco, “Hierarchical neuro-fuzzy quad tree models", 
Fuzzy Sets Syst., vol. 130/2, 2002, pp. 189–205.   
[17] J.R. Quinlan. C4.5: Programs for Machine Learning. 
Morgan Kaufmann, San Mateo, CA, 1992. 
[18] S. Eschrich, N. V. Chawla and L. O. 
Hall, "Generalization Methods in Bioinformatics". In 2002 Proc Data Mining in Bioinformatics. pp.26-32 
[19] M. Adil, Bagirov, "Max–min separability", 
Optimization Methods and Software,  Vol. 20, Iss. 2-3, 2005, 
pp.277-296. 
[20] G. Salama, M. Abdelhalim, and M. Zeid, "Breast 
Cancer Diagnosis on Three Different Datasets Using Multi-
Classifiers", International Journal of Computer and 
Information Technology, Vol. 01, Issue 01, 2012, pp. 36-43. 
[21] H. A. Abbas, “An evolutionary artificial neural 
networks approach for breast cancer diagnosis”, Journal of 

Artificial Intelligence in Medicine, Volume 25 Issue 3, 2002, 
Pages 265-281. 
[22] B. Moghaddam, and G. Shakhnarovich,  Boosted 
Dyadic Kernel Discriminants (Advances in Neural 
Information Processing Systems 15,  (2002), MIT Press,  pp. 
745-752.   
[23] M. Charytanowicz, J. Niewczas, P. Kulczycki, P.A. 
Kowalski, S. Lukasik, and S. Zak, "A Complete Gradient 
Clustering Algorithm for Features Analysis of X-ray 
Images", Information Technologies in Biomedicine, E. 
Pietka, J. Kawa (eds.), Springer-Verlag, Berlin-Heidelberg, 
2010, pp. 15-24 
[24] O. Hryniewicz,  "Statistical and Possibilistic 
Methodology for the Evaluation of Classification 
Algorithms", Communications in Computer and Information 
Science, Volume 303, 2013, pp 255-269. 
 

438




