
Abstract— A recurring theme in research employing type-2
fuzzy sets is the question of how much uncertainty in a given
context warrants the application of type-2 fuzzy sets and sys-
tems over their type-1 counterparts. In this paper we provide
insight into this challenging question through a detailed inves-
tigation into the ability of both types of Fuzzy Logic Systems
(FLSs) to capture and model different levels of uncertainty/noise
through varying the size of the Footprint Of Uncertainty (FOU)
of the underlying fuzzy sets from type-1 fuzzy sets to very
“wide” interval type-2 fuzzy sets. By applying the study in the
well-controlled context of chaotic time-series prediction, we
show how, as uncertainty/noise increases, type-2 FLSs with
fuzzy sets with FOUs of increasing size become more and more
viable. While the work in this paper is focused on a specific
application, we believe it provides crucial insight into the chal-
lenging question of the viability of interval type-2 over type-1
FLSs.
Keywords—fuzzy set; interval type-2; uncertainty; footprint of
uncertainty; quantification of uncertainty; noise

I. INTRODUCTION

Fuzzy set theory was first introduced by Zadeh in 1965[1].
Fuzzy sets and systems have evolved for more than 45 years
and have been accepted as a methodology for building sys-
tems that can deliver satisfactory performance in the face of
uncertainty and imprecision [2]. Hence, Fuzzy Logic Systems
(FLSs) have been successfully implemented in many real
world applications, including modelling and control [3],[4],
forecasting of time series [5]-[7] and data mining [8],[9].

Type-1 FLSs (T1 FLSs) are the most known and widely
used type of FLS. In spite of this, recent years have shown a
significant increase in research toward more complex forms
of fuzzy logic such as interval type-2 fuzzy logic systems
(IT2 FLSs ) [10],[11] and more recently, general type-2 FLSs
(T2 FLSs) [2],[12]-[20]. This transition was motivated by the
realization that type-1 fuzzy sets (T1 FSs) can only handle a
limited level of uncertainty whereas real-world applications
are often faced with multiple sources and high levels of un-
certainty [21]. In 1975, Zadeh [22] recognized this potential
limitation and introduced the concept of (general) type-2
fuzzy sets which are an extension to T1 FSs. As more com-
plex models, T2 FSs are considered to be potentially better
suitable for modelling uncertainty. The additional complexity
arises from the inclusion of a Footprint Of Uncertainty
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(FOU) and a third dimension, offering extra degrees of
freedom to T2 FSs in comparison to T1 FSs [21],[23]. It is the
same complexity however, which makes FLSs which employ
T2 FSs computationally very demanding in comparison to
those that employ T1 FSs.

The computational complexities of using T2 FLSs led to
the introduction of the simplified IT2 FLSs which today are
the most commonly used kind of T2 FLS. IT2 FLSs employ
IT2 FSs, which are a special case of a general T2 FSs where
all the secondary membership grades are equal to one. Many
researchers argue in favour of IT2 FLSs over T1 FLSs be-
cause of their potential to model and mitigate the effects of
uncertainty [24]-[26]. Table I provides a sample of some
articles which directly cite the presence of "large amounts of
uncertainty" in their given applications as the reason for
employing type-2 FSs. From this, it is important to note that
many of the papers considering T2 FSs in their study were
expecting to design a system that will perform well in the face
of “high levels of uncertainty”, without however quantifying
what “high” means in general or in the case of their specific
application.

Thus, while a main issue in the application of FLSs is the
estimation of parameters such as the type of fuzzy sets and
their parameters as well as the number of rules, an even more
fundamental question is generally whether T1 or T2 FSs
should be used. Although there is a record of experimental
evidence showing improvements in terms of uncertainty
handling of IT2 over their T1 counterparts [30],[31], no sys-
tematic way of determining the potential advantage of em-
ploying T2 FSs over T1 FSs has been developed.

In this paper, we describe an application driven investiga-
tion into the relationship between the FOU size of FSs and the
level of uncertainty in an application by using Time Series
Prediction (TSP) as a well-defined sample application. We
design T1 FLSs for TSP and proceed by generating different
FLSs with continually increasing FOU sizes over a number of
steps. In parallel, we inject increasing levels of noise to pro-
vide an a priori known and well defined/understood source of
uncertainty. Thus, the time series prediction application pro-
vides a platform to explore the behaviour of the FLSs with
different FOU sizes in respect to different levels of
noise/uncertainty. The main objective of this work is not to
achieve an optimal performance in the prediction, but to shed
light on the appropriate size of the FOUs for given levels of
uncertainty/noise. While the results are clearly application
dependent and not generalizable, we feel they provide sig-
nificant insight into the relationship of FOU size and lev-
els/amount of uncertainty in a given setting.

In summary, the main contributions of this paper can be
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TABLE I SAMPLE ARTICLES CITING TO THE PRESENCE OF "LARGE AMOUNTS OF

UNCERTAINTY" IN THEIR APPLICATIONS AS THE REASON FOR EMPLOYING

TYPE-2 FSS

Author(s) Ref. no. Direct Quote

Lin et al. [27]

“Due to the rule uncertainties and the train-
ing data corrupted by noise, the circum-
stances are too uncertain to determine exact
membership grades. A new direct adaptive
interval type-2 fuzzy controller is developed
to handle such uncertainties for a class of
multivariable nonlinear dynamical systems
involving external disturbances”

Wagner
and
Hagras

[28]

“The type-2 Fuzzy Logic Controller (FLC)
has started to emerge as a promising control
mechanism for autonomous mobile robots
navigating in real world environments. This
is because such robots need control mecha-
nisms such as type-2 FLCs which can handle
the large amounts of uncertainties present in
real world environments”.

Baklouti
and
Alimi

[29]
“Motion planning of mobile robots in un-
known and dynamic environments is faced
with a large amount of uncertainties.”

listed as: (1) Systematic design and analysis of the perfor-
mance and uncertainty capturing ability of IT2 FSs. (2) In-
trospection into how the level of uncertainty relates to the size
of the FOUs of IT2 FSs or conversely, what size of FOU
works best for a given level of uncertainty in the given ap-
plication. (3) The proposed analytical method provides in-
sight which can support the selection of the FOU size at de-
sign time in response to known quantifications of uncertainty.

This paper is organized as follows. In Section II a review of
type-2 FLSs, rules creation and time series prediction is pro-
vided. In Section III, the proposed method of FOU construc-
tion is described. Section IV discusses the FLSs' design and
evaluation. In Section V, we apply our method to the
Mackey-Glass time-series prediction and the results are pre-
sented. Section VI provides analysis and discussion. Finally,
we provide some conclusions and outline future work in
Section VII.

II. BACKGROUND

This section provides a review of the underlying areas built
on in this paper, namely type-2 fuzzy systems, automatic
generation of rules for FLSs from data and finally time series
prediction as an application area.

A. Type-2 Fuzzy Logic Systems

A type-2 FLS consists of five components: fuzzifier, rule
base, inference engine, type reducer, and defuzzifier. It is
very similar in structure to a type-1 FLS with the only dif-
ference being the introduction of a type-reducer component
[21]. A type-2 FLS operates on type-2 fuzzy sets, which are
used to represent the inputs and outputs of the FLS. An FLS
that uses at least one T2 FS (IT2 FS) is referred to as a T2 FLS
(IT2 FLS).

In a type-2 FLS, crisp inputs are first fuzzified, usually into
input T2 FSs. These activate the inference engine and the rule
base to produce output type-2 fuzzy sets. They are then pro-
cessed by the type-reducer, which combines the output sets
and performs a centroid calculation, leading to type-1 fuzzy
sets known as type-reduced set(s) [21]. The defuzzifier can

then defuzzify the type-reduced type-1 fuzzy outputs to
produce crisp outputs. Further detail on T2 FLSs can be found
for example in [21].

B. Rule Creation for FLSs

As mentioned, a core part of designing FLSs beyond the
specification of the types and parameters of the FSs employed
is the specification of a rule base. A number of different ap-
proaches are commonly taken to achieve this, including the
design of the rule base by an expert, the learning of the rule
base over time (e.g., using a genetic algorithm) or the learning
of the rule base from existing data. In this paper we apply the
latter approach by using the Wang-Mendel method
(WM-method) [7] to generate a fuzzy rule base from a
number of input-output data pairs. The WM-method gener-
ates a rule with an associated weight for each training data
pair; then the resulting rule set is truncated by removing the
conflicting rules and by using the calculated weights in order
to obtain the final rule base. For a more detailed view of the
approach, we refer the reader to [7] and [21].

In the current paper, T1 FSs are generated before the
WM-method is applied in order to produce a rule base. The
same rule base is employed for all FLSs in order to enable the
comparison of all FLSs with a sole focus on their FSs (rather
than differences in the rule bases). As further detailed in
Section III.A, we acknowledge that this approach does not
guarantee the best rule base for each FLS, however, as the aim
of the paper is the comparison based on FSs rather than
achieving best performance per se, we believe this approach
is suitable to support the aim.

C. Time Series Prediction

Time series prediction is an important application that is
frequently addressed in the literature, e.g., [21], [32]-[34]. It
is valuable in many research areas such as weather forecast-
ing, signal processing, economics and production control.

Consider a time seriesݔ�( )݇, where�݇ = {1,2,3, … ,ܰ}. We
have  known data points ofݔ��( )݇ to predict the future value
ofݔ�� such that ݇− < 0 . For example, we are given

−݇)ݔ� + −݇)ݔ,(1 + −݇)ݔ,(2 + 3), … )ݔ, )݇
past measurements ofݔ��( )݇ to predict the future value of
,ݔ +݇)ݔ 1) in case of considering a single stage prediction
forݔ�. Further, if these measurements are not perfect, e.g.,
contain noise, we refer to a given value of the time series
)ݔ )݇ asݏ��( )݇, where )ݏ )݇ = )ݔ )݇ +��݊ ( )݇, and ݊( )݇ is the
measurement error (noise) [21].

The Mackey-Glass time series is a chaotic time series
proposed in [35] containing a first-order differential-delay
equation to model a physiological systems (Equation (4b) in
[35]). It is obtained from the non-linear equation:

(ݐ)ݔ݀

ݐ݀
=

ܽ ∗ −ݐ)ݔ )߬

1 + −ݐ)ݔ )߬
− ܾ∗ ,(ݐ)ݔ (1)

where a, b and n are constant real numbers, t is the current

time and ߬is the difference between the current time and the

previous time −ݐ) )߬. For  ߬≤ 17, the system is known to 
exhibit a deterministic/periodic behaviour which turns cha-
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otic with ߬>17. To obtain simulation data, (1) can be discre-
tised using Euler’s method [36] with a step size equal 1.0 and
the initial values of x(t) for all values of ݐ� ߬are set ran-
domly. To make the prediction more challenging, noise can
be added to the time series. The level of noise is commonly
measured by the signal-to-noise ratio (SNR) where a high
SNR refers to a clear signal (low noise) and a low SNR refers
to a noisy signal (high amounts of noise). In this paper, we
will use single-stage prediction for the Mackey-Glass chaotic
time series. Different levels of uniform noise will be intro-
duced into a testing set of existing samples of the time series,
resulting in a series of testing sets (for different noise levels).
Each testing data set is used in order to test and evaluate FLS
performance.

III. FROM TYPE-1 TO INTERVAL TYPE-2 FUZZY SETS AND

SYSTEMS

A. Overview

Commonly, there are two different approaches to design-
ing IT2 FLSs [21]: a partially dependent approach and a
totally independent approach. The former approach starts
with the design of a T1 FLS the parameters of which are then
used as a basis for the design of the IT2 FLSs. An advantage
of this approach is the potentially faster design of the IT2 FLS
(in particular when a learning approach is employed) as well
as a good comparability between the T1 and IT2 FLSs. The
latter approach is used to design IT2 FLS directly without
relying on an intermediate T1 FLS and thus avoids the po-
tential shortcoming of the former approach that the “best” IT2
FLS may in fact be very different from the “best” T1 FLS, i.e.
using a T1 FLS may in fact be detrimental to the construction
of a well-performing IT2 FLS.

In this paper, we adopt the partially dependent approach as
the preservation of the basic structure (number of member-
ship functions, rule base) is essential to our approach of
comparing a series of FLSs that range from a T1 to IT2 FLSs
with increasing FOUs. We acknowledge the risk that the best
performance for the IT2 FLSs may be achieved without re-
lying on a T1 implementation but we feel that for the pro-
posed investigation (which is not about finding the best pre-
diction performance), the use of the partially dependent ap-
proach is warranted and suitable.

Following a partially dependent approach, the main ques-
tion after a type-1 system has been designed is the transition
from the type-1 fuzzy membership functions to interval
type-2 membership functions, in other words, the introduc-
tion of an FOU. In the following subsection, we discuss an
approach to relate an FOU’s size to the amount of uncertainty
in order to establish a direct relationship between FOU size
and amount of uncertainty present.

B. FOU Construction Approach

There exists a number of common IT2 FSs in the literature,
i.e., triangular, Gaussian, trapezoidal, sigmoidal, pi-shaped,
etc. In most of the literature two types of IT2 FSs are used:
fuzzy sets with uncertain mean (centre for triangular case)
and with uncertain standard deviation (spread for triangular
case). In this paper, largely because of space limitations, only

triangular MFs are considered. In order to study the uncer-
tainty modelling of IT2 FSs, an uncertainty indicator is in-
troduced here. The uncertainty indicator is intended to show
the amount of uncertainty captured by the FSs and modelled
by their FOUs. Consider an IT2 FS ሚdescribedܣ by its FOU
using the upper and the lower membership functions (ݔ)ҧ෨ߤ
and (ݔ)෨ߤ [21] as:

FOU൫ܣሚ൯ൌ �ራ ሺߤ�ҧ෨(ݔ)ǡߤ෨(ݔ))
א௫

(2)

The Uncertainty Indicator (UI), ܷ෨(ݔ) associated with the
input vector x by fuzzy set ሚcanܣ be expressed as:

ܷ෨(ݔ) ൌ (ݔ)ҧ෨ߤ� െ (ݔ)෨ߤ (3)

Fig. 1(a) and Fig. 1(c) show IT2 FSs with uncertain spread
and uncertain centre, respectively. The Uncertainty Indicator
(UI), ܷ෨(ݔ)for IT2 FSs with uncertain spread is plotted in Fig
1(b) and for IT2 FS with uncertain centre is shown in Fig.
1(d). From both cases, it can be seen that the UI value is not
constant over the respective supports of the lower MFs
(ݔ)෨ߤ�) > 0).This in turn highlights that the FOU is not uni-

form in this region of the FS. With an assumption that the
noise/uncertainty is uniform, an FOU construction method
should give rise to an equal amount of uncertainty in mem-
bership at least within the core of the FS (which we consider
to be delineated by the lower MF).

In an effort to obtain an IT2 FSs with a uniform FOU all
over the core of the fuzzy set, in this paper, we propose an
FOU construction method based on a fixed parameter that is
used to create an FOU of a given size around a principal
(type-1) MF. As an input, we employ T1 FSs (in our case
designed based on expert knowledge).

Fig. 1. Interval type-2 fuzzy sets and their Uncertainty Indicators (UI) (a) IT2
FS with uncertain spread and (b) its Uncertainty Indicator , (c) IT2 FS with
uncertain centre and (d) its Uncertainty Indicator. The dotted lines in both (a)
and (c) are T1 FS.

(a) (b)

(c) (d)

UMF

LMF

T1MF
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Then, we start the design of the interval type-2 fuzzy sets
by including the FOU size parameter to form the IT2 FSs of
the system. In order to create the IT2 version of each initial T1
set, the FOU size is specified using the parameter�ܿ א ሾͲǡͳሿ.
Note that ܿൌ Ͳ results in a type-1 FS with the original
membership function while ܿൌ ͳ results in an IT2 set with a
very wide FOU (as detailed further below).

In order to create the IT2 FSs based on the uncertainty
parameter c and the T1 MF, we employ (4) and (5) shown
below to create the resulting upper and lower MFs respec-
tively. Note that, the minimum operation in (4) and the
maximum operation in (5) ensure that the values of both
upper and lower membership functions are bounded in the
interval [0, 1]. In (5), note that the minimum operation pre-
vents the lower membership function not exceeding the value
of 1.0-c. Both (4) and (5) have been designed to ensure that
the resulting FOU is uniform within the core (i.e. the support
of the lower MF) of the IT2 FSs. The upper MF, (ݔ)ҧ෨ߤ and
the lower MF, (ݔ)෨ߤ of IT2 FS ሚcanܣ then be obtained as

follows:

(ݔ)ҧ෨ߤ���� = minቂߤ(ݔ) +


ଶ
, 1.0ቃ (4)

(ݔ)෨ߤ = minቂmaxቂߤ(ݔ) −


ଶ
, 0ቃǡͳǤͲെ ቃܿ (5)

An illustrative example is depicted in Fig. 2 for the case of
triangular membership functions designed with the FOU sizes
parameter c =0.5 and c = 0.80 using equation (4, 5). From the
T1 FS shown in Fig. 2(a), two IT2 FSs are created by in-
cluding the pre-specified FOU size parameters c = 0.5 and
c = 0.8 in Fig. 2(b) and Fig. 2(c) respectively. The upper and
lower MFs are obtained using equations (4) and (5). By using
equation (3), the UI for both IT2 FSs are obtained and are
depicted in Fig. 2(d) and 2(e). From both cases, it can be seen
that, the UI value is constant within the supports of the lower
MFs (ݔ)෨ߤ) > 0 ) with a value equal to c (note that, in

Fig. 2(d) c= 0.5 and in Fig. 2(e) c= 0.8), hence, the value of
the chosen FOU sizes. This result makes it clear that the FOU
is uniform in this region of the FS.

After considering the transition process from type-1 to
type-2 fuzzy sets, we proceed to the FLSs' design and
evaluation process .

IV. THE FLSS' DESIGN AND EVALUATION PROCESS

This section describes the initial design of the T1 FLS for a
given application and its subsequent transformation to one or
more IT2 FLSs. Specifically, the design of multiple IT2 FLSs
by creating different size FOUs with respect to different noise
levels is explained. The design methodology can be summa-
rized in four steps as follows:

Step 1: Generate training and testing data from the system
under study (e.g., the time series).The training data is kept
noise free, while later testing data will be injected with dif-
ferent noise levels. The training data is used to train the sys-
tem (generating rules) under “ideal conditions”. Whereas, the
testing data is corrupted by noise (as is expected in real world
situations) to test the performance of a designed system in the

face of the given level of noise (uncertainty).
Step 2: Design an initial T1 FLS. First, T1 FSs are created,

either by an expert (as is the case in our case as further de-
tailed in Section V) or through an automatic method (e.g., a
genetic algorithm).

Second, the training data is used to generate the rules using
for example the WM-method explained in Section II. The
created rule base will be used for all subsequent FLSs.

Step 3: Extend the T1 FLS into an IT2 FLS using the par-
tially dependent design introduced in Section II. The FOU
size אܿ ሾͲǡͳሿis discretized to a set of k values, where k also
defines the number of noise/uncertainty levels that will be
investigated. The upper and lower MFs will be constructed
using equations (4) and (5). The result is a number of k FLSs
that each one of them needs to be tested over a number of k
noise levels.

Step 4: Performance Testing and Evaluation.
After finishing the design of each of the IT2 FLS with the

chosen FOU size parameter, we test its performance using the
pre-generated testing data at each of the k noise/uncertainty
levels. At each noise level, the performance testing is re-
peated a number of times (in our case: 30 times) to account
for the random character of the noise injection.

Fig. 2. Illustration of the uniform design of IT2 membership functions. (a)
Initial T1 FS, (b) IT2 obtained using FOU size parameter c= 0.5 and (c) IT2
FS obtained using FOU size parameter c= 0.8. (d) The Uncertainty Indicator
(UI) obtained from IT2 FS with FOU size parameter c= 0.5 and (e) UI ob-
tained from IT2 FS with FOU size parameter c= 0.8

(c)(b)

(d) (e)

(a)
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The performance of the design(s) is evaluated, for example
using the root mean-squared error (RMSE) as shown in (6):

ܯܴ ܧܵ ൌ ට
ଵ

ே
∑ [ ܻെ ෨ܻ

]
ଶே

ୀଵ (6)

where N is the total number of data points (testing data), ܻ is
the actual output (from the testing data) and �ܻ෨is the crisp
output of the FLS (predicted). The average of the RMSEs is
then calculated of all of the iterations for each FLS at each
noise/uncertainty level.

The complete process is illustrated by flowchart in Fig. 3.
In the following section, we provide some results and

analysis based on an initial application of the described pro-
cess in the context of M-G time series prediction.

V. EXPERIMENTS AND RESULTS

In order to illustrate the methodology proposed in Section
IV, we conduct some experiments for the forecasting of the
Mackey-Glass time series [35] described in Section II.

In summary, we generate a data set (both training and
testing data) from the Mackey-Glass time series. Then, we
design type-1 FSs (based on expert insight) and create the rule
base using the Wang-Mendel [7] approach using the training
data set. Next, we start the design of the interval type-2 fuzzy
sets by including the FOU size parameter as described earlier
to form the IT2 MFs of the system. The actual number of FSs
and the rules are maintained from the T1 system. Different
levels of noise as a source of uncertainty are added to the
testing data. Different variations of the designed FLSs are
created by introducing different size FOUs. Finally, the per-
formance of the IT2 FLSs is compared at the given uncer-
tainty/noise levels.

The actual detail of the steps is given below.
Step 1: Noise-free time series is generated using (1) with

the following parameters: a = 0.2, b = 0.1,�߬ = 30 and n = 10.
Euler’s method is used to obtain the values of (ݐ)ݔ at each
time point with a time step of 1.0 and the initial condition
(0)ݔ = 0.1. Based on this data we proceed to design a
four-input, one-output, T1 FLS for single-stage prediction of
the Mackey-Glass time series. Specifically, we extract 700
input-output data pairs as described in Section II.C. The first
500 pairs (the training dataset) were used for training the FLS
(generating the rules), while the remaining 200 pairs (the data
testing set) were used for testing the system. Training was
performed with the 500 input-output pairs from x(1001) to
x(1504) and testing was done with 200 input-output pairs
from x(1505) to x(1708). The testing data is corrupted with
zero-mean uniform noise when different levels of sig-
nal-to-noise ratios (SNRs) are used. The number of
noise/uncertainty levels, k chosen to be equal 11 levels. This
number is discretized from 0dB to 20dB with increments of 2.
In Fig. 4, the training data and four samples of testing data
using four SNRs levels are shown. One noise free (NF) data
set is also used for testing the designed FLSs.

Step 2: We used triangular MFs for both the inputs and the
output. The number of membership functions assigned to
each input and output of the FLS was chosen arbitrarily to be
7. While, a higher number of MFs would enable better per-

formance, 7 proved a good compromise for readability (in
figures) and reasonable performance – in particular as optimal
prediction performance is not a primary aim in this paper.
First, we defined the fuzzy sets to evenly cover the input and
output spaces. The type-1 membership functions that are used
for the inputs and the outputs are shown in Fig. 5. The MFs
are labelled using numbers (e.g. F11 represents FS 1 of input
1 and for the output F1 represent FS 1). In our simulation, the
T1 FLS uses singleton fuzzification, product t-norm, product
inference and centroid defuzzification. Then, we apply the
Wang-Mendel (WM) method (see Section II.B) in order to
generate the rules from the given input-output pairs (training
data). The resulting rules are used for all FLSs used in our
experiments in order to enable a comparison which focusses
on the FSs.

Step 3: Following Section IV, we extend the T1 FLS into
an IT2 FLS using the partially dependent design. The con-
struction of an FOU around the T1 FSs is accomplished as
follows. First, the FOU size parameter אܿ ሾͲǡͳሿis discretized
to a set of k=11 values. We use eleven different values for
each FOU size, starting at 0 and increasing to a maximum of
1.0 in increments of 0.1. If the FOU size parameter equals 0.0,
the interval type-2 fuzzy sets reduce to the original type-1
fuzzy sets, whereas in case of using 1.0 the interval type-2
fuzzy set reach the maximum amount of their width. In our
application, we design k =11 IT2 FLSs where each system
was designed using specific IT2 FSs with the given FOU size.

Fig. 3 A flowchart of the process of using different FOU sizes to design and
evaluate IT2 FLSs at different noise levels
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To construct the upper and lower membership functions of
the interval type-2 fuzzy sets, we use the method detailed in
Section IV and apply equations (4, 5) by combining the T1
FSs with the chosen FOU size represented by parameter c.
An example of FOU construction for IT2 FSs of two IT2
FLSs using different FOU sizes (0.30, and 0.80) is shown in
Fig. 6.

Step 4: After finishing the design of the IT2 FLS with the
chosen FOU size, the testing data is used to test the perfor-
mance of the individual IT2 FLSs when faced with the dif-
ferent uncertainty/noise levels. The k=11 FLSs are tested on
200 points from x(1505) to x(1708) corrupted by zero-mean
uniform noise when 11 SNRs values are used (see Step1). In
addition to the eleven different signal-to-noise ratios (SNRs),
one noise free (NF) data set is also used for testing the de-
signed FLSs and each test is repeated 30 times.
The performances of all the designs were evaluated using
RMSE based equation shown in (7). I.e.,

ܯܴ ܧܵ ൌ ට
ଵ

ଶ
∑ ݇)ݔ] ͳ) െ ଶଵ[(ሺሻݔ݂)
ୀଵହ଼ (7)

Fig. 4. Noise free training data (solid lines) and four samples of noisy testing
data (dashed lines) at SNR levels (a) 20, (b) 10, (c) 6 and (d) 0. Training is
performed with the 500 input-output pairs in x(1001), x(1002),..., x(1504)
and testing is done with 200 input-output pairs x(1505), x(1506),..., x(1708).

Fig. 5. Type-1 Membership functions for the inputs and the output.

Fig. 6. IT2 membership functions used in inputs and output of IT2 FLSs with
different FOU size c. (a) c=0.30 , and (b) c = 0.80 .

where, N = 200 testing points, ݇)ݔ ͳ) is the output of the

testing data and ݂൫ݔሺሻ൯ where, ሺሻݔ = ሾݔሺ݇ െ ሻ͵ǡݔሺ݇ െ

ሻʹǡݔሺ݇ െ ͳሻǡݔሺ݇ ሻሿ் is the crisp output of the FLS. The
RMSE results are averaged over 30 runs and are depicted in
Table II. In Table II, the average RMSE for 30 runs is shown.
Each column represents an IT2 FLS design with a given FOU
size parameter and the rows show the average RMSE value at
the different SNR values. The shaded values are the minimum
of each row representing the best FOU at a particular SNR
level.

VI. ANALYSIS AND DISCUSSION

The presented experiments investigate the relationships
between FOU sizes and the uncertainty/noise levels applied to
the Mackey-Glass time series prediction. From Table II, a
direct relationship between the FOU size, the SNR and the
performance can be seen. As the uncertainty/noise level in-
creases (SNR decreases), the FOU size of the FLS with best
performance (i.e. giving the minimum RMSE value) in-
creases.

The first column of Table II contains the performance re-
sults of the IT2 FLS designed using FOU size c = 0.0 which
reduces to the original T1 FLS. From this result, it is clear that
IT2 FLSs outperform their counterpart T1 FLS in all cases
presented in these experiments even in the case of noise free
testing data. We believe that the reason for this is the use of a
small number of MFs (7 MFs) leading to such a limited
number of parameters that the type-1 FSs cannot account for
the complexity in the time series. This agrees with the finding
by Wu and Tan [37] showing that the extra degrees of free-
dom provided by the footprint of uncertainty enables a IT2
FLSs to outperform T1 FLSs with the same number of MFs.
If we were to add more labels (MFs) to the design of the T1
FLSs this would increase the chance of the T1 FLS to out-
perform the IT2 FLSs in noise-free or very low noise condi-
tions. Mendel [21] and Hagras [38] have mentioned this case
(from another perspective) when using T2 FSs; this will re-
duce the rule base of the FLS where FOU make it possible to
cover the same range as T1 FSs with a smaller number of
MFs.

This conjecture is supported by the performance analysis
of the systems shown in Table II (e.g. column 3) where the
system starts to perform well at NF and two SNRs (20 and 18
dBs) but we will investigate it further as part of a future pub-
lication.

The next transition is shown at the next three SNRs (16, 14,
and 12 dBs) levels for the same FLS (FOU size 0.30). As the
noise level increases (moving down in the table), the best
results occur as the FOU size increases (moving to the right in
the table). However, performance degradation is recorded at
higher levels of noise (starting from 4 dBs) and this is clearly
shown in Fig. 8 where the RMSE starts to exceed 0.2 in the
first 2 FLSs (i.e. at FOU sizes, 0 and 0.1) and then decreases
again until reaching its minimum at c =0.80. In spite of this,
and with expanding the FOU size, the performance becomes
better until some higher noise level (e.g. 6dBs). To explain
this observation, from Fig.7, the output results of three dif-
ferent IT FLS examples (Fig. 7(a)-7(c)) show a degradation of

(a) (b)

(c) (d)

(a)

(b)
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performance as the level of noise increases. In Fig. 7(a), the
FOU size parameter was set to c =0.3. This IT2 FLS, tested
over 3 different SNRs: Noise Free (NF), 10 and 0 dBs). At the
noise level (0dB), the system delivers lower performance than
at (10dB). (Note, 0dB is the highest noise level possible). In
comparison, Fig. 7(b) (FOU size c=0.5) shows an improve-
ment in the performance at noise level (0dB) whereas,
Fig.7(c), where c=0.80, shows much better performance at
noise level (0dB) comparing to the other two FLSs (Fig.7 (a)
and Fig.7 (b)).

In an effort to analyse the general behaviour of the results,
we used the data from Table II and have visualised it as bar
charts in Fig. 8, representing the average RMSE values of the
11 IT2 FLS (11 FOU sizes) over different noise levels (NF,
20, 18, 16,…, 0).

Thus, Fig. 8 illustrates RMSE values of the group of 11 IT2
FLSs over different noise levels starting from noise free data
(NF) and ending with the highest noise level (0dB). The
eleven chosen FOU sizes in these experiments appear in the
graph at each noise level from left to right starting from 0 up
to 1.0 with different shades of grey. From Fig. 8, it is clear
that there is a direct relationship between the FOU size and
noise level in relation to achieved performance. The result
from this relationship may lead to a better choice of the FOU
size and hence the FLS in this application and provides gen-
eral insight to the selection of FOU size (and the fundamental
choice between T1 or T2 FSs) in applications where an as-
sessment of the noise level (SNR) can be made or is available.

VII. CONCLUSION

In this paper, we have made an initial step to investigate the
challenging question of “When are T2 FLSs viable in com-
parison to T1 FLSs?” and in particular, how much uncertainty
warrants the use of T2 FLSs and exactly how “wide” should
the FOUs of the respective T2 FSs be. Incidentally, we have
highlighted that the choice between T1 FLS and IT2 FLS is
not a binary one but a matter of degree, i.e. from no FOU to
very wide FOUs. In other words, as the amount of uncertainty
increases, the FOU of the FSs grows from initially T1 FSs to
wider and wider IT2 FSs.

We presented a method for designing interval T2 FSs so
that their FOUs can capture the faced levels of
noise/uncertainty. Using the proposed method, we investi-
gated the relationship between the FOU size of T2 FSs and
the level of the presented uncertainty. Initially, we designed
T1 FLSs and from there we moved to the design of IT2 FLSs
by incorporating a certain amount/size of FOU to the fuzzy
sets. We demonstrated and analyzed the performance of the
resulting FLS in the context of Mackey Glass chaotic
time-series prediction. We have found a direct relationship
between the FOU sizes of the FSs and the noise levels. As the
noise level increases, the FOU that gives the minimum RMSE
value increases as well. While the performance analysis of the
systems shows an expected degradation due to a
large/excessive injection of noise to the data, with expanding
FOU size, the performance improves for cases with higher
noise level. From this, a strong relationship between the FLSs
performance and the FOU size is apparent.

It has been observed that the IT2 FLSs outperform their
counterpart T1 FLS in all cases presented in the experiments
even in the case of noise free data – an effect which we at-
tribute to the very limited number of MFs/parameters in the
given experiment.

In future work, we will focus on further analyzing the re-
lationship of increasing SNR levels and FOU size in regards
to performance, in particular by considering different appli-
cations and performing a more detailed statistical analysis of
the results. Further, more effective uncertainty identification
and capturing methods for designing IT2 FLSs will be con-
sidered.

TABLE II THE AVERAGE RMSE VALUES (FOR 30 TEST RUNS) OF EACH FLS DESIGNED WITH DIFFERENT FOU SIZES AT DIFFERENT NOISE LEVELS

*NF Noise Free Data

IT2 FS
Sample

Parameter c (FOU size) 0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0

S
N

R
(d

B
s)

NF* 0.03032 0.02973 0.02935 0.03101 0.03403 0.03552 0.03514 0.03971 0.05634 0.08190 0.10808

20 0.04148 0.04017 0.03922 0.03988 0.04208 0.04314 0.04357 0.04837 0.06365 0.08708 0.10913

18 0.04683 0.04656 0.04519 0.04520 0.04666 0.04732 0.04800 0.05425 0.06975 0.09207 0.11125

16 0.05415 0.05329 0.05168 0.05129 0.05239 0.05322 0.05409 0.05969 0.07382 0.09412 0.11222

14 0.06391 0.06271 0.06109 0.06041 0.06114 0.06185 0.06312 0.06844 0.08054 0.09887 0.11601

12 0.07673 0.07603 0.07425 0.07302 0.07303 0.07377 0.07551 0.08000 0.09075 0.10597 0.12076

10 0.09319 0.09292 0.09103 0.08954 0.08934 0.08977 0.09130 0.09505 0.10296 0.11588 0.12915

8 0.11422 0.11434 0.11238 0.11085 0.10984 0.10959 0.10984 0.11132 0.11665 0.12748 0.13964

6 0.14788 0.14337 0.13869 0.13461 0.13305 0.13103 0.12981 0.12905 0.13065 0.13828 0.14848

4 0.22032 0.21841 0.19130 0.17781 0.16168 0.15487 0.15128 0.14904 0.14808 0.15265 0.15915

2 0.33157 0.31884 0.28397 0.25829 0.23738 0.21375 0.19765 0.18431 0.17378 0.17016 0.17448

0 0.49397 0.44125 0.40718 0.37677 0.34288 0.31175 0.28386 0.25518 0.23685 0.22305 0.21278

2366



Fig. 7. The result of Mackey-Glass time-series prediction using IT2 FLS at
different SNR levels (Noise free NF (left), 10 (middle) and 0 dB (right)). The
thick solid line indicates the true time series; the thin line indicates interval
type-2 crisp output. (a). the result of using FOU size c= 0.30, (b) c=0.50 and
(c) c=0.80.

Fig. 8. RMSE value of 21 FLSs using different noise levels at different SNR
values of testing data.
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