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Abstract—In the context of group decision making with fuzzy
preferences, consensus measures are employed to provide feed-
back and help guide automatic or semi-automatic decision reach-
ing processes. These measures attempt to capture the intuitive
notion of how much inputs, individuals or groups agree with
one another. Meanwhile, in ecological studies there has been an
ongoing research effort to define measures of community evenness
based on how evenly the proportional abundances of species are
distributed. The question hence arises as to whether there can
be any cross-fertilization from developments in these fields given
their intuitive similarity. Here we investigate some of the models
used in ecology toward their potential use in measuring consen-
sus. We found that although many consensus characteristics are
exhibited by evenness indices, lack of reciprocity and a tendency
towards a minimum when a single input is non-zero would make
them undesirable for inputs expressed on an interval scale. On
the other hand, we note that some of the general frameworks
could still be useful for other types of inputs like ranking profiles
and that in the opposite direction consensus measures have the
potential to provide new insights in ecology.

Index Terms—Consensus measures, decision making, aggrega-
tion functions, ecological evenness.

I. INTRODUCTION

The aim in group decision making is to reach a decision
which best reflects the preferences or evaluations of the group.
However where there are coalitions, decision makers with
extreme opinions or general heterogeneity amongst the indi-
viduals, an aggregation of raw evaluations may not adequately
represent the overall view. It is therefore useful to be able
to measure the extent to which the individuals agree with
one another and how much consensus there is. Of course,
the concept of what consensus means in group decisions is
debatable, i.e. if there is one person that disagrees with the rest
of the group strongly enough, some would argue that there is
no consensus, while in some cases we would say that more
than 50% of the group holding the same opinion gives us at
least some level of consensus.

In [2], we summarized a number of the properties proposed
for consensus in the literature and adapted their definitions
to the case of real inputs on the unit interval. We saw
that, in general, consensus models either aggregated pairwise
agreement between the inputs or agreement between each

value and the average of the inputs overall.
In the field of ecology, the concept of evenness was first

proposed in [17] to describe biological communities based on
the distribution of abundance among species. Various measures
have since been proposed [7], [12], [14], [16], [18]. These
models (along with others) and their properties have been
reviewed in [25] and [30]. As well as being a conceptually
fundamental component of species biodiversity, the way even-
ness is measured has implications for environmental decision
making. For example, a finding in [32] suggests that reductions
in plant species evenness lead to indirect reductions in total
plant productivity, which in turn has implications for the
management of plant communities.

As the term suggests, an evenness measure attempts to
capture how evenly species populations1 are distributed over
a given geographical region, section of forest or grassland etc.

So if there were five species of bird in a given forest, and for
each species there were 100 individuals, we would consider
this forest to exhibit perfect evenness. On the other hand, if
there were two species with 100 individuals for one of the
species but only 1 for the other, we may consider the evenness
to be very low or almost zero.

We see here then that while decision maker evaluations and
species abundances certainly are different concepts, at a basic
level evenness and consensus seem to characterize the same
features of a dataset, i.e. when all inputs are the same we
have perfect evenness and perfect consensus, while the more
inputs differ, the less evenness and less consensus. Intuitively
it therefore seems that it could be possible to use indices
developed in ecology for the purposes of measuring consensus
and vice versa.

In this paper, we investigate the relationships between the
properties proposed for consensus and for ecological evenness.
We also investigate the general frameworks and some specific
evenness models and evaluate their appropriateness to the
consensus setting. Our main finding is that many evenness
measures model evenness as a reciprocal notion to dominance
or specificity, i.e. the degree to which one input dominates the
rest. This means that they tend towards a minimum when one

1Other units such as biomass can also be used.
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input is high and the rest are low, rather than when inputs
are split equally between values at either end of the scale.
We note that while this may not be desirable for real inputs,
evenness indices could be useful for modeling consensus in
more general settings where inputs are provided as preferences
or rankings.

The paper will be structured as follows. In the Preliminaries
section, we give an overview of aggregation functions and
consensus models, which form the basis for our investigations.
In Section III, we look at the quantification of ecological
evenness and how this can be related to consensus models.
In Section IV, we use some example datasets in order to
illustrate the key behavior of some of the evenness indices
in the consensus setting before concluding with discussion in
Section V.

II. PRELIMINARIES

Here we present some basic definitions and properties
relating to consensus measures that will be used throughout
the rest of the paper.

A. Aggregation functions

Aggregation functions are multivariate functions which
combine the inputs into a single representative value. For
a broad overview of their behavior and properties we refer
the reader to [4], [11], [29]. We will adopt the following
definition throughout this paper, which assumes the inputs
are provided over the unit interval.

Definition 1: A function A : [0, 1]n → [0, 1] is called an
aggregation function if it is non-decreasing in each argument
and satisfies A(0, . . . , 0) = 0 and f(1, . . . , 1) = 1.

In particular, we will be interested in aggregation functions
which exhibit averaging behavior, i.e. for all x ∈ [0, 1]n it
holds that min(x) ≤ A(x) ≤ max(x). We note that averaging
aggregation functions are idempotent with A(t, t, . . . , t) = t.

A broad family of aggregation functions that will be useful
for us are the weighted quasi-arithmetic means.

Definition 2: For a strictly monotone continuous generating
function g : [0, 1] → [−∞,∞] and weighting vector w, the
weighted quasi-arithmetic mean is given by,

QAMw(x) = g−1

(
n∑
i=1

wig(xi)

)
. (1)

Special cases include weighted arithmetic means,
WAM(x) =

∑n
i=1 wixi where g(t) = t, weighted

power means PMq(x) =
(∑n

i=1 wix
q
i

)1/q
where g(t) = tq

and weighted geometric means G(x) =
∏n
i=1 x

wi
i if

g(t) = − ln t. The weights wi are usually seen to indicate the
relative importance of a given input source, are non-negative
and sum to one.

As well as playing a role in decision making for obtaining
overall evaluations from individual inputs pertaining to multi-
ple experts or criteria, aggregation functions are also used in
consensus models.

B. Consensus measures

In [2], [3] we reviewed some of the properties and defini-
tions relating to consensus measures. We will use the following
definitions.

Firstly we require the concept of a negation.

Definition 3: A negation is a decreasing function N :
[0, 1]→ [0, 1] such that N(0) = 1 and N(1) = 0. A negation
is called:

1) frontier if N(x) ∈ {0, 1} if and only if x ∈ {0, 1};
2) strict if N is continuous and strictly decreasing;
3) strong if N is involutive, that is, N(N(x)) = x for

every x ∈ [0, 1].

Note 1: The interval over which values are considered and
the negation used can play a very important role. In decision
making contexts, we can generally assume that evaluations
will be given over some interval with a pre-determined
maximum and minimum and further that in many cases
scaling these values to the unit interval will not create too
many problems. If the values represent species populations
however, it will not always make sense or be possible to
consider these over an a priori scale. This especially makes
interpretations of what constitutes a high or low input quite
difficult.

In [2] we proposed the following definition for the
minimum requirements of a consensus measure.

Definition 4: A multivariate function C : [0, 1]n → [0, 1]
is said to be a consensus measure if it satisfies the following
properties,

C1 (Unanimity) It holds that C(a, a, . . . , a) = 1, for all
a ∈ [0, 1];

C2 (Minimum consensus for n = 2) It holds that C(0, 1) =
C(1, 0) = 0.

The following properties are also often considered desirable
when trying to obtain an overall level of consensus.

Definition 5: A consensus measure C is said to satisfy
C3 (Symmetry) when it holds that C(x1, x2, . . . , xn) =

C(xπ(1), xπ(2), . . . , xπ(n)) for all permutations π(i) on
{1, . . . , n} and x ∈ [0, 1]n ;

C4 (Maximum dissension) when C(0, . . . , 0︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
k times

) = 0

for all permutations of the input vector and n = 2k;
C5 (Reciprocity) if for a strong negation N , it holds that

C(x1, x2, . . . , xn) = C(N(x1), N(x2), . . . , N(xn));
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C6 (Replication invariance) when for any input vector x ∈
[0, 1]n, duplicating the inputs does not alter the level of
consensus, i.e. C(x) = C(x,x) = C(x,x,x) and so
on;

C7 (Monotonicity with respect to the majority) when
|a − xj | ≤ |a − yj | =⇒ C(a, x1, x2, . . . , xk) ≥
C(a, y1, y2, . . . , yk) where a = (a, a, . . . , a) is a set of
k equal inputs and n = 2k.

Existing consensus measures used in group decision making
processes can be considered as special cases of the following
general models:

C〈M,f〉(x1, x2, . . . xn) =
n

M
i,j=1,i6=j

f(xi, xj) (2)

where M is an averaging aggregation function and f is a
similarity function; and

C〈M1,M2,f〉(x1, x2, . . . xn) =
n

M1
i=1

f

xi, n

M2
j=1

xj

 (3)

where M1,M2 are means and f is a similarity function.
In Eq. (2), the overall consensus is the average of the

similarity between each pair of inputs (measures used in [6],
[26] are of this form) while in Eq. (2) we take the similarity
between each input and some mean or central value (e.g.
the consensus measures proposed in [28] and the standard
deviation based function given in [3]).

We note that similarities can be obtained from distance or
dissimilarity functions (see [8], [9]) and as these concepts are
perhaps more well defined, many consensus measures take
the form of aggregating dissimilarity or differences and then
subtracting this value from 1. In [2], [3] we also looked at
using implication functions.

In both Eqs. (2) and (3), the output would need to be
scaled if the values are to use the entire [0, 1] range (and to
formally satisfy property (C4), although in some contexts it
could be acceptable simply that the minimum consensus be
reached for inputs split between two extremes). For example,
for a similarity function f : [0, 1]2 → [0, 1], a minimum value
L = min

x∈[0,1]n
C(x) and an output y, we can use y−L

1−L .

III. ECOLOGICAL EVENNESS

There have been a number of indices proposed in order
to capture the evenness of ecological communities. In [25],
Smith and Wilson identify 14 indices used throughout the
literature and evaluate them in terms of desirable properties,
many of which are mathematically equivalent to (C1)-(C7).
Other authors have argued that more important than these
properties is the semantical interpretations relating to even-
ness, in particular that it should be derived directly from the

relationship D = E ×R (diversity is equal to evenness times
species richness)2 [30].

In the following we will briefly give an overview of some of
the properties desired of evenness measures and discuss their
relationship to those given for consensus measures. We will
then present some of the evenness measures and frameworks
used.

A. Relationship between evenness and consensus properties

In [25], 4 requirements and 10 ‘desirable’ properties for
evenness measures were outlined with a number of existing
evenness measures tested. Table I summarizes these properties
and notes the related consensus properties.

Firstly, we note that (C3) is not present, however all
evenness indices are considered symmetric.

Evenness properties 5-10 essentially relate to whether the
indices range between 0 and 1 and whether the minimum and
maximum values are achievable for any number of species. For
consensus, the minimum value is attained where evaluations
are split between either end of the scale, i.e. where the property
of maximum dissension is satisfied (C4) which necessarily
follows if both (C2) and (C6) hold.

The emphasis on replication invariance (or independence
of species richness) in ecology would seem to necessitate the
property of maximum dissension, however there is also the
alternate viewpoint that minimum evenness should correspond
with the notion of species dominance, i.e. that there is just
one species present in which case a minimum value would
correspond with proportional populations approaching
(0, 0, . . . , 0, 1). This view is incompatible with reciprocity
(C5) since clearly the negation (1, 1, . . . , 1, 0) would not give
the same result.

Note 2: Whether minimum evenness should be obtained for
these inputs or whether maximum dissension and replication
invariance should be satisfied is certainly debatable. Many
of the proposed evenness measures were derived from the
analogous ideas in economics when considering the equitable
distribution of wealth [22], [27]. It could be argued that whilst
an input set such as (0.01, 0.01, 0.01, 0.97) represents an
inequitable distribution of species proportions, it is actually
quite even, and minimum evenness should occur when the
species abundances are varied as much as possible with an
equal number of species with very high and very low numbers
as is the case with maximum dissension in consensus. It
hence will come down to a consideration of the context and
what behavior is needed.

Another interesting property that has been proposed in
ecology is compatibility with the Lorenz curve [10], [20], [21],
[27], [30]. The Lorenz curve is obtained from the accumulative
proportions when the species abundances are arranged in order.
A perfectly even community hence corresponds with a straight

2This is argued from there being some agreement amongst ecologists that
the concept of diversity combines the notions of species richness (how many
species there are altogether) and species evenness [30].
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TABLE I
REQUIRED (1-4) AND DESIRED (5-14) PROPERTIES FOR EVENNESS INDICES FROM [25] AND THE RELATED CONSENSUS PROPERTIES

Evenness Property Related Consensus property
1 Independence of Species Richness (C6) Replication invariance
2 Decreased by reducing marginally the abundance of most minor species (C7) Monotonicity*
3 Decreased by the addition of a very minor species
4 Unaffected by units used
5 Maximal when the species are equal (C1) Unanimity
6 Maximum value 1.0
7 Minimal, for any number of species, when the species abundances are as unequal as possible (C2) Minimum consensus for n = 2
8 A value close to its minimum when the community is as uneven as we would be likely to meet
9 The minimum possible index value (not necessarily with a particular number of species) should be 0.

10 Minimum attainable with any number of species
11 A value in the middle of the scale for communities that we would intuitively consider intermediate
12 Respond in a reasonable way to a series of communities that intuitively changes in evenness
13 Symmetric with regard to minor and abundant species (C5) Reciprocity
14 Skewed distributions should give a lower value

* This property is not directly equivalent, but would be ensured by functions satisfying C7

line and hence a Lorenz curve closer to this straight line cor-
responds with higher evenness. Once again, this idea naturally
leads to the point of minimum evenness corresponding with
species dominance, rather than the maximum dissension view.

It is worth making mention of the (rather informal) evenness
properties 11 and 12. Whilst many of the consensus and
evenness properties emphasize behavior and ideal outputs
towards the limits of the interval, it is definitely useful that
such measures give reasonable intermediate outputs so that
two sets of inputs may be compared.

We will now turn to some evenness measures presented in
the literature and their compatibility as consensus measures.

B. Evenness measures

The following evenness measures were presented in the
review undertaken in [25]. We will use their notation unless
specified otherwise.

1) Evenness measures similar to those in consensus: Of the
measures considered, we note that only Smith and Wilson’s
Evar, which aggregates the squared difference between each
abundance and the average abundance, and E′ from [7], which
aggregates the differences between each of the population
proportions, fall into the frameworks usually employed for
consensus (i.e. Eqs. (2) and (3)). They are given as follows:

Evar = 1− 2

π
arctan

{
1

n

n∑
i=1

(
ln(xi)−

1

n

n∑
j=1

ln(xj)
)2}

(4)

E′ = 1−

n∑
i,j=1,i<j

|pi − pj |

n
(5)

2) Evenness measures based on diversity: Some measures
of evenness can be obtained based on the indices used to
quantify diversity, which has traditionally been calculated as
the reciprocal of Simpson’s dominance index [24],

D =
n∑
i=1

p2i (6)

or using the Shannon entropy3 [23],

H ′ = −
n∑
i=1

pi ln pi (7)

In both cases, pi is the proportional population or biomass of
the i-th species, with

∑n
i=1 pi = 1.

As pointed out in [30], both can be incorporated into a more
general framework where diversity is given by

1

D
=

1(
n∑
i=1

pip
q
i

) 1
q

(8)

We recognize the denominator as the weighted power mean
with power q and weights pi. The entropy based calculation
is then H = ln(1/D) with q = 0. Evenness can then be
calculated by taking D/n as it is for the measure E1/D

(from [31]), while E− lnD and J ′ (from [18], [19]) take log
transformations of the denominator and numerator. A nice
interpretation with this calculation is the number of effective
species as a proportion of the total number of species. This
implies that the minimum attainable for any number of
species n is 1

n and that the absolute minimum occurs when
the number of species grows infinitely large with a single
species dominating.

3) Evenness measures based on ratios: The indices
EHeip, E1−D and EMcI also can be considered in this frame-
work, however with alternative transformations so that they
range from zero to one for all n. For example, E1−D from
[14] is given by,

E1−D =
1−D
1− 1/n

=

1−
n∑
i=1

pipi

1− 1/n
(9)

We note that if we were to use symmetric weights rather
than the pi values for D, we would obtain 1

n , so this index

3Shannon and Weaver’s original entropy equation was in base 2 since its
output was bits, however generally in ecology the natural logarithm is used.
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can further be considered in a more general framework where
the ratio of two dominance (or diversity, as is the case with
F2,1 and G2,1 from [1] and [15]) indices is used.

Another interesting approach which seems to intuitively
capture our concept of evenness is to use the slope of the
regression curve to the population abundances arranged in
descending order.

The equation for slope of least squares fit can be expressed
as

β =

n∑
i=1

xiyi − 1
n

n∑
i=1

xi
n∑
i=1

yi

n∑
i=1

(x2i )− 1
n

(
n∑
i=1

xi

)2 (10)

For evenness index EQ, Smith and Wilson let yi values
denote the scaled i-th rank, while the values for xi are the log
of abundance in ascending order. We hence have,

β =

n∑
i=1

ln(x(i))
i
n −

1
n

n∑
i=1

ln(xi)
n∑
i=1

i
n

n∑
i=1

((ln(xi))2)− 1
n

(
n∑
i=1

ln(xi)

)2 (11)

where the notation x(i) denotes the xi values arranged in
ascending order so that the least abundant species x(1) is
associated with y1 = 1

n . Then, since
∑n
i=1 i =

n(n+1)
2 , we

can express the slope as given by

β =

n∑
i=1

i
n2 ln(x(i))− n+1

2n
1
n

n∑
i=1

ln(xi)

n∑
i=1

( ln(xi)
n ln(xi))−

(
1
n

n∑
i=1

ln(xi)

)2 (12)

Rather than being a different kind of index, such a
calculation can be interpreted similarly to E1−D above,
where we look at the ratio between two means.

4) Other evenness measures: Evenness measures such as
those introduced in [5] on the other hand are not derived from
the power mean. Instead, evenness is derived from a measure
of community similarity, given by

O =
n∑
i=1

min(pi, 1/n) (13)

As an aggregation function, O can be framed as a special
case of a universal integral [13] with the minimum used as
the conjunctive function. We again note that this measure em-
phasizes the concept of evenness as reciprocal to dominance,
reaching a minimum when the population of one species is
very high and the remainder are very low.

We also should make note of the evenness index proposed
in [20] which is based on Yager’s concept of specificity
for possibility distributions on fuzzy sets [33]. Since Yager’s
measure calculates the extent to which a possibility distribution
represents a single value, we are able to use this to quantify the
notion of dominance and hence the evenness as a reciprocal
value.

IV. EXAMPLES

In the previous section, we saw that most of the evenness
measures tended toward a minimum when one of the inputs
is high and the remainder are low, however it is also worth
considering how the measures behave for distributions that
graduate between the extremes. Here we consider some ex-
ample sets of inputs and the level of consensus that would be
indicated by each of the evenness indices. We then look at
their behavior as the inputs graduate from split evaluations at
either end of the scale to a slight majority.

A. Consensus level for various distributions

Suppose we have six decision makers, each of whom pro-
vides evaluations for six different objects. Evaluations with six
different distributions between the experts are shown in Fig. 1
with the values in Table II. The values for objects (b) and (f)
are obtained by taking negations N(xi) from the evaluations
of (a) and (e) respectively. We can assume that decision maker
or expert A always gives the lowest evaluation or equivalently
that the evaluations have been sorted into increasing order
(all experts are considered to be equally important for the
consensus evaluation).

TABLE II
DECISION MAKER EVALUATIONS FOR FIG.1 (A) - (F)

Decision maker
Distribution A B C D E F

(a) 0.01 0.06 0.9 0.95 0.99 1
(b) 0 0.01 0.05 0.1 0.94 0.99
(c) 0.01 0.05 0.09 0.95 0.96 1
(d) 0.04 0.22 0.35 0.45 0.73 1
(e) 0.34 0.64 0.84 0.93 0.98 1
(f) 0 0.02 0.07 0.16 0.36 0.66

From the graphs, we can make intuitive assessments about
how much the decision makers tend to agree about the
evaluations. For Fig. 1 (a) - (c), the decision makers give
either very high or very low results. We might say that since
in (a) and (b) there is a 4-2 majority, there should be more
consensus for these than for (c). For Fig. 1 (d)-(f), the groups
are not so polarized, and we may expect higher consensus
for (e) and (f), since at least 4 people are close to agreement
and the remaining values are not as far away as in (a) and
(b). For object (c), there is no particular agreement, however
there is also not a strong sense of disagreement between the
evaluations.

We calculated the consensus (or evenness values) for these
six sets using all the functions we have discussed in this paper
so far. For consensus measures of the form given in Eqs. (2)
and (3), we used arithmetic means for M and M1 and both the
arithmetic mean and the median for M2. In M2, we excluded
the i-th input, so that the similarity was calculated between an
input and the average of the rest. For similarity functions, we
used both 1− |xi − xj | and 1− (xi − xj)2.

The resulting orderings are shown in Table III.
We note that all non-consensus indices, including Evar, EQ

and E′ which are replication invariant (and hence reach a
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(a) 2 low, 4 high (b) 4 low, 2 high

(c) 3 low, 3 high (d) equally spaced

(e) concave (f) convex
Fig. 1. Column graph representations of evaluations from 6 experts.

minimum for inputs (0,0,0,1,1,1) ) order (b) and (f) below (c).
In fact Evar and EQ order (c) as the third highest. This is not
surprising for many of these indices, especially those which
are based on dominance and hence reach their minimum for
(0,0,0,. . . ,0,1). Agreement or similarity between higher inputs
contributes to the overall consensus evaluation much more than
between lower values.

An interesting thing to note is the level of consensus for
(d). Both consensus measures and evenness measures resulted

TABLE III
DIFFERENT ORDERS OBTAINED FROM DIFFERENT CONSENSUS AND

EVENNESS MEASURES FOR INPUT SETS IN FIG. 1.

Measures used ordering in terms of consensus evaluation
All consensus measures
based on Eqs. (2) and (3) e = f � d � a = b � c

E′, EMcI , E− lnD,
E1−D, E1/D e � a � d � c � f � b

E,O,EHeip, J e � d � a � c � f � b

F2,1 e � a � c � d � b � f

EQ e � d � c � a � b � f

Evar e � d � c � a � f � b

in evaluations which ordered these inputs to have higher
agreement than (a) and (b), suggesting that there is more
consensus here than in a situation where there is a 4-2 majority.
Since it would often be desired that consensus measures take
the degree of difference between inputs into account, equally
spread measures may seem to disagree less than clusters of
inputs at either end of the scale, even though there seems to
be no particular agreement. If the concept of majority is more
important to the decision makers than the overall differences
between the individual evaluations, then other approaches or
models could be desirable.

B. Monotonic behavior as one input is increased toward a
majority

Here we take a look at the behavior of some of the indices
for the set of inputs x = (0, 0, x3, 1, 1, 1) as x3 is gradually
increased from 0 to 1. For consensus measures that satisfy the
property of maximum dissension, the input starts at zero (or
a minimum value) and then gradually increases until x3 = 1
and we have a majority of 4-2. Even for indices which have
a minimum at x = (0, 0, 0, 0, 0, 1), we would still expect that
increasing x3 increases the evenness.

Graphs illustrating the behavior for some of the indices are
shown in Fig. 2.

As we have mentioned in our previous work, using the
median for M2 allows Eq. (3) to satisfy monotonicity with
respect to the majority, however if the arithmetic mean AM
is used there is a point at which the consensus level begins to
decline (Fig. 2 (a) and (b)). This happens whether 1−|xi−xj |
is used for the similarity function or the least squares based
1− (xi − xj)2 (in these examples we used the latter).

The behavior for F2,1 is quite undesirable, as we see the
function quickly decreases and then begins to increase (Fig.
2 (c) ). Function E reaches a point at which the consensus
level reaches a maximum (where the proportion of x3 becomes
greater than 1

n ((Fig. 2 (d) ).
Since the value of E′ depends on the difference in pairwise

proportions, increasing x3 results in monotone behavior.
The decreasing trend of Evar is actually due to the unstable

behavior of the function when values are close to zero (or the
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(a) Eq. (3), M2 =Med (b) Eq. (3), M2 = AM

(c) F2,1 (d) E

(e) E′ (f) Evar
Fig. 2. Consensus level obtained for the input set x = (0, 0, x3, 1, 1, 1)
as x3 increases from 0 (corresponding with maximum disagreement between
the inputs) to 1 (where a crisp majority of 4-2 is obtained).

ratio between the smallest and largest input is infinitely large
since it is scale independent). Here, rather than x1 = x2 = 0,
we used 10−10. For closer values, the function behaves more
reasonably.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have shown some of the relationships that
exist between ecological evenness and consensus. We have

shown that although at first look these concepts seem to be
looking for the same thing numerically, ecological studies
tend to emphasize the view that evenness as the opposite of
dominance, a view consistent with equitable distributions of
wealth in economics. On the other hand, even the evenness
indices designed to reach a minimum where high and low
evaluations are equally split were not suitable given their
unstable behavior for input sets close but not equal to these
limits.

The main problem with trying to use evaluations given in a
consensus setting is that many of the evenness indices are
based on proportional values rather than a scale. However
in settings where we are not dealing with real inputs over
the unit interval, evenness and equity concepts may be more
appropriate than attempting to extend Eqs. (2) and (3). For
example, if a set of evaluations represents the number of
allocated votes to each candidate, then here we can use a
calculation of dominance to denote the degree to which all the
votes were allocated to a single candidate. It may therefore
be possible to consider extending these evenness measures
to situations involving multiple candidates and preferences or
transforming the inputs so that each input is interpreted as
support for a particular ‘candidate’ or evaluation.

On the other hand, we note that consensus measures have
been well defined to exhibit reasonable properties in the
context of measuring evenness in ecology - provided the
desired view of evenness is one consistent with the minimum
coinciding with maximum dissension. One direction of our
future work will lie in this direction - the use of consensus
measures and aggregation functions in ecological contexts for
capturing notions of diversity and evenness.
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APPENDIX

We provide the following ecological indices (reviewed in
[25]) which were not given throughout the main text.

[Williams 1964]

E1/D =
1/D

n
=

1

n

(
n∑
i=1

pipi

) (14)

[Pielou 1977]

E− lnD =
− lnD

lnn
=

ln

 1
n∑

i=1

pipi


lnn

(15)

[Pielou 1975]

J ′ =
H ′

ln(n)
=

ln

 1
n∏

i=1

p
pi
i


lnn

(16)

[Heip 1974]

EHeip =
eH

′ − 1

n− 1
=

1
n∏

i=1
p
pi
i

− 1

n− 1
(17)

[Pielou 1969, McIntosh 1967]

EMcI

(
n∑
i=1

xi

)
−
√

n∑
i=1

xixi

(
n∑
i=1

xi

)
−

(
n∑

i=1

xi

)
√
n

(18)

[Bulla 1994]

E =
O − 1/n

1− 1/n
(19)

[Alatalo 1981]

F2,1 =
1/D − 1

eH′ − 1
=

1
n∑

i=1

pipi

− 1

1(
n∏

i=1

p
pi
i

) − 1
(20)

[Molinari 1989]

G2,1 =

{
F2,1

2
π arcsinF2,1, F2,1 >

√
1/2,

(F2,1)
3, otherwise.

(21)

[Wilson 1991]

EQ = − 2

π
arctan(1/β) (22)

where β is the slope of the least-squares fit regression curve for
the scaled log abundance (scaled by dividing by the maximum
rank) in decreasing order.
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