
 
 

 

  

Abstract—In this work, we focus on the synthesis of a 
Proportional Integral (PI) observer for the actuators and 
sensors faults diagnosis based on Takagi-Sugeno (TS) fuzzy 
model with unmeasurable premise variables. The faults 
estimation method is based on the assumption that these faults 
act as unknown inputs under polynomials form whose their kth 
derivatives are bounded. The convergence conditions of the 
observer as well as the faults reconstruction are established on 
the basis of the Lyapunov stability theory and the L2 
optimization technique, expressed as Linear Matrix Inequalities 
(LMI) constraints. In order to validate the proposed approach, a 
hydraulic system with two tanks is proposed. 

I. INTRODUCTION 
The industrial systems are become more vulnerable with 
respect to faults due to need to continually improve the 
process performances and product quality. The fault is any 
unacceptable deviation of the nominal value of a 
characteristic component of the system. It is therefore 
essential to guarantee the safety and good operating of these 
processes by means of faults diagnostic systems. The 
diagnostic techniques of nonlinear systems, in particular the 
approaches based on state observers, continue to receive an 
increasing interest by the scientific community in the areas of 
fundamental and applied research, we can mention for 
example the works developed in [1]-[3]. These diagnostic 
methods are based on the analytical redundancy principle 
which has the ability to have two or several ways to obtain a 
characteristic quantity of the system. The technique of Fault 
Detection and Isolation (FDI) based on the analytical model is 
one of the most used approaches in the field of fault 
diagnosis. The diagnosis is a mechanism which contains 
besides the detecting and locating steps, the fault estimation 
step. The diagnosis of nonlinear systems with state observers 
is a direct application of state estimation, which will be 
discussed in this article to estimate actuator and sensor faults 
of dynamic systems. 

In the presence of faults, the state estimation can detect any 
abnormal behavior of the real system from a comparison 
between measured and estimated of outputs signals. Through 
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the analytical redundancy principle, the signals comparison, 
which is the detection step, allows to generate fault indicators 
also called residues. The location step comes next, which 
exactly determines the affected component type, actuator or 
sensor in a dynamic system. Finally, the fault estimation or 
identification step completes the diagnosis task by evaluating 
the fault for each time. 

Initially, the FDI systems have been developed with 
approaches based on linear or linearized models [4], and more 
recently, they have been used to realize the diagnostic task 
[5]. It is well known that the linear model reflects the system 
behavior only locally, near an operating point, and not on all 
the operating range. Indeed, the operating point changes with 
the presence of fault, therefore the linear model is not 
representative. It is thus clear that the model-based diagnosis 
requires a precise knowledge of system dynamic behavior to 
synthesize in a reliable way the residues. In the context of 
diagnosis and among nonlinear representations we have the 
approach by fuzzy model of Takagi-Sugeno (TS), which is an 
interesting alternative to approximate the nonlinear behavior 
of various dynamical systems [6]. Through this TS fuzzy 
model approach, the dynamic system is represented by a set 
of fuzzy IF-THEN rules which describe the linear 
input-output relations, and the global behavior is obtained by 
an interpolation of linear models using nonlinear activation 
functions [7]. Thus, the obtained TS fuzzy model accurately 
represents the dynamic system on an operating wide range. 
The advantage of this approach is to extend the analysis and 
synthesis tools of linear theory for nonlinear systems. 
Therefore, the estimation of fault indicators is based on the 
synthesis of nonlinear observers using the same activation 
functions as the TS fuzzy model. There are two premise 
variables types which can intervene in the construction of 
activation functions, measurable for inputs and/or outputs, 
and unmeasurable for state variables. The latter can 
approximate a large class of dynamic systems by TS fuzzy 
models approach [8]. The works [7] and [8] address the 
stability analysis and stabilization of TS fuzzy models for 
design of observers and control laws. 

In the framework of faults estimation of actuators and/or 
sensors and diagnosis based on the nonlinear state observer 
with measurable premise variables, we can mention the works 
developed in [9]-[16]. The unknown inputs observers are 
designed in [9] for TS discrete descriptor systems applied to 
fault diagnosis, and in [10] for disturbed TS continuous 
systems for detection and location of sensor fault of an 
automatic steering vehicle. The authors in [11] study the 
estimation of actuator and sensor faults by considering them 
as an auxiliary variable in the synthesis phase of a TS 
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descriptor observer. A robust fault detection observer is 
designed in [16] by using H�/H∞ formulation for 
discrete-time TS fuzzy system affected by sensor faults and 
unknown bounded disturbances. In the case of the 
Proportional Integral (PI) observer synthesis, the authors in 
[12] propose the sensor faults estimation for disturbed TS 
fuzzy models. In [13], the authors deal the sensor faults 
diagnosis of a bioreactor described by multiple models 
approach. The fouling detection in a heat exchanger is studied 
in [14] by TS observer for systems subject to the unknown 
polynomial inputs. In [15], a fault tolerant control strategy is 
developed which compensates an actuator fault for TS 
systems. 

Instead, the works developed in the framework of 
unmeasurable premise variables for state estimation and 
sensor faults based on observers, we can mention for example 
[17]-[20]. The unmeasurable premise variable in [17] is 
considered as a Lipchitz constraint on the activation functions 
for state estimation of a hydraulic system with three tanks 
represented by multiple models approach. The authors in [18] 
and [19] are interested to the simultaneous estimation of the 
state and the unknown inputs in polynomial form for TS 
systems by considering the unmeasurable premise variable as 
a disturbed system, and as a Lipchitz constraint, respectively. 
In [20], the robust observer synthesis with unknown input on 
the states and outputs is considered for continuous and 
discrete TS models subjected to disturbances. Most of these 
works use the Lyapunov stability theory and some the L2 
optimization technique to formulate the stability conditions 
for the state observers synthesis in term linear matrix 
inequalities constraints [21]. 

In the context of state estimation, we are particularly 
interested to the synthesis of a TS unknown inputs 
proportional integral observer with unmeasurable premise 
variables, because of their simultaneous estimations of states 
and unknown inputs. Inspired by the works developed in [18] 
and [19] we are addressed in this study to diagnosis of 
actuator and sensor faults based on PI observer of TS fuzzy 
model [22]. This model is subject to unknown inputs in 
polynomial form whose their kth derivatives are assumed 
bounded, and which act as faults on the dynamic system. 

Our contribution in this paper is to design a proportional 
integral observer which deals with the faults diagnostic 
problem with unmeasurable premise variables by means of an 
additional parameter which compensates the effect due to 
these variables and faults which act as unknown inputs. 
Moreover, the proposed PI observer will allow reconstructing 
the time varying faults directly without using a FDI system 
because it allows realizing the identification stage which is an 
interesting approach for fault diagnosis.  

The sufficient conditions are derived to design the PI 
observer by using the Lyapunov stability theory and L2−gain 
technique to minimize the transfer of the bounded unknown 
input and disturbance towards the state estimation error, all 
formulated in terms LMI constraints. 

Sections developed in this work are the following. In 
Section II, we show the structure of TS fuzzy model with 
unmeasurable premise variables. This TS model is subject to 

actuators and sensors faults, which can affect the dynamics 
and output of the system. In section III, the structure of the PI 
observer is presented. In section IV, the synthesis of the 
proposed PI observer is developed. Finally, in Section V, a 
simulation example is given of a hydraulic system in two 
tanks to show both the good estimation of states and actuator 
or sensor faults. 

II. STRUCTURE OF THE TS FUZZY MODEL 
The considered TS fuzzy model with unmeasurable 

premise variables subject to faults which affect both sensor 
and actuator is as follow: 

൞ݔሶሺݐሻ ൌ ෍ ሻݐሺݔ௜ܣሻ൫ݔ௜ሺߤ ൅ ሻݐሺݑ௜ܤ ൅ ௜ܧ ௔݂ሺݐሻ൯௥
௜ୀଵ ሻݐሺݕ        ൌ ሻݐሺݔܥ ൅ ܧ ௦݂ሺݐሻ ൅  ሻ                                              ሺ1ሻݐሺݓܨ

where ݔሺݐሻ א ܴ௡ represents the state vector, ݑሺݐሻ א ܴ௡ೠ the input 
vector, ௔݂ሺݐሻ א ܴ௡೑ೌ  and  ௦݂ሺݐሻ א ܴ௡೑ೞ  are the actuators and 
sensors faults vectors, respectively, ݓሺݐሻ א ܴ௡ೢ  is 
measurement noise vector, and ݕሺݐሻ א ܴ௡೤  represents the 
output vector. ܣ௜ א ܴ௡ൈ௡ are the state matrices, ܤ௜ א ܴ௡ൈ௡ೠ  are 
the input matrices, ܥ א ܴ௡೤ൈ௡ is the output matrix, ܧ௜ א ܴ௡ൈ௡೑ೌ 
and ܧ א ܴ௡೤ൈ௡೑ೞ  are the faults matrices, and ܨ א ܴ௡೤ൈ௡ೢ  is the 
disturbance matrix. The ߤ௜ሺݔሻ  represent the activation 
functions which depend on the state ݔሺݐሻ of the system. These 
functions satisfy the convex sum property: 

൞ ෍ ሻݔ௜ሺߤ ൌ 1௥
௜ୀଵ ݐ ׊        , ൒ 0     0 ൑ ሻݔ௜ሺߤ ൑ 1, :݅ ݎ݋݂ 1 . . . ݎ                                     ሺ2ሻ 

where ݎ is the number of linear models. 
 
Hypothesis 1: We assume that faults ݂ሺݐሻ  appear as 

unknown inputs in polynomial form of k-1 degree, depending 
on the time and their kth derivatives are bounded, denoted ଴݂. 

The following notations are introduced: 

۔ۖەۖ
ۓ     ሶ݂ሺݐሻ ൌ ଵ݂ሺݐሻ   ሶ݂ଵሺݐሻ ൌ ଶ݂ሺݐሻ  ڭ  ሶ݂௞ିଵሺݐሻ ൌ ௞݂ሺݐሻ           ௞݂ሺݐሻ ൑ ଴݂                                                              ሺ3ሻ 

where ݂ሺݐሻ ൌ ሾ ௔்݂ሺݐሻ ௦்݂ሺݐሻሿ், ݂ሺݐሻ א ܴ௡೑ with  ௙݊ ൌ ௙݊ೌ ൅ ௙݊ೞ. 
 

Remark 1: The polynomial form allows considering a wide 
range of actuators and sensors faults affecting a dynamic 
system [23]. 

III. STRUCTURE OF THE PI OBSERVER 
Based on the structure of the TS fuzzy model (1) we 

propose the PI observer (4). This allows estimating 
simultaneously the states and actuators or sensors faults in 
presence of unmeasurable premise variables. 

ەۖۖ
۔ۖۖ
ොሶݔۓۖۖ ሺݐሻ ൌ ෍ ොሻݔ௜ሺߤ ቀܣ௜ݔොሺݐሻ ൅ ሻݐሺݑ௜ܤ ൅ ܴ௜ መ݂ሺݐሻ ൅ ሻݐሺݕ௉௜൫ܭ െ ሻ൯ቁ௥ݐොሺݕ

௜ୀଵ ൅ ሻݐොሺݕ  ሻݐ௫ሺݖ ൌ ሻݐොሺݔܥ ൅ ܴ መ݂ሺݐሻ                                                                                                 መ݂ሶሺݐሻ ൌ ෍ ሻݐሺݕூ௜൫ܭොሻݔ௜ሺߤ െ ሻ൯ݐොሺݕ ൅ መ݂ଵሺݐሻ௥
௜ୀଵ ൅                                                ሻݐ௙ሺݖ

መ݂ሶ௝ሺݐሻ ൌ ෍ ூ௜௝ܭොሻݔ௜ሺߤ ൫ݕሺݐሻ െ ሻ൯ݐොሺݕ ൅ መ݂௝ାଵሺݐሻ௥
௜ୀଵ ൅ ሻ      for     ݆: 1ݐ௙௝ሺݖ … ݇ െ 1  

     ሺ4ሻ 
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where ܴ௜ ൌ ሾܧ௜ 0ሿ and ܴ ൌ ሾ0 ௉௜ܭ ሿ are the faults matrices, andܧ א ܴ௡ൈ௡೤  and ܭூ௜ א ܴ௡೑ൈ௡೤ ூ௜௝ܭ , א ܴ௡೑ൈ௡೤  represent the 
proportional and integral gains, respectively. The variables ݖ௫ሺݐሻ and ݖ௙ሺݐሻ, ݖ௙௝ሺݐሻ are introduced in order to compensate the 
effect due to unmeasurable premise variables. 

Based on hypothesis 1, the TS model (1) and PI observer 
(4) can be written in the augmented forms, respectively, as 
follow: 

൞ݔҧሶ ሺݐሻ ൌ ෍ ሻݐҧሺݔҧ௜ܣሻሺݔ௜ሺߤ ൅ ሻሻ௥ݐሺݑത௜ܤ
௜ୀଵ ൅ ܩ ௞݂ሺݐሻ               ݕሺݐሻ ൌ ሻݐҧሺݔҧܥ ൅  ሻ                                                                 ሺ5ሻݐሺݓܨ

and 
 

൞ݔҧ෠ሶ ሺݐሻ ൌ ෍ ොሻݔ௜ሺߤ ቀܣഥ݅ݔҧ෠ሺݐሻ ൅ ሻݐሺݑത௜ܤ ൅ ഥܭ ݅൫ݕሺݐሻ െ ሻ൯ቁݐොሺݕ ൅ ܩ መ݂௞ሺݐሻ ൅ ሻ    ௥ݐሺݖ
௜ୀଵݕොሺݐሻ ൌ  ሻ                                                                                                                 ሺ6ሻݐҧ෠ሺݔഥܥ

 
where 

ሻݐҧሺݔ ൌ ێێێۏ
ۍ ۑۑۑےሻݐሻ…௞݂ିଵሺݐሻଵ݂ሺݐሻ݂ሺݐሺݔ

ې
ሻݐҧ෠ሺݔ , ൌ ێێۏ

ۍێ ۑۑےሻݐሻ…መ݂௞ିଵሺݐሻመ݂ଵሺݐሻ෠݂ሺݐොሺݔ
ሻݐሺݖ ,ېۑ ൌ ێێێۏ

ۍێ ۑۑۑےሻݐ௙௞ିଵሺݖ…ሻݐ௙ଵሺݖሻݐ௙ሺݖሻݐ௫ሺݖ
 ሺ7aሻ                 ېۑ

 
with  ݔҧሺݐሻ א ܴሺ௡ା௞ൈ௡೑ሻ,  ݖሺݐሻ א ܴሺ௡ା௞ൈ௡೑ሻ and 
 ҧ݁ሺݐሻ ൌ ሻݐҧሺݔ െ ሻݐሻ,  ҧ݁௬ሺݐҧ෠ሺݔ ൌ ሻݐሺݕ െ ሻݐത௬ሺܧ  ,ሻݐොሺݕ ൌ ҧ݁௬ െ  ሺ7bሻ     ݓܨ
 

ҧ௜ܣ ൌ ێێۏ
௜ܣۍێ ܴ௜ 00 0 ௡೑0ܫ 0 0 0 ڮ 00 ڮ ௡೑ܫ0 ڮ ڮ0 ڮ 0ڮ 0 0 ڮ ڮ ௡೑0ܫ 0 0 ۑۑے

ത௜ܤ  ,ېۑ ൌ ێێێۏ
௜00…0ܤۍ ۑۑۑے

ې
ഥ௜ܭ  , ൌ ێێۏ

ۍێ ۑۑےூ௜௞ିଵܭ…ூ௜ଵܭ݅ܫܭ݅ܲܭ
    ሺ7cሻ        ېۑ

ܩ  ൌ ሾ0 0 ڮ      0 ҧܥ  ,௡೑ሿ்ܫ ൌ ሾܥ ܴ 0 … 0ሿ                     ሺ7dሻ      
and ܫ௡೑ is the identity matrix. 

The dynamics of the augmented state estimation error ҧ݁ሺݐሻ 
obtained on the basis of the TS model (5) and the PI observer 
(6) is given by the following equation: 
 ҧ݁ሶ ሺݐሻ ൌ ෍ ොሻሺݔ௜ሺߤ ҧࣛ௜ ҧ݁ሺݐሻ െ ሻݓܨഥ௜ܭ ൅ Δഥݔܣҧሺݐሻ ൅ ∆തݑܤሺݐሻ௥

௜ୀଵ ൅ ∆ܩ ௞݂ሺݐሻ െ  ሻ   ሺ8ሻݐሺݖ
where ҧࣛ௜ ൌ ҧ௜ܣ െ ܣҧ,  Δഥܥഥ௜ܭ ൌ ∑ పഥߤ ҧ௜௥௜ୀଵܣ ,  ∆തܤ ൌ ∑ పഥߤ ത௜௥௜ୀଵܤ ,                     ሺ9. aሻ ߤపഥ ൌ ሻݔ௜ሺߤ െ ∆ , ොሻݔ௜ሺߤ ௞݂ሺݐሻ ൌ ௞݂ሺݐሻ െ ෠݂݇ሺݐሻ                                   ሺ9. bሻ 
 

Remark 2: According to the convex sum property (2) of 
activation functions we can write െ1 ൏ పഥߤ ൏ 1, note that ∑ పഥ௥௜ୀଵߤ  
are not convex sums, and the variables matrices Δഥܣ and ∆തܤ are 
bounded and the following conditions are satisfied: 
 ԡΔഥܣԡ ൑ ଵߪ ,ଵߪ ൌ maxሺߪଵ௜ሻ,  ԡ∆തܤԡ ൑ ଶߪ  ,ଶߪ ൌ max ሺσଶ௜ሻ              ሺ10ሻ 
 
with ߪଵ௜ ൐ 0 and ߪଶ௜ ൐ 0 are the Euclidian norms of matrices ܣҧ௜ 
and ܤത௜, respectively. 
 

Remark 3: Since the kth derivative of the unknown input is 
bounded, its estimate is also bounded and therefore their 

difference is bounded. The transfer of ∆ ௞݂ሺݐሻ and ݓሺݐሻ  towards 
augmented state estimation error ҧ݁ሺݐሻ  is minimized by 
L2–gain technique ( ԡ ҧ݁ሺݐሻԡଶ ൏ ,ሻԡଶݐሺݓԡߜ ߜ ൐ 0  with ݒሺݐሻ ൌሾ∆ ௞݂ሺݐሻ  .(ሻሿݐሺݓ
 

Lemma 1: For any matrices ܺ  and ܻ  of appropriate 
dimensions, the following property holds: 
 ்ܻܺ ൅ ்ܻܺ ൑ ்ܺܺ ߙ ൅ ߙ ଵ்ܻܻ        withିߙ ൐ 0 

IV. PI OBSERVER SYNTHESIS 
We develop in this section the synthesis method of PI 

observer to estimate the actuator and sensor faults. The 
proposed PI observer acts as a fault detection and isolation 
mechanism (FDI). The convergence conditions of the 
estimation error towards zero under LMI constraints are 
given in Theorem 1. 
 

Theorem 1: The dynamic error (8) is asymptotically stable 
with the L2–gain bound  ߜ, if there exist a matrix ܳ ൌ ܳT ൐ 0, 
matrices തܺ୧ and the positive scalars ߚ ,ߚ଴ and ߜҧ such as for all ݅ ൌ 1, . . r: 

  Min                                                                            ҧߜ
ێێێۏ
ۍ         ߮௜ ்ܳܩ      ܩܳ  െߜҧܫ െ തܺ௜ܨ ܳ 0 0െ்ܨ തܺ௜் 0 ܳ 0    െߜҧܫ 0   0 െۑۑۑےܫߚ

ې ൏ 0                        ሺ11. aሻ 

 ߮௜ ൌ ҧ௜்ܳܣ ൅ ҧ௜ܣܳ െ ҧ்ܥ തܺ௜் െ തܺ௜ܥҧ ൅ ܫଵଶߪ଴ߚ ൅ .ሺ11                ܫ bሻ 
 
where ߜ ൌ ඥߜҧ and the parameters ܣҧ௜, ܥҧ, and ߪଵ are given in 
(7c), (7d) and (10), respectively. 
 

The gains of the PI observer (4) are defined by: 
ഥ௜ܭ  ൌ ܳିଵ തܺ௜                                                    ሺ11. cሻ 
and 

൞ݖ ൌ 0                               ݂݅     หܧത௬ห ൏ ݖ                                                             ߝ ൌ ଵଶߪଵߟ ത௬ܧത௬்ܧҧ෠2ݔҧ෠்ݔ ܳିଵܥҧ்ܧത௬ ൅ ଶଶߪ ଶߟ ത௬ܧത௬்ܧ2ݑ்ݑ ܳିଵܥҧ்ܧത௬     ݂݅  หܧത௬ห ൒        ߝ
ሺ11. dሻ 

with variables ݔҧ෠, ܧ ,ݖത௬ and the parameter ߪଶ are given in (7a), 
(7b), (10), respectively, and ߟଵ ൌ ቀఉబఈ ቁ, ߟଶ ൌ ቀ ఉఉబఉሺଵାఈሻିఉబቁ .  ߙ and ߝ ൐ 0 is a small scalar arbitrarily fixed. 
 

Proof: The Lyapunov quadratic function considered has 
the form ܸሺݐሻ ൌ ҧ்݁ሺݐሻܳ ҧ݁ሺݐሻ where ܳ ൌ ்ܳ ൐ 0 . The conditions 
(11) guarantee the asymptotic stability of the dynamic error 
(8). The proof is given in appendix.           □ 
 

The resolution of the constraint (11.c) provides the PI 
observer ܭഥ௜ gains for the estimation of states and of actuators 
and sensors faults. In the next section, a simulation example is 
given of a hydraulic system with two tanks in order to validate 
the proposed approach. 
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V. SIMULATION EXAMPLE 
The hydraulic system (Fig. 1) is composed by two tanks of 

same section S which communicate by means of a cylindrical 
tube and a tank which supplies water both the two tanks 
through two pumps Pଵ and Pଶ of flows uଵ and uଶ, respectively. 
The water is recovered by the leak valves of tanks, thus the 
hydraulic system operates in a closed circuit [11]. 
 

 
 
 
 
 
 
 

Fig. 1. Technological scheme of hydraulic system with two tanks. 
 
The mass conservation properties lead to the following 

dynamic equations: 
 

൞ ଵܵ ݐ݀݀ ሻݐଵሺݔ ൌ ଵܷݑଵሺݐሻ െ ଵଶݍ െ ଵܵଶݍ ݐ݀݀ ሻݐଶሺݔ ൌ ଶܷݑଶሺݐሻ ൅ ଵଶݍ െ ଶݍ                                    ሺ12ሻ 
 
where ݔଵሺݐሻ and ݔଶሺݐሻ represent the levels of tanks 1 and 2, 
respectively, ݑଵሺݐሻ and ݑଶሺݐሻ are the water supply flows 
delivered by pumps 1 and 2, respectively. 
 

The flows are expressed according to Torricelli’s law by: ݍଵଶ ൌ ݇ଵଶ݊݃݅ݏሺݔଵ െ ଵݔ|ଶሻඥݔ െ ଵݍ |ଶݔ ൌ ݇ଵ√ݔଵ                           ሺ13ሻ ݍଶ ൌ ݇ଶඥݔଶ 
 
where the constants values used in simulation are  ܵ ൌ ଵܵ ൌܵଶ ൌ 0.09, ଵܷ ൌ ଶܷ ൌ 10, ݇ଵଶ ൌ 5.2 10ିସ, ݇ଵ ൌ 2.2 10ିଷ, ݇ଶ ൌ 2.5 10ିଷ 
and ݊݃݅ݏሺ ሻ is the sign function. 
 

The analytical knowledge of nonlinear model (12) of the 
hydraulic system allows us to obtain, with the use of the 
sectors nonlinearity approach detailed in [7], the following 
TS fuzzy model: 
 

൞ݔሶሺݐሻ ൌ ෍ ሻݐሺݔ௜ܣሻ൫ݔ௜ሺߤ ൅ ሻ൯ସݐሺݑ௜ܤ
௜ୀଵݕሺݐሻ ൌ  ሻ                                                                           ሺ14ሻݐሺݔܥ

with ܣଵ ൌ ቂെ0.0389 00 െ0.0500ቃ, ܣଶ ൌ ቂെ0.0389 00 െ0.0111ቃ   ܣଷ ൌ ቂെ0.0111 00 െ0.0500ቃ, ܣସ ൌ ቂെ0.0111 00 െ0.0111ቃ   ܤ௜ ൌ ଵ଴.଴ଽ ቂ10 00 10ቃ ሺ݅ ൌ 1, … 4ሻ,  ܥ ൌ ሾ1 0ሿ. 
 
Hypothesis 2: We assume that hydraulic system output is 

the state ݔଵሺݐሻ and the state ݔଶሺݐሻ is unmeasurable. 
 

The TS fuzzy model (14) can take the form (1), i.e. it is 
subject to actuator and sensor faults with the unmeasurable 
premise variable ݔଶሺݐሻ  and measurement noise on the output. 

The considered measurement noise ݓሺݐሻ is a centered noise 
represented by Fig. 2, and the inputs ݑሺݐሻ is given by Fig. 3. 
 

 
Fig. 2. Centered measurement noise. 

 

 
Fig. 3. Hydraulic system inputs. 

 
In the following paragraphs we present the simulation 

results of simultaneous estimation of states, actuator and 
sensor faults. 
 

A. Actuator Fault Diagnosis 
In the case of an actuator fault, the TS model of the system 

with unmeasurable premise variables and measurement noise 
can be put under the following form: 
 

൞ݔሶሺݐሻ ൌ ෍ ሻݐሺݔ௜ܣሻ൫ݔ௜ሺߤ ൅ ሻݐሺݑ௜ሺܤ ൅ Δݑሺݐሻ൯௥
௜ୀଵ ሻݐሺݕ                       ൌ ሻݐሺݔܥ ൅  ሻ                                                                ሺ15ሻݐሺݓܨ

 
The TS model (15) can take the form (1) with the following 

notations: ܤ௜ Δݑሺݐሻ ൌ ௜ܧ ௔݂ሺݐሻ 
 
where ௔݂ሺݐሻ is the actuator fault and 

 

௜ܧ  ൌ ቂെ0.0220 ቃ ሺ݅ ൌ 1, … 4ሻ,   ܧ ൌ ܨ   ,0 ൌ 10ିଷ 
 

Solving of LMIs constraints (11) of the theorem 1 lead to 
the PI observer gains given in Table I. The simulation results 
are carried out with ߝ ൌ 10ିଷ , ଴݂௔ ൌ 1.81 10ିସ  and initial 
conditions ݔ଴ ൌ ሾ0.6 0.1ሿ ො଴ݔ , ൌ ሾ0.5 0.2ሿ . The considered 
actuator fault has the fourth derivative bounded, and appears 
between t ൌ 2000 s and t ൌ 3000 s, as given by Fig. 4.  

 
Actuator fault and its estimate are given in Fig 4 where the 

states estimation are given by Fig 5. 
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TABLE I ߤ ൌ ߚ            ,3 ൌ ଴ߚ          ,10଼ 1.22 ൌ 5.03 10ିସ ݅ 1 2 3 4 ܭ௣௜ ቂ7.740 ቃ ቂ7.740 ቃ ቂ7.790 ቃ ቂ7.790 ቃ ܭூ௜ െ1320.56 െ1320.56 െ1320.83 െ1320.83 ܭூ௜ଵ െ2940.42 െ2940.42 െ2941.38 െ2941.38 ܭூ௜ଶ െ4035.21 െ4035.21 െ4037.48 െ4037.48 ܭூ௜ଷ െ2892.85 െ2892.85 െ2894.84 െ2894.84 

 

 
Fig. 4. Actuator fault ௔݂ሺݐሻ and its estimate መ݂௔ሺݐሻ. 

 
A threshold of 0.4 can be used as decision logic to show the 

presence or not of an actuator fault. 
 

   
 Fig. 5. States ݔଵሺݐሻ, ݔଶሺݐሻ and their estimate ݔොଵሺݐሻ, ݔොଶሺݐሻ. 

 
B. Sensor Fault Diagnosis 
In this context, the TS model of the system with 

unmeasurable premise variables and measurement noise can 
be put under the following form: 
 

൞ݔሶሺݐሻ ൌ ෍ ሻݐሺݔ௜ܣሻ൫ݔ௜ሺߤ ൅ ሻ൯௥ݐሺݑ௜ܤ
௜ୀଵ ሻݐሺݕ                               ൌ ሻݐሺݔܥ ൅ ܧ ௦݂ሺݐሻ ൅  ሻ                                    ሺ16ሻݐሺݓܨ

 
The TS model (16) is subjected to a sensor fault and can take 
the form (1) with ௦݂ሺݐሻ ܧ௜ ൌ ቂ00ቃ ሺ݅ ൌ 1, … 4ሻ, ܧ ൌ െ1,   ܨ ൌ 10ିଷ. 
 

The resolution of LMIs constraints (11) leads to PI observer 
gains shown in Table II. 
 

 
 
 

TABLE II 
ߤ  ൌ ߚ            ,2 ൌ 6.92 10ହ,          ߚ଴ ൌ 2.64 10ିଶ ݅ 1 2 3 4 ܭ௣௜ ቂ0.0040 ቃ ቂ0.0040 ቃ ቂ0.0010 ቃ ቂ0.0010 ቃ ܭூ௜ െ11.394 െ11.394 െ11.377 െ11.377 ܭூ௜ଵ െ69.402 െ69.402 െ69.104 െ69.104 ܭூ௜ଶ െ247.513 െ247.513 െ245.645 െ245.645 ܭூ௜ଷ െ459.817 െ459.817 െ453.450 െ453.450 

 
The simulation results are carried out with an attenuation 

gain of ߜ ൌ 0.6  with ଴݂௦ ൌ 1.81 10ିସ ߝ , ൌ 10ିଷ  and initial 
conditions ݔ଴ ൌ ሾ0.6 0.1ሿ ො଴ݔ , ൌ ሾ0.5 0.2ሿ . The considered 
sensor fault has the fourth derivative bounded, and appears 
between t ൌ 5000 s and t ൌ 6000 s (see Fig. 6). 
 

 
 

Fig. 6. Sensor fault ௦݂ሺݐሻ and its estimate መ݂௦ሺݐሻ. 
 

Fig. 6 and Fig. 7 gives the sensor fault and states and their 
estimate respectively. The simulation results give good 
simultaneous estimation of states and sensor fault. 

 
Fig. 7. States ݔଵሺݐሻ, ݔଶሺݐሻ and their estimate ݔොଵሺݐሻ, ݔොଶሺݐሻ. 

 
VI. CONCLUSION 

This paper proposes a simultaneous estimation of both 
state and sensor/actuator faults for TS fuzzy model based on a 
proportional integral observer. The considered TS fuzzy 
model is subject to disturbances and unmeasurable premise 
variables. To take into account a wide range of faults, 
polynomial form with their bound kth derivatives are 
considered. Based on Lyapunov stability theory and L2–gain 
technique, sufficient synthesis conditions of the proposed PI 
observer are developed in LMIs formulation. A simulation 
example of hydraulic system with two tanks is provided to 
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illustrate the effectiveness and feasibility of the proposed 
approach. Indeed, the obtained results show the good 
simultaneous estimation of states and actuator or sensor 
faults. 

APPENDIX 
The time-derivative of Lyapunov quadratic function ܸሺݐሻ ൌ ҧ்݁ሺݐሻܳ ҧ݁ሺݐሻ where ܳ ൌ ்ܳ ൐ 0 leads: ሶܸ ൌ ෍ ොሻݔ௜ሺߤ ቀ ҧ்݁ ቀ ҧࣛ௜்ܳ ൅ ܳ ҧࣛ௜ቁ ҧ݁ െ ҧ்݁ܳܭഥ௜ݓܨ െ ഥ௜்ܳܭ்ܨ்ݓ ҧ݁ቁ௥

௜ୀଵ  

                                  ൅ݔҧ்Δഥ்ܳܣ ҧ݁ ൅ ҧ்݁ܳΔഥݔܣҧ ൅ ்ܳܤത∆்ݑ ҧ݁ 
                                  ൅ ҧ்݁ܳ∆തݑܤ ൅ ∆ ௞்்݂ܳܩ ҧ݁ ൅ ҧ்݁ܳܩ∆ ௞݂ െ 2 ҧ்݁ܳݖ   ሺA. 1ሻ 

Then, taking into account (7b) and using Lemma 1, we 
obtain: ሶܸ ൑ ෍ ොሻݔ௜ሺߤ ቀ ҧ்݁ ቀ ҧࣛ௜்ܳ ൅ ܳ ҧࣛ௜ቁ ҧ݁ െ ҧ்݁ܳܭഥ௜ݓܨ െ ഥ௜்ܳܭ்ܨ்ݓ ҧ݁ቁ௥

௜ୀଵ  

                                  ൅ߙଵߪଵଶሺ ҧ்݁ ҧ݁ ൅ ҧ෠ݔҧ෠்ݔ ൅ ҧ෠ݔҧ෠்ݔଵିߙ ൅ ҧ்݁ ߙ ҧ݁ሻ 

                                  ൅ߙଵି ଵ ҧ்݁ܳଶ ҧ݁ ൅ ்ܳܤത∆்ݑ ҧ݁ ൅ ҧ்݁ܳ∆തݑܤ  ൅∆ ௞்்݂ܳܩ ҧ݁ ൅ ҧ்݁ܳܩ∆ ௞݂ െ 2 ҧ்݁ܳݖ                         ሺA. 2ሻ 
using again Lemma 1: 

ሶܸ ൑ ෍ ොሻݔ௜ሺߤ ቀ ҧ்݁ ቀ ҧࣛ௜்ܳ ൅ ܳ ҧࣛ௜ ൅ ܫଵଶߪ଴ߚ ൅ ଵܳଶቁିߚ ҧ݁ െ ҧ்݁ܳܭഥ௜ݓܨ௥
௜ୀଵ െ ഥ௜்ܳܭ்ܨ்ݓ ҧ݁ቁ ൅ ∆ ௞்்݂ܳܩ ҧ݁ ൅ ҧ்݁ܳܩ∆ ௞݂ ൅ߟଵߪଵଶݔҧ෠்ݔҧ෠ ൅ ݑ்ݑଶଶߪଶߟ െ 2 ҧ்݁ܳݖ                  ሺA. 3ሻ 

with ߚ଴ ൌ ଵሺ1ߙ ൅ ଵିߚ  ,ሻߙ ൌ ሺαଵି ଵ ൅ αଶି ଵሻ, ߟଵ ൌ αଵሺ1 ൅ αିଵሻ ൌ ቀఉబ஑ ቁ,  ߟଶ ൌ αଶ ൌ ቀ ఉఉబఉሺଵାఈሻିఉబቁ. 
By substituting the expression of z (11.d) in equation (A.3), 

we get: 2 ҧ்݁ܳݖ ൌ 2 ҧ்݁ܳߟଵߪଵଶ ത௬ܧത௬்ܧҧ෠2ݔҧ෠்ݔ ܳିଵܥҧ்ܧത௬                                      
൅2 ҧ்݁ܳ ߟଶ ߪଶଶ ത௬ܧത௬்ܧ 2ݑ்ݑ ܳିଵܥҧ்ܧത௬                       ሺA. 4ሻ 

ൌ ҧ෠ݔҧ෠்ݔଵଶߪଵߟ ൅                                                    ݑ்ݑଶଶߪଶߟ
with ܥҧ ҧ݁ ൌ ത௬்ܧ ሻ etݐത௬ሺܧ ൌ ҧ்݁ܥҧ். 

The system (8) is stable and satisfied the L2–gain technique 
( ԡ ҧ݁ሺݐሻԡଶ ൏ ,ሻԡଶݐሺݓԡߜ ߜ ൐ 0  with ݒሺݐሻ ൌ ሾ∆ ௞݂ሺݐሻ ሻሿݐሺݓ ) if the 
following condition is respected: ሶܸ ൅ ҧ்݁ ҧ݁ െ ∆ଶߜ ௞்݂∆ ௞݂ െ ݓ்ݓଶߜ ൏ 0                            ሺA. 5ሻ 

Taking into account (A.4), the condition (A.5) is satisfied if 
the following matrices inequalities are satisfied: ቎߮௜ ൅ ଵܳଶିߚ ܩܳ െܳܭഥ௜்ܳܩܨ െߜଶܫ 0െܭ்ܨഥ௜்ܳ 0 െߜଶܫ ቏ ൏ 0                          ሺA. 8ሻ 
with ߮௜ ൌ ҧࣛ௜்ܳ ൅ ܳ ҧࣛ௜ ൅ ܫଵଶߪ଴ߚ ൅ ሺ݅   ܫ ൌ 1, …  .ሻݎ

The Schur complement to the condition (A.8) with the 
variables change  ߜҧ ൌ ଶߜ , ҧࣛ௜ ൌ ҧ௜ܣ െ ҧܥഥ௜ܭ  and തܺ௜ ൌ ഥ௜ܭܳ  leads to 
linear matrix inequalities (11.a). 
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