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Abstract—In the traditional fuzzy logic, the expert’s degree of
confidence d(A&B) in a complex statement A&B (or A ∨ B)
is uniquely determined by his/her degrees of confidence d(A)
and d(B) in the statements A and B, as f&(d(A), d(B)) for an
appropriate “and”-operation (t-norm). In practice, for the same
degrees d(A) and d(B), we may have different degrees d(A&B)
depending on the relation between A and B. The best way to take
this relation into account is to explicitly elicit the corresponding
degrees d(A&B) and d(A∨B), i.e., to come up with a “double”
fuzzy set. If we only elicit information about pairs of statements,
then we still need to estimate, e.g., the degree d(A&B&C) based
on the known values d(A), d(B), d(C), d(A&B), d(A&C), and
d(B&C). In this paper, we explain how to produce such “and”-
operations for “double” fuzzy sets – and how to produce similar
“or”-operations.

I. TRADITIONAL FUZZY TECHNIQUES: A BRIEF
REMINDER

Need for fuzzy techniques: reminder. Experts often describe
their knowledge by using imprecise (“fuzzy”) words from
a natural language like “small” or “fast”. One of the most
widely used ways to describe this knowledge in computer-
understandable terms is to use fuzzy techniques, in which, for
each imprecise property P and for each possible value x of the
corresponding property, we store the degree µP (x) to which
the expert believes that x satisfies the property P ; see, e.g.,
[11], [12], [14].

Each of these values can be obtained, e.g., by asking the
expert to mark his or her degree of certainty that x satisfies P
by a mark on a scale from 0 to some integer n. If the expert
marks m on a scale from 0 to n, we take µP (x) = m/n.

Another possibility is to use polling: we ask n experts and
if m of them think that x satisfies the property P , we take
µP (x) = m/n. Thus obtained degree can be interpreted as a
probability: namely, as a probability that a randomly selected
expert thinks that x satisfies the property P .

Need for “and”- and “or”-operations. One of the main
objectives of storing the expert knowledge is to enable the
computer to use expert rules – rules formulated in terms of
imprecise natural-language words. The conditions of such rules
often include several properties: e.g., if the car in front is close
and it is decelerating fast, then we need to break hard. To figure

out to what extent such rules are applicable in given situations,
we need not only to describe the degree to which a given
distance is close and the degree to which a given deceleration
is fast, we also need to find the degree to which the expert
believes in the corresponding composite “and”-statement.

Ideally, we should ask the expert’s opinion about all such
combinations. However, in principle, many such combinations
are possible, and it is not possible to ask the expert’s opinion
about all such combinations. It is therefore necessary to
estimate our degree of belief in a propositional combination
like A&B or A∨B in the situation when the only information
that we have is the expert’s degrees of belief d(A) and d(B)
in statements A and B. For each of these two propositional
connectives & and ∨, we thus need to come up with an
algorithm that transform the degrees d(A) and d(B) into a
reasonable estimate for d(A&B) or d(A ∨B).

Let us denote the algorithm corresponding to & by
f&(a, b), and the algorithm corresponding to ∨ by f∨(a, b).
Once we use these algorithms, we estimate d(A&B) as
f&(d(A), d(B)) and d(A ∨ B) as f∨(d(A), d(B)). We want
these algorithms to be reasonable. For example, since A&B
is equivalent to B&A, it is reasonable to require that these
two formulas lead to the same estimate for d(A& b), i.e., that
the equality

f&(d(A), d(B)) = f&(d(B), d(A))

be true for all possible values of d(A) and d(B). In math-
ematical terms, it is reasonable to require that the operation
f&(a, b) is commutative. Similarly, since A ∨ B also means
the same as B ∨ A, it is also reasonable to require that the
operation f∨(a, b) is commutative.

Similarly, since A&(B&C) is equivalent to (A&B)&C,
it makes sense to require that the corresponding estimates
coincide, i.e., that

f&(d(A), f&(d(B), d(C))) = f&(f&(d(A), d(B)), d(C)).

In mathematical term, this means that the operation f&(a, b)
is associative. Similarly, it is reasonable to require that the
operation f∨(a, b) is associative. Together with additional
reasonable requirements like monotonicity, continuity, etc.,
these properties form the definitions of “and”-operations (also
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known as t-norms) and “or”-operations (also known as t-
conorms; see, e.g., [1], [2], [7], [9].

Similarly, we use a negation operation f¬(a) to estimate
the degree to which the negation ¬A is true as

d(¬A) ≈ f¬(d(A)).

Historical comment. Historically the first “and”- and “or”-
operations – introduced in the pioneer paper [14] – are
f&(a, b) = min(a, b), f&(a, b) = a · b, f∨(a, b) = max(a, b),
and f∨(a, b) = a + b − a · b. The most widely used negation
operation is f¬(a) = 1− a.

II. NEED TO GO BEYOND TRADITIONAL FUZZY
TECHNIQUES: ENTER “DOUBLE” FUZZY SETS

Traditional fuzzy approach: reminder. In the traditional
fuzzy techniques, we base our estimate of the expert’s degree
of belief in a composite statement A&B only on the degrees
of belief d(A) and d(B) in A and B, we do not take into
account the relation between such statements. In reality, for
the same degrees of belief in A and B, we may have different
degrees of belief in A&B.

First example. For example, suppose that an expert’s degree
of confidence in a statement A is 0.5. Then, it is reasonable to
conclude that the expert’s degree of confidence in the opposite
statement ¬A is equal to 1− 0.5 = 0.5.

• If we take B = A, then we have d(A) = d(B) = 0.5,
and, since A&B is simply equivalent to A, we have
d(A&B) = 0.5.

• On the other hand, if we take B = ¬A, then we
still have d(A) = d(B) = 0.5, but here, A&B is
impossible, so we have d(A&B) = 0 ̸= 0.5.

Second example. Let us give another example, more closely
related to the degrees to which different values x satisfy a
given property. Namely, suppose that:

• the expert’s degree of belief that a 50-years-old is old
is 0.1, and

• the expert’s degree of belief that a 60-years-old is old
is 0.8.

What is the expert’s degree of belief that 50 is old but 60 is not
old? The procedure used in the traditional fuzzy logic leads
to:

• d(60 is not old) = 1− d(60 is old) = 1− 0.8 = 0.2,
and thus, to

• d((50 is old)& (60 is not old)) = f&(0.1, 0.2).

Whether we use f&(a, b) = min(a, b) or f&(a, b) = a · b,
we get a positive degree – which makes no sense, since if an
expert considers 50-year-olds to be old, then of course this
expert should also consider 60-year-olds to be old.

Analysis of the problem. The reason for the above counterin-
tuitive results is that the traditional fuzzy logic does not take
into account the dependence between the statements.

A natural idea. A natural solution to the above problem is
to explicitly elicit and store not only the expert’s degree of
confidence µP (x) that a given value x satisfies the property x
but also the degree of confidence µPP (x, x

′) that both x and
x′ satisfy the property P ; see, e.g., [8].

This idea enables us to avoid the above counterintuitive
conclusion. Indeed, e.g., for the property “old”, once we
believe that x is old, this automatically makes us believe that
all larger ages correspond to “old”.

For example, the degree of belief that both 50 and 60
correspond to “old” is the same as the degree of belief that
50 is old. In general, we should take µPP (x, x

′) = µP (x) for
x < x′.

Towards a precise description. In the traditional fuzzy ap-
proach, a property is described by a single function

µP : X → [0, 1].

In the new approach, to describe a property, we need two
functions:

• a function µP : X → [0, 1], and

• a function µPP : X ×X → [0, 1] for which

µPP (x, x
′) = µPP (x

′, x) and µPP (x, x
′) ≤ µP (x).

Since we now need two functions to describe a property, it is
natural to call such pairs of functions (µP , µPP ) double fuzzy
sets.

From “double” to “triple” etc., fuzzy sets. In addition to
asking an expert to what extent both x and x′ satisfy the
desired property P , we can also ask the same question about
the triples (x, x′, x′′) etc.

III. FORMULATION OF THE PROBLEM: WE NEED TO
EXTEND “AND”- AND “OR”-OPERATIONS TO “DOUBLE”,

“TRIPLE” ETC. FUZZY SETS

“And”-operations in traditional fuzzy logic: reminder.
In the traditional fuzzy approach, the degree of belief that
both x and x′ satisfy the property P would be estimated as
f&(µP (x), µP (x

′)).

For “double” fuzzy sets, we do not need “and”-operations
for pairs. In the “double” fuzzy set approach, instead of using
this approximate description, we explicitly solicit, for each pair
(x, x′), the expert’s degree of confidence that both x and x′

satisfy the property P .

For triples, we still need an appropriate “and”-operation.
What if we want to estimate the expert’s degree that x, x′,
and x′′ all satisfy the property P ? In the context of “double”
fuzzy sets, we do not explicitly ask such questions, we only
ask questions about individual elements x, x′, and x′′, and
about pairs.

Thus, we need to estimate the desired degree
d(P (x)&P (x′)&P (x′′)) based on the known degrees

µP (x), µP (x
′), µP (x

′′),
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µPP (x, x
′), µPP (x, x

′′), and µPP (x
′, x′′).

In other words, we still need an appropriate “and”-operation.

What we do in this paper. In this paper, we show that ideas
that lead to the most popular t-norms and t-conorms can be
extended to describe the desired “and”- and “or”-operations
for the “double” fuzzy sets.

IV. “AND”- AND “OR”-OPERATIONS FOR TRADITIONAL
FUZZY SETS: REMINDER

Degrees of confidence and subjective probabilities. Tra-
ditionally, an expert’s degrees of certainty are also called
subjective probabilities.

In some cases, they are indeed similar to probabilities –
e.g., when we determine these degrees of certainty by polling:
by asking n experts whether the given statement s is true,
and taking, as the degree of confidence d(s), the ration m/n,
where m is the number of experts who believes that s is true.
In this case, the resulting degree of confidence in a statement
s is equal to the probability that a randomly selected expert
considers the statement s to be true.

In view of this relation between degrees of confidence
and probabilities – and taking into account that probabilistic
methods have been developed for many centuries now, so a lot
of techniques are known – we will use probabilistic methods to
derive formulas for “and”- and “or”-operations. At first glance,
this may seem restrictive, but, as we will show, the most widely
used “and” and “or”-operations can indeed be obtained this
way.

Specifically, we formulate the following problem:

• we know the probabilities p(s1) and p(s2) of two
statements s1 and s2;

• we want to estimate the probability p(s1 & s2).

Corresponding probability-related techniques: reminder.
The above problem is not uniquely determined: depending on
the dependence between s1 and s2, we may have different
values of the desired probability p(s1 & s2). There are two
main approaches to deal with this non-uniqueness:

• we can find the range of all possible values p(s1 & s2);
and

• we can select a single “most probable” value
p(s1 & s2).

Let us describe both approaches in detail.

Inequalities (linear programming) approach. To get a full
description of the joint probability distribution on the set of
two statements s1 and s2, we need to know the probabilities
of all basic combinations s1 & s2, s1 &¬s2, ¬s1 & s2, and
¬s1 &¬s2. One can check that once we know the proba-
bilities d1 = p(s1) and d2 = p(s2) and the probability
x

def
= p(s1 & s2), we can uniquely determine all the remaining

probabilities:

p(s1 &¬s2) = p(s1)− p(s1 & s2) = d1 − x,

p(¬s1 & s2) = p(s2)− p(s1 & s2) = d2 − x, and

p(¬s1 &¬s2) = 1− p(s1)− p(s2) + p(s1 & s2) =

1− d1 − d2 + x.

For which values x do these formulas lead to a probability
distribution? In a probability distribution, all the basic proba-
bilities are non-negative and add up to 1. It is easy to check
that the values x, d1 − x, d2 − x, and 1− d1 − d2 + x always
add up to 1. Thus, to make sure that the value x describes
a probability distribution, it is sufficient to make sure that all
four resulting values of basic probabilities are non-negative,
i.e., that the following four inequalities hold:

x ≥ 0; d1 − x ≥ 0; d2 − x ≥ 0; 1− d1 − d2 + x ≥ 0.

In general, several possible values x satisfy these inequalities.
It is reasonable to find the range of such values x, i.e., to find
the smallest and the largest value x for which the above four
expressions form a probability distribution.

From the mathematical viewpoint, we thus need to find
the maximum and the minimum of x under the above four
linear inequalities. The problem of optimizing a linear function
under linear equalities and/or inequalities is known as linear
programming; there exist efficient algorithms for solving such
problems; see, e.g., [3], [5], [6], [13]. In view of this relation,
the above approach is also known as the linear programming
approach.

For the above inequalities, we can find an explicit solution
if we move x to one of the sides of each inequality and all the
other terms to the other side. As a result, we get the following
system of four inequalities:

x ≥ 0; x ≤ d1; x ≤ d2; x ≥ d1 + d2 − 1.

The inequalities x ≤ d1 and x ≤ d2 can be described as
x ≤ min(d1, d2). Similarly, the inequalities x ≥ 0 and

x ≥ d1 + d2 − 1

can be described as x ≥ max(d1 + d2− 1, 0). Thus, the value
x determines a probability distribution if and only if

max(d1 + d2 − 1, 0) ≤ x ≤ min(d1, d2).

We have thus found the desired range; its lower endpoint is
the value

max(d1 + d2 − 1, 0),

its upper endpoint is the value min(d1, d2).

Both endpoints serve as possible t-norms:

• The lower endpoint f&(a, b) = max(a + b − 1, 0) is
the smallest of the (probabilistically interpretable) t-
norms. It is known as the Lukaseiwicz t-norm.

• The upper endpoint f&(a, b) = min(a, b) is the largest
of the (probabilistically interpretable) t-norms. It is
known as the minimum t-norm. It is actually one of
the most widely used t-norms.

Comment. It should be mentioned that some t-norms consid-
ered in fuzzy logic do not satisfy the above inequalities and
thus, do not have a probabilistic interpretation. An example of
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such a t-norm is drastic product f&(a, b) which is defined as
follows: f&(a, 1) = a, f&(1, b) = b, and f&(a, b) = 0 when
both a and b are smaller than 1. In this case, for a = b = 0.9,
we have

max(0.9 + 0.9− 1, 0) = 0.8 ̸≤ f&(0.9, 0.9) = 0.

Maximum Entropy approach. In applications of probability
theory, we often encounter situations when we do not know
the exact probability distribution, i.e., when several different
distributions are consistent with our knowledge. Some of
these distributions have smaller uncertainty, some have larger
uncertainty. In this case, a reasonable idea is not to hide the
possible uncertainty, i.e., to select a distribution with the largest
uncertainty. There are reasonable arguments that uncertainty
of a probability distribution is best described by its entropy
S = −

∑
pi ·ln(pi); as a result, we usually select a distribution

with the largest entropy; see, e.g., [4], [10].

In the above case, we have four probabilities

x, d1 − x, d2 − x, and 1− d1 − d2 + x,

so the entropy takes the form

S = −x · ln(x)− (d1−x) · ln(d1−x)− (d2−x) · ln(d2−x)−

(1− d1 − d2 + x) · ln(1− d1 − d2 + x).

To find the value x for which entropy is the largest, we differ-
entiate this expression relative to x and equate the derivative
to 0. As a result, we get

− ln(x) + ln(d1− x) + ln(d2− x)− ln(1− d1− d2 + x) = 0.

Moving all negative terms to the right-hand side, we get

ln(d1 − x) + ln(d2 − x) = ln(x) + ln(1− d1 − d2 + x).

Raising e to the power of both sides, and taking into account
that ea+b = ea · eb and that eln(z) = z, we conclude that

(d1 − x) · (d2 − x) = x · (1− d1 − d2 + x).

Opening parentheses, we get

d1 · d2 − x · (d1 + d2) + x2 = x− x · (d1 + d2) + x2.

Canceling similar terms in both sides, we get x = d1 · d2.

The corresponding “and”-operation f&(a, b) = a · b is
known as the product t-norm. It is indeed one of the most
widely used t-norms in fuzzy logic.

How to derive the corresponding “or”-operations: idea. The
corresponding “or”-operations can be derived from the “and”-
operations if we take into account that s1 ∨ s2 is equivalent to
¬((¬s1)& (¬s2)).

For probabilities, p(¬s) = 1 − p(s). Thus, p(¬s1) = 1 −
p(s1) and p(¬s2) = 1 − p(s2). So, once we have selected
the “and”-operation f&(a, b), we can determine the probability
p((¬s1)& (¬s2)) as

p((¬s1)& (¬s2)) = f&(p(¬s1), p(¬s2)) =

f&(1− p(s1), 1− p(s2)).

Hence, the desired probability p(s1 ∨ s2) can be estimated as

p(s1 ∨ s2) = p(¬((¬s1)& (¬s2))) =

1− p((¬s1)& (¬s2))) = 1− f&(1− p(s1), 1− p(s2)).

In other words, once we have defined an “and”-operation
f&(a, b), we can determine the corresponding “or”-
operation as

f∨(a, b) = 1− f&(1− a, 1− b).

Let us show what we get when we apply this idea to the above
“and”-operations.

“Or”-operations: inequalities (linear programming) ap-
proach.

• For f&(a, b) = max(a+ b− 1, 0), we get

f∨(a, b) = min(a+ b, 1).

• For f&(a, b) = min(a, b), we get

f∨(a, b) = max(a, b);

this is actually one of the most widely used “or”-
operations (t-conorms).

“Or”-operation: Maximum Entropy approach. For
f&(a, b) = a · b, we get

f∨(a, b) = a+ b− a · b.

This “or”-operation is indeed one of the most widely used in
fuzzy logic.

V. “AND”- AND “OR”-OPERATIONS FOR “DOUBLE”
FUZZY SETS

Analysis of the problem. Let us apply the above approaches
to estimate

x = d(s1 & s2 & s3)

for double fuzzy sets.

To fully describe the probability distribution for the case of
three statements, we need to find the probabilities of all eight
possible basic combinations:

p(s1 & s2 & s3), p(s1 & s2 &¬s3),

p(s1 &¬s2 & s3), p(s1 &¬s2 &¬s3),

p(¬s1 & s2 & s3), p(¬s1 & s2 &¬s3),

p(¬s1 &¬s2 & s3), and p(¬s1 &¬s2 &¬s3).

If we know the values

d1 = p(s1), d2 = p(s2), d3 = p(s3),

d12 = p(s1 & s2), d13 = p(s1 & s3),

d23 = p(s2 & s3), and

x = p(s1 & s2 & s3),

then we can uniquely reconstruct all remaining seven proba-
bilities:

p(s1 & s2 &¬s3) = p(s1 & s2)− p(s1 & s2 & s3) = d12 − x;
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p(s1 &¬s2 & s3) = p(s1 & s3)− p(s1 & s2 & s3) = d13 − x;

p(¬s1 & s2 & s3) = p(s2 & s3)− p(s1 & s2 & s3) = d23 − x;

p(s1 &¬s2 &¬s3) = p(s1)− p(s1 & s2)− p(s1 & s3)+

p(s1 & s2 & s3) =

d1 − d12 − d13 + x;

p(¬s1 & s2 &¬s3) = p(s2)− p(s1 & s2)− p(s2 & s3)+

p(s1 & s2 & s3) =

d2 − d12 − d23 + x;

p(¬s1 &¬s2 & s3) = p(s3)− p(s1 & s3)− p(s2 & s3)+

p(s1 & s2 & s3) =

d3 − d13 − d23 + x;

p(¬s1 &¬s2 &¬s3) =

1− p(s1)− p(s2)− p(s3)+

p(s1 & s2) + p(s1 & s3) + p(s2 & s3)−

p(s1 & s2 & s3) =

1− d1 − d2 − d3 + d12 + d13 + d23 − x.

Inequalities approach. Let us start with the inequalities
approach.

Similar to the case of two statements, these eight probabil-
ities add up to one, so the only requirement is that all these
eight expressions are non-negative:

x ≥ 0; d12 − x ≥ 0; d13 − x ≥ 0; d23 − x ≥ 0;

d1 − d12 − d13 + x ≥ 0; d2 − d12 − d23 + x ≥ 0;

d3 − d12 − d23 + x ≥ 0;

1− d1 − d2 − d3 + d12 + d23 + d13 − x ≥ 0.

By moving x to one side and all other terms to another side,
we get an equivalent set of inequalities:

x ≥ 0; x ≤ d12; x ≤ d13; x ≤ d23;

x ≥ d12+d13−d1; x ≥ d12+d23−d2; x ≥ d13+d23−d3;

x ≤ 1− d1 − d2 − d3 + d12 + d13 + d23.

These inequalities provide several lower and upper bounds for
x. The value x is larger than or equal to several lower bounds
if and only it is larger than or equal than the largest of these
lower bounds. Similarly, the value x is smaller than or equal
to several upper bounds if and only it is smaller than or equal
than the smallest of these upper bounds. Thus, the above eight
inequalities are equivalent to the following inequality:

max(d12 + d13− d1, d12 + d23− d2, d13 + d23− d3, 0) ≤ x ≤

min(d12, d13, d23, 1− d1 − d2 − d3 + d12 + d13 + d23).

Thus, we get the formulas for the lower and upper estimations
for p(s1 & s2 & s3):

• as the lower estimate, we can take

max(d12 + d13 − d1, d12 + d23 − d2, d13 + d23 − d3, 0);

• as the upper estimate, we can take

min(d12, d13, d23, 1− d1 − d2 − d3 + d12 + d13 + d23).

Example. As s1, let us take the statement that 50-year-olds
are old; as s2, we take a statement that 60-year-olds are not
old, and as s3, we take a statement that 70-year-olds are old.
Similarly to the second example from Section II, let us take
d1 = 0.1, d2 = 0.2, and d12 = 0. Let us also add d3 =
0.9, and, for simplicity, d13 = min(d1, d3) = 0.1 and d23 =
min(d2, d3) = 0.2.

In this case, for our degree of confidence x in the conjunc-
tion s1& s2 & s3, the above double inequality takes the form
0 ≤ x ≤ 0, so we can conclude that x = 0. This is consistent
with common sense, since the conjunction s1 & s2 & s3 means
that 50-year-olds are old while 60-year-olds aren’t, a statement
that makes no sense – no matter who we consider as being old.

How are the new operations related to the usual t-norm?
Case when we know d12, d23, and d13. The above expressions
provide estimates for the degree d(s1 & s2 & s3) of our confi-
dence in the statement s1 & s2 & s3. To find these estimates,
in particular, we use the known degrees d12 = d(s1 & s2)
and d3 = d(s3). Since we know these two degrees, we can
also use a usual t-norm f&(a, b) to estimate our degree of
confidence in the conjunction s1 & s2 & s2 = (s1 & s2)& s3

as d̃
def
= f&(d12, d3). What is the relation between this

more traditional estimate and our new estimate for the degree
d(s1 & s2 & s3)?

We know that a probabilistically interpretable “and”-
operation (t-norm) f&(a, b) satisfies the inequality

max(a+ b− 1, 0) ≤ f&(a, b) ≤ min(a, b),

so we conclude that the above t-norm estimate d̃ satisfies the
inequality

max(d12 + d3 − 1, 0) ≤ d̃ ≤ min(d12, d3).

How are these bounds related to our new bounds?

For example, our new upper bound d is the smallest of the
four numbers and is, therefore, smaller than or equal than the
minimum of the first two of these numbers: d ≤ min(d12, d13).
Since d13 ≤ d3, we can conclude that

min(d12, d13) ≤ min(d12, d3).

Thus, from the new upper bound on the desired degree x, we
can conclude that x ≤ min(d12, d2), i.e., that the new upper
bound is stronger than the traditional one.

One can argue that, in addition to the t-norm-based
upper bound min(d12, d3) coming from the expression
s1 & s2 & s2 = (s1 & s2)& s3, we can also get upper bounds
min(d23, d1) and min(d13, d2) coming from similar expres-
sions (s2 & s3)& s1 and (s1 & s3)& s2. Now that we know
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that the actual degree x cannot exceed any of these three upper
bounds, we can conclude that x is smaller than or equal to
the smallest of these three bounds. In other words, based on
the three t-norm-based upper bounds, we get a new combined
upper bound

x ≤ min(min(d12, d3),min(d23, d1),min(d13, d2)).

This minimum of minima is simply the smallest of the corre-
sponding six numbers, i.e., we get

x ≤ min(d12, d3, d23, d1, d13, d2).

Since d13 ≤ d1, d13 ≤ d3, and d23 ≤ d2, it is sufficient
to look for the smallest among the values d12, d23, and d13.
Therefore, the combined t-norm-based bound takes the form
x ≤ min(d12, d23, d13). We can see that our new upper bound
is smaller than or equal that this combined one – and that it is
sometimes smaller, since the corresponding minimum included
an additional term

1− d1 − d2 − d3 + d12 + d13 + d23.

Similarly, we can conclude that the new lower bound
implies the lower-bounds coming from the t-norms, and that
the new lower bound is, in general, stronger than the t-norm-
based lower bounds.

How are the new operations related to the usual t-norm?
Case when we do not know d12, d23, and d13. The new
lower and upper bounds can also be applied to the case when
we do not know the degrees d12, d23, and d13, when we only
know the bounds on these values:

max(di + dj − 1, 0) ≤ dij ≤ min(di, dj).

Since expressions for both the new lower bound and the new
upper bound are (non-strictly) increasing as functions of each
of the variables d12, d23, and d13, we can conclude that, for
the actual degree x = d(s1 & s2 & s3):

• x is larger than or equal to the new-lower-bound
expression corresponding to the lower bounds for d12,
d23, and d13, and

• x is smaller than or equal to the new-upper-bound
expression corresponding to the upper bounds for d12,
d23, and d13.

Substituting the t-norm-lower-bound-expressions

dij = max(di + dj − 1, 0)

into our new-lower-bound expression, we get the maximum of
0 and three expression of the type d12 + d23 − d1, i.e., of the
type

(d1 + d2 − 1) + (d1 + d3 − 1)− d1 = d1 + d2 + d3 − 2.

Thus, the resulting new-lower-bound inequality becomes

max(d1 + d2 + d3 − 2, 0) ≤ x.

This is exactly the same lower bound that we can get, e.g., from
the expression (s1 & s2)& s3 by applying the t-norm inequality
f&(a, b) ≥ max(a+ b− 1, 0):

• first, we conclude that d12 ≥ max(d1+d2−1, 0), and

• then, from x ≥ max(d12 + d3 − 1, 0) and

d12 ≥ max(d1 + d2 − 1, 0),

we conclude that

x ≥ max((d1 + d2 − 1) + d3 − 1, 0) =

max(d1 + d2 + d3 − 2, 0).

Maximum Entropy approach. For each value x form the
corresponding range, we get a probability distribution with
probabilities x, d12− x, d13− x, d23− x, d1− d12− d13 + x,
d2 − d12 − d23 + x, d3 − d12 − d23 + x, and

1− d1 − d2 − d3 + d12 + d23 + d13 − x.

The entropy of this distribution is equal to

S = −x · ln(x)− (d12 − x) · ln(d12 − x)−

(d13 − x) · ln(d13 − x)−

(d23 − x) · ln(d23 − x)−

(d1 − d12 − d13 + x) · ln(d1 − d12 − d13 + x)−

(d2 − d12 − d23 + x) · ln(d2 − d12 − d23 + x)−

(d3 − d13 − d23 + x) · ln(d3 − d13 − d23 + x)−

(1− d1 − d2 − d3 + d12 + d23 + d13 − x)·

ln(1− d1 − d2 − d3 + d12 + d23 + d13 − x).

Differentiating this expression with respect to x and equating
the derivative to 0, we conclude that

− ln(x) + ln(d12 − x) + ln(d13 − x) + ln(d23 − x)−

ln(d1 − d12 − d13 + x)− ln(d2 − d12 − d23 + x)−

ln(d3 − d13 − d23 + x)+

ln(1− d1 − d2 − d3 + d12 + d23 + d13 − x) = 0.

If we raise e to the power of both side, we get a 4-th order
equation (actually 3rd order since terms x4 cancel out). In this
case, however, we do not have a closed form solution, we have
to use numerical methods to solve this equation.

Comment. Similar ideas can be used to describe “or”-
operations and to describe “and”- and “or”-operations for
“triple” etc. fuzzy sets.
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