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soft t-norm including a free parameter (α) that is optimally set 
by the evolution algorithm is presented. The mathematical 
expression for a typical gamma operator can be defined by a 
t-norm (T) and a t-conorm (S) as follows: 

Γఊሺݔଵ, … , ሻݔ ൌ ሺܶሺݔଵ, … , ,ଵݔሻሻଵିఊሺܵሺݔ … ,  ሻሻఊ (1)ݔ

Minimum and product; maximum and probabilistic sum 
operations are commonly used t-norms and t-conorms, 
respectively. For a typical gamma operator, terms are 
consisted of minimum t-norm, probabilistic sum t-conorm 
and a free parameter, symbolized as γ. When the gamma 
operator is used in the inference mechanism seen in Fig. 1, 
and γ is changed numerically, the inference mechanism 
transforms to a dynamic structure. In other words, γ variable 
becomes the tuning parameter. In literature, effects of the 
change in gamma are analyzed and discussed in many 
researches. These include both application and theoretical 
based studies. In [31], γ operator is used for aggregation in a 
neuro-fuzzy structure to make integration advanced traveler 
information systems and advanced traffic management 
system. Also, γ operator as well as mere version can be 
formed as combined version that is utilized in the applications 
of geospatial information systems (GIS) as land assessment 
for flood spreading site selection [32] and enhancing 
cell-based information [33]. In [34], an application of fuzzy 
classification to a data warehouse in e-health is studied. 
Furthermore, the γ operator in fuzzy systems is examined on 
theoretical studies. In [35] the latent connectives in human 
decision making including effects of γ variable is discussed, 
and in [36] the applications of fuzzy rule based systems 
including the different t-norms and t-conorms are studied.  As 
γ operator in a control strategy, controlling of a model car 
under challenging situations by FL using fuzzyTECH toolbox 
is presented in [37]. In none of the previous studies, the 
gamma operator is seen as an on-line tuning parameter, which 
can be changed for improving the performance of the FL 
system.  

The outline of the paper is organized as follows: Section 2 
includes detailed information about fuzzy PID controllers and 
design steps; Section 3 consists of the effect of the change in 
gamma value on the FL decision surface and system 
response, Section 4 explains the proposed gamma tuning 
method and the design of fuzzy tuning mechanism. Section 5 
represents the simulation studies including the selection of 
the scaling factors, and moreover, Section 6 provides the 
conclusion, respectively. 

II. FUZZY PID CONTROLLERS 

As stated in [10] and [38], that fuzzy PID controllers can be 
categorized into three main types: direct action, fuzzy gain 
scheduling and hybrid. Moreover, the direct action type fuzzy 
PID controllers can be divided into three classes according to 
the number of inputs: single, double, triple. In this study, the 
double input direct action type fuzzy PID (FPID) controller 
will be utilized. This FPID has the error and the derivative of 
error signals as inputs, and generates an output. In this 
respect, this configuration resembles a PD controller rather 

than PID one. As illustrated in Fig. 2, when fuzzy controller is 
formed with an integrator and a summation unit at the output, 
it becomes a fuzzy PID controller [8]. The equation for the 
output control signal is written as follows: 

ݑ ൌ ܷߙ   (2) ݐ݀	නܷߚ

 
Fig. 2. The closed loop control structure for fuzzy PID controller 

By the variables seen on Fig. 2, the error (E) and its 
derivative (Ė) are scaled down and become the normalized 
inputs (e, de respectively) for the FLC. Scaling factors for the 
inputs are Ke and Kd. Similarly but inverse, the output of the 
FLC (U) is scaled up (α) and summed with its scaled up (β) 
integral. Hence, generated signal from fuzzy PID controller 
turns out to be at meaningful level to be used in plant or 
process.  

For both of error (e) and derivative of error (de), seven 
linguistic variables are determined. The membership 
functions are formed as triangular shape and intersecting with 
each other by 50% as given in Fig. 3a. The universes of 
discourse for all variables are selected as interval of [-1, 1]. 
The Takagi-Sugeno (T-S) fuzzy rules have singleton type 
membership functions for the consequent parts as illustrated 
in Fig. 3b. The rule base has 49 fuzzy rules presented on 
Table I. Also, membership functions for inputs and output, 
and control surface for γ = 0 are shown on Fig. 3c. 
 

TABLE I. RULE BASE FOR THE FUZZY LOGIC CONTROLLER 

 e/de NB NM NS Z PS PM PB 
NB NB NB NB NB NM NS Z 
NM NB NB NB NM NS Z PS 
NS NB NB NM NS Z PS PM 
Z NB NM NS Z PS PM PB 
PS NM NS Z PS PM PB PB 
PM NS Z PS PM PB PB PB 
PB Z PS PM PB PB PB PB 

  
In addition to configuration of the fuzzy PID controller 
defined above, algebraic product is generally used as the 
AND operator in T-S type fuzzy structures [39]. For the γ 
operator and its components, detailed statements will be done 
in next chapter. 

III. THE EFFECT OF GAMMA OPERATOR FOR DESIGN 

In literature, γ operator is defined as two different forms: 
exponential [32], [33], [35], [40] and linear [35]. The typical 
exponential form can be given as follows: 

݂ሺߤଵ, ଶሻߤ ൌ ሺߤଵ. ଵߤଶሻଵିఊሺߤ  ଶߤ െ .ଵߤ  ଶሻఊ (3)ߤ
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Fig. 8. The decision surface of the tuning mechanism 

V. SIMULATION STUDIES 

In order to show the benefit of the proposed self-tuning 
fuzzy PID controller the process given in (7) is used. In 
addition, fuzzy PID controller which has the scaling factor 
given in [19] is simulated first. Using these scaling factors 
leads the process to oscillatory system response with small 
rise time [22]. In consequence, these scaling factors are 
configured to obtain a fuzzy PI controller. Therefore, for this 
study, the scaling factors of the fuzzy PID controller are 
optimized for some objectives: Firstly, The disturbance 
rejection should be fast, secondly, the system response should 
have small rise time. It should be noted that, correspondingly, 
the faster response will lead a higher overshoot at transient 
state. 
 

 
Fig. 9. Closed loop system response (a) and control signal (b) with γ = 0 

 
Fig. 10. Closed loop system response (a), control signal (b) and states of γ (c) with on-line γ-tuning
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TABLE III. PERFORMANCE COMPARISON TABLE OF THE γ = 0 AND PROPOSED METHOD BY VARIOUS CRITERIA 

 Ref: 2–3 Ref: 3–5 Ref: 5–2 Ref: 2–4 
tr [s] OS % ts [s] ITAE tr [s] OS % ts [s] ITAE tr [s] OS % ts [s] ITAE tr [s] OS % ts [s] ITAE 

γ = 0 1.2 3.5 35.7 41.8 5.3 5.0 11.3 18.7 5.1 3.4 NS 187.2 2.8 4.1 16.0 20.1 
Proposed 1.7 3.1 13.2 8.7 8.0 5.0 20.1 48.8 8.1 3.01 16.3 84.3 6.7 4.0 14.9 30.7 

 
For the optimization of the scaling factors a very effective 

and simple method called Big Bang – Big Crunch (BB-BC) 
optimization is preferred [41]–[43]. The number of iterations 
and the population size are chosen as 100 and 20 for BB-BC 
algorithm. Since the fastest responses can be obtained at 
smaller γ values, during the optimization γ has been chosen as 
zero. The rise time optimal scaling factors are obtained as 
follows: 

ܭ ൌ ௗܭ				,1.0 ൌ ߚ				,0.3219 ൌ ߙ				,0.9357 ൌ 0.5431 (9) 

For the control of the second order non-linear process with 
dead time given in (7), the settings for the fuzzy PID 
controller and tuning mechanism mentioned previously are 
used in all simulations. To clearly show the improvements by 
γ-tuning, the same simulations are performed first with 
constant γ = 0, namely AND (product) aggregation. In Fig.9, 
the closed loop responses of the controls system for different 
reference values are presented. The disturbance rejection 
performance, when a step disturbance is applied at 160th 
second, is also presented in Fig.9a. In Fig. 9b, the control 
signal is illustrated for different references and the step 
disturbance.  The set point following and disturbance 
rejection performance of the proposed gamma-tuning method 
is presented in Fig. 10. Moreover, the output of the tuning 
mechanism which is the value of the gamma is illustrated in 
Fig. 10c. When Fig. 9 and Fig. 10 are compared, it can be 
concluded that the proposed method smoothens the control 
signal so that the oscillations and the overshoots decrease. In 
addition, the rise time decreases, but the process settles more 
quickly. 

In order to make the comparisons between AND (γ=0) 
operation and γ-tuning in a fair way four different 
performance measures are considered. The three of these 
performance measures are selected from the classical 
transient system response criteria; namely, the rise time (tr), 
the maximum overshoot (OS %), settling time (ts). As the 
fourth measure ITAE values are calculated separately for 
each new reference. The performance comparison of the 
proposed structure with the standard FPID (γ=0) controller is 
given in Table III. Parallel to the observations from the proses 
responses, Table III shows that the rise time values are higher 
for γ -tuning rather than γ = 0. This issue has been already 
admitted due to trade-offs, consequently, less or no overshoot 
and much less settling time is observed. 

 TABLE IV. COMPARISON OF THE PERFORMANCE OF DISTURBANCE 
REJECTION BY VARIOUS CRITERIA 

 Disturbance 
 IAE ITAE ISE ITSE 
γ = 0 2.4 16.1 0.69 2.71 
Proposed 2.0 10.1 0.76 2.6 

 
As mentioned before, the disturbance rejection 

performance is also examined via simulations. The 

disturbance rejection for a step input disturbance is applied at 
160th second and the rejection performances of the AND 
(γ=0) and γ-tuning mechanism is compared via IAE, ITAE, 
ISE and ITSE criteria. The comparison is tabulated in Table 
IV. As it can be seen from Table IV, the proposed method has 
a much better disturbance rejection performance than the 
conventional one. 

VI. CONCLUSIONS 

In this study, a new fuzzy PID controller tuning 
mechanism based on the aggregation operator is presented. 
The gamma parameter which is the weight determining the 
strength of the t-norm and the t-conorm in the inference is 
used as an online tuning parameter. The proposed 
gamma-tuning mechanism is compared with the classical 
fuzzy PID controller that has gamma as zero.  

Simulations are run on Matlab/Simulink environment and 
initially a number of meta-rules are derived from the various 
simulations. Later, the performance of the proposed method 
is obtained on a nonlinear system for different reference 
values. The simulations show that the proposed online tuning 
gamma tuning fuzzy PID controller has a better transient state 
response where the overshoot and the settling time are 
dramatically decreased. In addition, input disturbance 
rejection performance of the proposed method is tested via 
simulations. The simulation results are tabulated for different 
performance measurement. As it was expected the proposed 
online tuning method also improved the disturbance rejection 
performance.  

As future works, an experimental study in real world will 
be performed. Thus, the practical implementation of the 
proposed novel online tuning method for fuzzy PID 
controllers will be presented. Moreover, the rules and the 
membership functions of the gamma tuning mechanism may 
be modified for future practical studies. 
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