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Abstract— We introduce in this paper a quantitative pref-
erence based argumentation system relying on ASPIC argu-
mentation framework [1] and fuzzy set theory. The knowledge
base is fuzzified to allow agents expressing their expertise
(premises and rules) attached with grades of importance in
the unit interval. Arguments are then attached with a strength
score aggregating the importance expressed on their premises
and rules. Extensions, corresponding to subsets of consistent
arguments, are also attached with forces computed based on
their strong arguments. The forces are used then to rank
extensions from the strongest to the weakest one, upon which
decisions can be made. We have also shown that the strength
preference relation defined over arguments is reasonable [2]
and our fuzzy ASPIC argumentation system can be seen as a
computationally efficient instantiation of the generic model of
structured argumentation framework introduced in [2].

I. INTRODUCTION

A
RGUMENTATION is a reasoning process which can

help making a decision by handling conflicting sit-

uations expressed within a discussion among participants

(or agents) having different goals and objectives. Dung’s

abstract framework for argumentation [3] is made of a set

of arguments and a binary relation defining attacks between

arguments. According to this attack relation, subsets of con-

sistent arguments, called extensions, can be built correspond-

ing to coherent arguments that also defend themselves against

attacks. From application standpoint, when arguments reflet

agents’ knowledge, we need to express argument structure

and attack relations to be able to implement the reasoning

underlying the argumentation process. In this context, due to

its generic nature, the abstract model can be logically instan-

tiated by defining arguments based on a logical language and

binary attack relations relying on negation.

In logically structured argumentation systems such as

ASPIC/ASPIC+ frameworks [1], [2], arguments involve

premises (simple facts such as “the weather is rainy”) and

rules (such as material implications of the form “if it is

raining, then I have to take an umbrella”). Premises and rules

can be either strict (knowledge which cannot be contradicted

or attacked) or defeasible (knowledge that can be attacked

or put into question). An argument is defined recursively

such that premises are basic arguments, which allow the

application of rules having these premises as antecedents.

The application of a rule delivers a new conclusion, which

in its turn triggers off new rules, and so on. The process

goes on through the set of rules to build all arguments
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of the system. This kind of argumentation systems is also

equipped with a contrariness function which can be seen

as a generalization of the negation, used to define attack

relations between arguments. So, logically instantiated argu-

mentation systems, provide means (i) to express arguments

as a combination of premises and inference rules, (ii) to

define contradictions, attacks and defeat between arguments

and (iii) to extract the extensions, upon which decision can

be made. But in practice, the decision-maker has often to

deal with several extensions leading to conflicting decisions.

The argumentation process can then help understanding the

justification behind a decision but it cannot say what is the

best extension to consider to make it.

To address this issue, several approaches for defining

preference-based argumentation systems have been proposed

during the last years such as [4], [2], [5], [6]. These ap-

proaches extend the Dung abstract argumentation model [3]

by introducing a preorder or a total order over arguments

through a preference relation, which states for each couple of

arguments (or even for each couple of subsets of arguments)

either they are incomparable or which is the most preferred.

In a logically instantiated argumentation framework ([2],

[5], [6]), this preference order is used, among other, for a

qualitative ranking of extensions. However, in real world

application, it can be impossible for the user to specify all

the relative importance of arguments, since in the worst case

complexity of computation of the ranking is exponential.

Therefore, we propose in this paper a quantitative pref-

erence based argumentation system, called F-ASPIC, com-

bining a subset of ASPIC argumentation system [1] and

the fuzzy set theory. The crisp notions of strictness and

defeasibility are unified under the notion of importance. In

this context, the inference rules become more expressive in

the sense that the closer to 1 the importance of a rule is, the

more significant it is, and conversely the closer to 0 a rule

is, the less significant (more defeasible) it is. To ensure the

backward compatibility with “crisp” ASPIC argumentation

system, we consider any rule attached with degree 1 as

strict. Similarly, premises are also attached with a grade of

importance defining the fuzzy set of important premises.

The closer to 1 the importance of a premise is, the more

significant it is, and conversely the closer to 0 a premise

is, the less significant it is. Again, to ensure the backward

compatibility with “crisp” ASPIC argumentation system, we

consider premises attached with degree 1 as axioms.

Arguments have a nested form as in ASPIC argumentation

system, but each argument is attached with a quantitative

score expressing its strength, computed by using a triangular



norm (t-norm) aggregating the importance of its involved

premises and rules. Based on both negation and argument

strength, attacks are also defined so that only arguments

having a strength less than 1 can be attacked, and an attack

succeed if and only if the attacker is stronger than or is of

the same strength as the attacked argument. The extensions

delivered from the F-ASPIC argumentation system contain

then solid arguments, each of which attached with a grade

of strength. The force of each extension is then computed

by aggregating the strength of its contained arguments, corre-

sponding to the truth value of the fuzzy quantified proposition

“almost all arguments in the extension are strong”, taking

into account both the number of arguments and their quality

inside an extension. So, we obtain a total order defining

an efficient ranking of the extensions in a polynomial time.

Finally, we show that (i) the F-ASPIC argumentation system

can be seen as a fuzzy extension of ASPIC argumenta-

tion system for preference handling, and (ii) F-ASPIC is

an efficient instantiation of the preference-based structured

argumentation framework (SAF) [2].

The remainder of the paper is organized as follows.

In Section III, we recall the principles of argumentation

frameworks. Section II summarizes related work in the

field. In Section IV, the rationale behind the fuzzy ASPIC

argumentation system is introduced. Fuzzy arguments, their

strength, attack and defeat relations, force of extensions and

the ranking of extensions are also detailed. In Section V,

we compare our argumentation approach with ASPIC argu-

mentation system and structured argumentation framework.

Finally Section VI concludes the paper.

II. RELATED WORK

Several work have been carried out during the last years

to define fuzzy-based argumentation approaches. In [7], [8],

[9] a possibilistic approach based on the defeasible logic

programming DeLP [10] has been developed. These ap-

proaches suffer from the difficulties related to the definition

of the necessity measure, since each argument is attached

with a necessity degree expressing its certainty. A possibility

distribution has also to be considered for the different inter-

pretations or models over the logical language of the system.

In addition, theses approaches inherits from the DeLP its

possible inconsistencies and incompleteness of the output

regarding the rationality postulates, studied in [11]. In the

same context, a possibilistic approach has also been proposed

in [12]. The considered argumentation structure is based on

a fuzzy labeling, as in [13], and a possibility distribution has

to be defined over the different interpretations of the logical

language. The proposed approach is different from ours in

the sense that the used fuzzy information express a reliability

of the source of arguments. So, arguments of the same source

have a same reliability degree. In our case, a single source

can express knowledge of different degrees of importance.

In addition, the arguments are not structured, instead of ours

in which structured arguments are made of fuzzy premises

and rules.

In [14], a fuzzy argumentation system for trust has been

proposed. The approach is similar to ours in the spirit but

the context is quite different since in this approach arguments

are not structured.

Another line has also been investigated in [15], [16] in

which the attack relation is fuzzified to express the relative

strength of the attack relation between arguments. This

approach is rather different than the one proposed in this

paper since in our case the attacks still defined as crisp

attack. In [15] in addition to the fuzzy representation of

attacks, the strength of an attack depends on both the fuzzy

set of arguments supporting the attacker and the strength

of the attack. In [16], the definition of the defeat relation

involves a binary preference relation over arguments, and

according to this preference relation attacks can fail. Besides,

both approaches consider non-structured arguments. In the

same spirit of fuzzifying the attack relation, [17] introduces

an argumentation approach based on fuzzy description logic

(fuzzy SHIF DL). Arguments in this context are a mixture

of fuzzy linguistic variables and ontological knowledge. They

are related by fuzzy attack and fuzzy support relations.

A preference relation is also defined over arguments. This

approach does not rely on a structured argumentation frame-

work, which forces the user to manually specify the attack

and support relations between concepts.

Graduality in argumentation is also studied in [18]. The

authors recalled some argument valuation methods and intro-

duced a graduality approach for argument valuation within

the abstract argumentation model.

III. ARGUMENTATION FRAMEWORKS

We recall in this section the abstract argumentation model

(Subsection III-A) and the elements of the ASPIC argumen-

tation system (Subsection III-B).

A. Dung argumentation principles

Dung argumentation framework (AF ) [3] is a tuple (A, C),
where C ⊆ A × A is a binary attack relation on the set of

arguments A, having a meaning of defeat.

For each argument X ∈ A, X is acceptable w.r.t. a set of

arguments S ⊆ A iff any argument attacking X , is attacked

by an argument of S. A set of arguments S ⊆ A is conflict

free iff ∀X,Y ∈ S, (X,Y ) /∈ C. For any conflict free set

of arguments S, S is an admissible extension iff X ∈ S
implies X is acceptable w.r.t. S; S is a complete extension

iff X ∈ S whenever X is acceptable w.r.t. S; S is a preferred

extension iff it is a set inclusion maximal complete extension;

S is the grounded extension iff it is the set inclusion minimal

complete extension; S is a stable extension iff it is preferred

and ∀Y /∈ S, ∃X ∈ S such that (X,Y ) ∈ C.

For T ∈ {complete, preferred, grounded, stable}, X is

skeptically (resp. credulously) justified under the T semantics

if X belongs to all (resp. at least one) T extension. Output of

an extension E is Concs(E) = {Conc(A), A ∈ E}, where

Conc(A) is the conclusion of argument A. The skeptical

output of AF is Output(AF ) =
⋂

i=1,...,n Concs(Ei) such

that Ei are its T extensions.



B. ASPIC argumentation system

We consider a subset of ASPIC+ [19], compatible with

the one presented in [1]. In the following an ASPIC argu-

mentation system is a tuple AS = (L, cf,R,≥), where:

• L is a logical language,

• cf is a contrariness function which associates to each

formula of L a set of its incompatible formulas (in

2L), it can be considered as a generalization of the

negation operator, expressing the contrary and/or the

contradiction of formulas,

• R = Rs ∪ Rd is the set of strict (Rs) and defeasible

(Rd) inference rules of the form ϕ1, ..., ϕm → ϕ and

ϕ1, ..., ϕm ⇒ ϕ respectively, where ϕi, ϕ are well-

formed formulas in L, and Rs ∩Rd = ∅,

• ≥ is a preference ordering over defeasible rules.

A knowledge base in an AS = (L, cf,R,≥) is K ⊆ L
such that K = Ka ∪ Kp and Ka ∩ Kp = ∅, Ka contains

axioms and Kp contains ordinary premises.

a) ASPIC structured arguments: an ASPIC argument

A can have one of the following forms:

1) ∅ → c (resp. ∅ ⇒ c) with c ∈ Ka (resp. c ∈ Kp)

with Prem(A) = ∅, Conc(A) = c, Sub(A) = {A},

Rules(A) = ∅, TopRule(A) = ∅, with Prem returns

premises of A, Conc returns its conclusion, Sub returns

its sub-arguments, Rules returns rules applied on A,

TopRule returns the last rule applied on A,

2) A1, ..., Am → c (resp. A1, ..., Am ⇒ c), such that there

exists a strict (resp. defeasible) rule in Rs (resp. in

Rd) of the form Conc(A1), ..., Conc(Am) → c (resp.

Conc(A1), ..., Conc(Am) ⇒ c), and Prem(A) =
Prem(A1) ∪ ... ∪ Prem(Am), Conc(A) = c,
Sub(A) = Sub(A1) ∪ ... ∪ Sub(Am) ∪ {A},

Rules(A) = Rules(A1) ∪ ... ∪ Rules(Am) ∪
{Conc(A1), ..., Conc(Am) → / ⇒ c}, TopRule(A) =
Conc(A1), ..., Conc(Am) → /⇒ c.

We make the assumption that the set of arguments con-

structed from AS is finite. An argument is said strict iff it

does not involve any defeasible rules or premises. Otherwise,

it is called defeasible.

Remark 1. (Notation). An ASPIC argument has a nested

form. A sub-argument is also an argument. To improve

the readability, by abuse of notation, we associate to each

argument a label made of a capital letter followed by a

subscript number. The labels are then used in an argument to

refer to its sub-arguments. In this notation, a label followed

by colon is not a part of the argument.

Example 1. Let AS be an ASPIC argumentation system

defining the rules Rs = {a, b → c} and the ordinary

premises Kp = {a, b}. The following are arguments in AS:

• A1 : ∅ ⇒ a
• A2 : ∅ ⇒ b
• A3 : A1, A2 → c

b) ASPIC attacks and defeat: ASPIC defines rebutting

and undercutting attacks.

Rebutting attack. Argument A rebuts argument B iff

∃A′ ∈ Sub(A) : Conc(A′) = ϕ and B′ ∈ Sub(B) such

that B′ is of the form B′
1, ..., B

′
m ⇒ ¬ϕ. It is defined as a

restricted rebut attack [11] to satisfy rationality postulates as

shown in [11].

Undercutting attack. Argument A undercuts argument B
(or make B inapplicable) iff ∃B′ ∈ Sub(B) of the form

B′
1, ..., B

′
m ⇒ ϕ and ∃A′ ∈ Sub(A) : Conc(A′) =

¬ ⌈Conc(B′′
1 ), ..., Conc(B

′′
n) ⇒ ϕ⌉, with operator ⌈.⌉ con-

verts a defeasible rule into a literal [20].

Defeat relation. A defeats B if A rebuts or undercuts B.

IV. FUZZY ASPIC ARGUMENTATION SYSTEM (F-ASPIC)

We recall in Subsection IV-A elements of the fuzzy set

theory. In Subsection IV-B, we introduce our fuzzy argu-

mentation system, denoted F-ASPIC, combining the fuzzy

set theory and subset of ASPIC structured argumentation

framework. F-ASPIC arguments are detailed in Subsection

IV-C. Fuzzy attack and defeat relations between arguments

are defined in Subsection IV-D. The rationality postulates

are also studied in our fuzzy case in Subsection IV-E. The

total order between extensions based on the strength of their

arguments are finally introduced in Subsection IV-F.

A. Fuzzy Set Theory

Fuzzy set theory is introduced by Zadeh [21] to express

the gradual membership of an element to a set. Formally, a

fuzzy set F is defined on a referential U by a membership

function µF : U 7→ [0, 1] such that µF (x) denotes the

membership grade of x in F . In particular, µF (x) = 1
denotes the full membership of x in F , µF (x) = 0 expresses

the absolute non-membership and when 0 < µF (x) < 1,

it reflects a partial membership (the closer to 1 µF (x),
the more x belongs to F ). The core of a fuzzy set F is

Core(F ) = {x ∈ F : µF (x) = 1} and the support of a fuzzy

set F is Support(F ) = {x ∈ F : µF (x) > 0}. A fuzzy

set generalizes an ordinary (crisp) set in which membership

grades are in {0, 1}. If a fuzzy set is a discrete set then it is

denoted F = {(x1, µF (x1)), ..., (xn, µF (xn))}, otherwise,

it is characterized by its membership function, generally a

trapezoidal function.

The union ∪ and the intersection ∩ operators are de-

fined with a couple of a t-norm and a t-conorm, such as

(min, max). Let F , G be two fuzzy sets, µF∪G(x) =
max(µF (x), µG(x)), µF∩G(x) = min(µF (x), µG(x)), and

the complement of F , noted F c, is defined by µF c(x) =
1− µF (x).

The logical counterparts of ∩,∪ and the complement are

resp. ∧,∨ and ¬. Other operators have also been defined

such as fuzzy implications [22].

B. Fuzzy argumentation system: F-ASPIC AS

A fuzzy argumentation theory FAT = (FAS,K) is made of

a fuzzy argumentation system FAS and a fuzzy knowledge

base K. It is equipped with a fuzzy membership function

imp expressing for each premise and rule its importance. It is

worth noticing that the rules do not model fuzzy implications,

but regular implications attached with an importance score.



A fuzzy ASPIC (F-ASPIC) argumentation system is a

FAS = (L, cf,R, imp) such that:

• L is a logical language,

• cf is a contrariness function (we consider the negation

¬ as its basic form),

• R is the fuzzy set of important rules of the form

(φ1, ..., φm → φ, s) with φi,i=1,...,m ∈ L are the

premises of the rule and φ ∈ L is its conclusion,

s ∈ [0, 1] is its importance, provided by the experts of

the domain. For a given rule r, if µimp(r) = 1 then r
is a strict rule, if µimp(r) = 0 then r is an insignificant

rule, discarded by the system. If µimp(r) ∈]0, 1[ then

the closer to 1 µimp(r) is, the more important r is,

and conversely the closer to 0 µimp(r) is, the more

defeasible r is.

The knowledge base K defines the fuzzy set of important

premises of the form (p, µimp(p)):

• if µimp(p) = 1 then p is an axiom or strict premise,

• if µimp(p) = 0 then p is an ordinary premise, it can be

considered as an insignificant premise, discarded by the

system,

• if µimp(p) ∈]0, 1[ then the closer to 1 µimp(p) is, the

more strict (less ordinary) p is, and conversely the closer

to 0 µimp(p) is, the more ordinary (less strict) p is.

C. F-ASPIC argumentation system (AS) argument

A fuzzy ASPIC argument A can have one of the following

forms:

1) ∅ s c, with c ∈ K, Prem(A) = {c}, Conc(A) = c,
Sub(A) = {c}, Rules(A) = ∅, TopRule(A) = ∅,

where Prem returns premises of A, Conc returns its

conclusion, Sub returns its the sub-arguments, Rules
returns the rules involved in A, TopRule returns the

last rule applied to deliver the conclusion c, and s ∈
]0, 1] expresses the strength of A (defined below),

2) A1, ..., Am  
s c, such that there exists a rule r ∈

R of the form (Conc(A1), ..., Conc(Am) → c, sr),
and Prem(A) = Prem(A1) ∪ ... ∪ Prem(Am),
Conc(A) = c, Sub(A) = Sub(A1) ∪ ... ∪ Sub(Am) ∪
{A}, Rules(A) = Rules(A1) ∪ ... ∪ Rules(Am) ∪
{r′} with r′ = (Conc(A1), ..., Conc(Am) → c, s′r)},

TopRule = {r′}, and s ∈]0, 1] expresses the strength

of A (defined below).

Definition 1. (Strength of an argument). The strength

of argument A, denoted str(A), is the strength of its

conclusion (Conc(A)) computed as follows:

str(A) =











µimp(c), c ∈ K if A is of the form ∅ c,

Te∈Rules(A)∪Prem(A)(µimp(e))

if A is of the form A1, ..., Am  c,
where T is a triangular norm.

It is worth noticing that the interpretation of this strength

differs depending on the used t-norm. The Zadeh t-norm

min, for instance, carries a pessimistic vision of the eval-

uation of an argument strength, because the strength of an

argument is the importance of its less important premise or

rule. It is also possible to use the probabilistic t-norm ∗,

since it can model the principle of parsimony (or economy or

Ockham’s razor principle) applied on non-strict arguments.

So, the more an argument involves more weak rules and

premises, the less its strength is.

Definition 2. (Strict/defeasible argument). An argument A
is said strict iff str(A) = 1. Otherwise, it is called defeasible.

We can define the notion of important argument based on

the strength. So, the closer to 1 str(A) the more important

argument A is.

Definition 3. (Consistency of R). Let A be a set of argu-

ments, the set of rule R is said consistent iff ∄A,B ∈ A, such

that str(A) = str(B) = 1 and Conc(A) = ¬Conc(B).

D. Attack and defeat relations between arguments

We define the fuzzy rebut and fuzzy undercut attacks,

denoted F-rebut and F-undercut respectively.

Definition 4. (F-rebutting attack). An argument A F-rebuts

argument B if ∃Ai ∈ Sub(A) and ∃Bj ∈ Sub(B) such

that (i) Conc(Ai) = ¬Conc(Bj), (ii) str(Bj) < 1 and (iii)

str(Ai) ≥ str(Bj).

Definition 5. (F-undercuting attack). Argument A F-

undercuts argument B iff ∃B′ ∈ Sub(B) of the form

B′
1, ..., B

′
m  

s ϕ, with s < 1 and ∃A′ ∈ Sub(A) :
Conc(A′) = ¬ ⌈Conc(B′

1), ..., Conc(B
′
m) s ϕ⌉, with

str(A′) ≥ s.

The above definitions extend the one introduced in the

crisp case [1], in the sense that only defeasible (or less

important) argument can be attacked by either a defeasible

or a strict argument (or more important).

Definition 6. (F-defeat). Argument A F-defeats arguments

B iff A F-rebuts or F-undercuts B.

E. F-ASPIC AS extensions and rationality postulates

Rationality postulates, defined in [11], ensure the com-

pleteness and the consistency of the output of a logical-

based argumentation system. We consider here the following

rationality postulates:

1) Closure under sub-arguments: for every argument in

an extension, also all its sub-arguments are in the

extension,

2) Closure under strict rules Rs = {r ∈ R|µimp(r) = 1}
of the output of an extension: all possible conclusions

from applicable strict rules are derived in each exten-

sion,

3) Direct consistency: the output of each extension is

consistent, so it is not allowed to derive a conclusion

and its contradiction in an extension,

4) Indirect consistency: the closure under strict rules of

the output of each extension is consistent.



Proposition 1. F-ASPIC AS is closed under sub-

arguments and under strict rules, direct and indirect consis-

tent, iff the set of strict rules Rs is closed under transposition

[11] and Rs is consistent.

The proof of Proposition 1 is detailed in the Appendix I. It

shows that, based on our definition of attack and defeat rela-

tions, extensions can be built upon defeat relation and not on

attack relations without falling in the inconsistency described

in [5], [6], [2]. So, our logical-based argumentation system

is compatible with Dung abstract model for argumentation.

F. Ordering extensions

In order to rank extensions, we need to define an operator

to compute the force of each extension by aggregating the

strength of its arguments. Several aggregating operators can

be used such as min, max, means operators, etc. Although

they are efficient and simple to implement, they can lead

to non-intuitive ranking for extensions as shown in the

following example.

Example 2. Let E1 and E2 be two extensions, under one

Dung semantics, delivered from a F-ASPIC argumentation

system, such that:

• E1 = {(A1, 1), (A2, 0.9), (A3, 0.3), (A4, 0.3), (A5, 0.1)}
• E2 = {(A′

1, 1), (A
′
2, 0.9), (A

′
3, 0.5), (A

′
4, 0.1), (A

′
5, 0.1)}

where (Ai, s) (resp. (A′
i, s

′)) refers to argument Ai (resp.

A′
i) and its strength s (resp. s′).
The min operator returns force(E1) = force(E2) = 0.1,

the max operator returns force(E1) = force(E2) = 1, the

arithmetic mean returns force(E1) = force(E2) = 0.52,

which state that E1 and E2 are of equal forces and interest

for decision making. But, we notice that E2 is better than

E1, since E2 contains more arguments having a strength of

at least 0.5 than E1.

So, we need a hybrid operator able to deliver a force taking

into account the strength of arguments and their number.

Therefore, we define a force of an extension based on fuzzy

quantified proposition as follows.

Definition 7. (Force of an extension). We define the force

of an extension E, under one Dung’s semantics, as the truth

value δP of the fuzzy quantified proposition “P : almost all

arguments in E are strong”.

δP can be efficiently computed in a polynomial time by

the decomposition based approach [23]. So arguments in E
are ranked from the most to the least strong:

str(A1) ≥ str(A2) ≥ ... ≥ str(An) with n = |E|, and

δP = maxi=1,...,n(min(str(Ai), µalmost all(
i

n
))) (1)

It is worth noticing that the evaluation of δP depends heav-

ily on the definition of the linguistic quantifier almost all.

Definition 8. (Ordering relation between extensions). Let

FAS be a fuzzy AS and E1, ..., E2 its extensions under one

Dung semantics. The extension Ei is preferred than the

!"#$ %$!"&#$
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Fig. 1: Example of definition of the quantifier almost all.

extension Ej , denoted Ei �e Ej iff force(Ei) ≥ force(Ej).
Its strict counterpart ≻e is: Ei ≻e Ej if and only if

force(Ei) > force(Ej).

Example 3. In the previous example, if the linguistic

quantifier is defined as shown in Figure 1, then we get

force(E1) = 0.3 and force(E2) = 0.4 and E2 �e E1.

V. COMPARING F-ASPIC WITH ASPIC AND FAS

SYSTEMS

In this section, we show that F-ASPIC can be seen

as a fuzzy extension of ASPIC argumentation system (in

Subsection V-A), and F-ASPIC can also considered as a

fuzzy instantiation of generic preference-based SAF [2] (in

Subsection V-B).

A. ASPIC AS is a particular case of F-ASPIC AS

Let AS be a regular ASPIC argumentation system. It is

defined on a knowledge base K = Kp ∪ Ka where Kp

contains the ordinary premises of the system and Ka contains

its axioms. It is easy to obtain from a regular ASPIC AS its

corresponding F-ASPIC AS by:

• associating to elements from Ka the degree 1, and to

elements from Kp any score in ]0, 1[, for instance 0.5,

• associating to strict rule the degree 1, and to defeasible

rules any score in ]0, 1[, for instance 0.5.

In this case, arguments can either get the strength 1
(strict arguments) or 0.5 (defeasible arguments), and since F-

attacks are defined from strict or defeasible arguments to only

defeasible arguments then we obtain the same symmetric

attacks between defeasible arguments leading to the same

extensions.

Conversely, in a F-ASPIC AS, when the function µimp

associates a same degree (in ]0, 1]) to the premises and a

same degree to the rules (in ]0, 1]), then the F-ASPIC AS
behaves exactly as a regular ASPIC AS.

B. Compatibility with the Structured argumentation frame-

work (SAF)

1) Structured argumentation framework (SAF) [2]: de-

fined within an argumentation theory AT = (AS,K), is a

triple 〈A, C,�〉 where A is the set of all finite arguments

constructed from K in AS, � is an ordering on A, and

(X,Y ) ∈ C if and only if X attacks Y . Moreover:

• A c-SAF is a SAF in which all arguments are required

to have a c-consistent set of premises.
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• A set S ⊆ L is c-consistent if for no φ it holds that

S ⊢ φ,¬φ. Otherwise S is c-inconsistent.

• A SAF is said well-defined if it is (i) axiom consistent,

(ii) well-formed [2], and (iii) closed under contraposi-

tion or closed under transposition.

Strict continuation of an argument. For any set of argu-

ments {A1, ..., An}, the argument A is a strict continuation

of {A1, ..., An} if and only if:

• Premp(A) =
⋃n

i=1 Premp(Ai). The ordinary

premises in A are exactly those in {A1, ..., An},

• DefRules(A) =
⋃n

i=1DefRules(Ai), with

DefRules(A) is a function returning the defeasible

rules in A. This means that defeasible rules in A are

exactly those in {A1, ..., An},

• StRules(A) ⊇
⋃n

i=1 StRules(Ai) and Premn(A) ⊇
⋃n

i=1 Premn(Ai), with StRules(A) and Premn(A)
are functions returning respectively the strict rules and

the axioms of A. This means that strict rules and axioms

of A are supersets of the strict rules and axioms in

{A1, ..., An}.

Reasonable argument ordering �. An argument ordering

is reasonable [2] if and only if:

1) ∀A,B, if A is strict and firm and B is defeasible, then

B ≺ A, with ≺ is a strict counter-part of �,

2) ∀A,B if B strict and firm then B ⊀ A,

3) ∀A,A′, B such that A′ is a strict continuation of {A},

if A ⊀ B then A′ ⊀ B, and if B ⊀ A then B ⊀ A′,

4) Let {C1, ..., Cn} be a finite subset of A, and for

i = 1, ..., n, let C+\i be some strict continuation of

{C1, ..., Ci−1, Ci+1, ..., Cn}. Then it is not the case

that ∀i, C+\i ≺ Ci.

2) Compatibility of FAS and SAF : we can show that the

proposed fuzzy argumentation system, the argument ordering

� is reasonable.

Definition 9. (argument ordering). Let A,B be two argu-

ments. We define the argument ordering � as A � B ⇔
str(A) ≤ str(B). Its strict counter-part is A ≺ B ⇔
str(A) < str(B).

Proposition 2. The ordering based on the strength function

str is reasonable [2], if the t-norm used is min.

Proof: An argument ordering is reasonable [2] iff

1) Condition 1 holds since a strict argument has a strength

of 1 and any defeasible argument has a strength < 1.

2) Condition 2 also holds, since str(B) = 1, then

whatever str(A) we get str(B) ≮ str(A) and then

B ⊀ A.

3) Condition 3 holds. Indeed, let x, y, z be

str(A), str(A′), str(B) respectively. Since A′ is

a strict continuation of {A} then y = T (x, 1) = x,

with T is a t-norm, because a strict continuation

involves only strict rules and axioms.

If A ⊀ B then x ≮ z, but as y = x then y ≮ z, which

means that A′ ⊀ B.

If B ⊀ A then z ⊀ x, so z ⊀ y and B ⊀ A′.

4) Condition 4 is proved as follows:

Let C+\i be a strict continuation of

{C1, ..., Ci−1, Ci+1, ..., Cn}, then str(C+\i) =
Tj=1,...,n∧j 6=istr(Cj), where T is a t-norm.

Let suppose that ∀i, C+\i ≺ Ci, then ∀i, str(C+\i) <
str(Ci) ⇔ ∀i, Tj=1,...,n∧j 6=istr(Cj) < str(Ci), which

is not verified for the t-norm T = min, since in this

case we should have ∀Ci, ∃Cj : str(Cj) < str(Ci),
which is not possible for the weakest argument in any

finite subset {C1, ..., Cn} of A.

Indeed, let Cj be the argument such that str(Cj) =
min{C1,...,Cn}str(Cj). It strict continuation C+\j is

based on all other stronger arguments or having the

same strength as Cj in {C1, ..., Cj−1, Cj+1, ..., Cn},

then str(C+\j) ≥ str(Cj) if T = min.

To conclude, the proposed argument ordering based on the

t-norm min is reasonable.

Based on Proposition 2, we can say that our F-ASPIC

AS is an efficient instantiation of a SAF model [2], which

is easier to implement within a real world application to

manage conflicts and to take decision.

VI. CONCLUSION

We have introduced in this paper a quantitative preference-

based argumentation system relying on the fuzzy set theory

and ASPIC structured argumentation framework. Arguments

are built upon the fuzzy set of important rules and premises,

allowing the computation of their strength. Extensions are

attached with a score in ]0, 1] aggregating the strength of its

arguments, based on fuzzy quantified propositions. Finally,

we have shown that F-ASPIC AS can be seen as a fuzzy

extension of ASPIC AS for preference handling, and the

proposed ordering operator between arguments is reasonable

and the proposed fuzzy argumentation system is an efficient

instantiation of the SAF model [2].

As future work, we plan to implement the approach in a

real world application and to perform more tests to study

the behavior of the system according to the definition of the

linguistic quantifier, and the t-norm used for computing the

strength of arguments.
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APPENDIX I

PROOF OF THE RATIONALITY POSTULATES

Proposition 1. F-ASPIC AS is closed under sub-

arguments and under strict rules, direct and indirect consis-

tent, iff the set of strict rules Rs is closed under transposition

[11] and Rs is consistent.

Definition I.1. (closure under sub-arguments). [4] define

the closure under sub-arguments as the fact that for every

argument in an extension, also all its sub-arguments are in

the extension.

Proof: The proof is similar to the one of ASPIC+

[4]. Let E be an extension under one Dung semantics,

and suppose A ∈ E is an argument such that ∃Ai, Ai ∈
Sub(A) ∧Ai /∈ E.

Ai /∈ E ⇒ ∃B ∈ E : B attacksAi and ∄C ∈ E :
C attacksB, So B attacks A on Ai without being defended

by E, then A /∈ E, which is in contradiction with our

supposition. Finally, Ai ∈ E.

Definition I.2. (closure of a set of formulas under strict

rules) Let P ⊆ L. The closure of P under strict rules Rs,

denoted by ClRs
, is the smallest set such that:

• P ⊆ ClRs
(P)

• if ϕ1, ..., ϕn  ψ ∈ Rs and ϕ1, ..., ϕn ∈ ClRs
(P) then

ψ ∈ ClRs
(P).

If P = ClRs
(P) then P is closed under the set Rs.

Definition I.3. (closure of a FAS under strict rules) Let

FAS = (L, cf,R, imp) be a fuzzy argumentation system

and E1, ..., En is its extensions under one Dung semantics.

The closure under strict rules is defined as follows:

1) ∀Ei,i=1,...,n, Concs(Ei) = ClRs
(Concs(Ei)),

2) let Output =
⋂

i=1,...,n Concs(Ei), Output =
ClRs

(Output).

Proof: The proof is similar to the one introduced in

[11]. It is adapted to our context in which rules (strict and

defeasible) are fuzzified.

1) Let Ei be an extension. We suppose that Concs(Ei) 6=
ClRs

(Concs(Ei)).
As ClRs

(Concs(Ei)) contains all possible conclu-

sions derived from premises of Ei applied on rules

of Rs, then ∃r ∈ Rs of the form (ϕ1, ..., ϕm → ψ, 1)
such that premises of r are deductible from Ei and its

conclusion is not in Ei:

∃A1, ..., Am ∈ Ei : Conc(Ai) = ϕi and ∃r =
(ϕ1, ..., ϕm → ψ, 1) ∈ Rs and A = A1, ..., Am  

s

ψ /∈ Ei. We have 2 possible cases:

a) ∃B ∈ Ei, (B attacksA) ∨ (AattacksB)
b) ∃B ∈ A : (B attacksA) ∧ (∄C ∈ Ei :

C attacksB), such that A is the set of all argu-

ments of the system, which means that Ei does

not defend A.

• Case 1: ∃B ∈ Ei, (B attacksA)∨ (AattacksB).

– Case 1.1: ∃B ∈ Ei, (B attacksA)



B rebuts A on A′ ∈ Sub(A) of the form

(A′ = A′′
1 , ..., A

′′
2  

s′ α) and str(A′) < 1,

then ∃B′ ∈ Sub(B) which contradicts A′ and

str(B) ≥ str(A). As B ∈ Ei then Sub(B) ∈
Ei (cf. first rationality postulate), which means

that B attacks A′ and E is then conflictual and

cannot be an extension: contradiction.

– Case 1.2: ∃B ∈ Ei, (AattacksB)

In this case, Ei must defend B and ∃C ∈ Ei :
C attacksA on one of its sub-arguments A′ ∈ Ei

which leads to a conflictual Ei and to a contradic-

tion.

• Case 2: ∃B ∈ A : (B attacksA) ∧ (∄C ∈ Ei :
C attacksB).
B rebuts A on A′ ∈ Sub(A) and A′ 6= A
(since A′ ∈ Sub(A) and TopRule(A) = r is

a strict rule so A can never attacked by any

other argument), then ∃B′ ∈ Sub(B) which

contradicts A′. But A′ ∈ E then Sub(A′) ∈
Ei, which means that Ei defends A′ and so A,

since str(B′) ≥ str(A′) and str(A′) ≤ 1 then

str(A) = minAi∈Sub(A)(str(Ai)) and str(A) ≤
str(A′): contradiction with the supposition.

2) In [11], the authors showed that if ∀Ei, Concs(Ei) =
ClRs

(Concs(Ei)) then Output = ClRs
(Output).

Definition I.4. (consistency of a set of formulas)

Let P ⊆ L. P is consistent iff ∄ψ, ϕ ∈ P such that ψ =
¬ϕ. Otherwise it is said to be inconsistent.

Definition I.5. (consistency)

Let FAS = (L, cf,R, imp) a fuzzy argumentation system

and E1, ..., En is its extensions under one Dung semantics.

The direct consistency is defined as follows ([11]):

1) ∀Ei,i=1,...,n, Concs(Ei) is consistent,

2) let Output =
⋂

i=1,...,n Concs(Ei), Output is consis-

tent.

We show in what follows that if Rs is consistent then

FAS satisfies direct consistency.

Proof: The proof is similar to the one detailed in [11].

1) Let FAS be an argumentation system with a consistent

Rs. Let also Ei be an extension and we suppose that

Concs(Ei) is inconsistent. So, ∃ϕ, ψ ∈ Concs(Ei) :
ψ = ¬ϕ, then there exists two arguments A,B ∈ Ei

such that:

∃A ∈ Ei, A : ϕ1, ..., ϕm  
1 ϕ and ∃B ∈ Ei : B =

ψ1, ..., ψk  
1 ¬ϕ.

As A,B ∈ Ei then A,B are not in conflict; so (A
does not attack B) and (B does not attack A), which

means:

∄A′ ∈ Sub(A) ∧ ∄B′ ∈ Sub(B) : conc(A′) =
¬conc(B′) and B′ (or A′) is a non-strict argument

(str(B′) < 1 or str(A′) < 1), and str(A′) ≤ str(B′)
(or str(B′) ≤ str(A′)).
But A,B have contradictory conclusions, then the

only case in which that is possible is where A,B are

strict arguments, which leads to an inconsistent Rs:

contradiction.

2) In [11], the authors showed that if ∀Ei, Concs(Ei) is

consistent then Output is also consistent.

Definition I.6. (indirect consistency)

Let FAS = (L, cf,R, imp) an argumentation system and

E1, ..., En is its extensions under one Dung semantics. The

indirect consistency is defined as follows ([11]):

1) ∀Ei,i=1,...,n, ClRs
(Concs(Ei)) is consistent,

2) let Output =
⋂

i=1,...,n Concs(Ei), ClRs
(Output) is

consistent.

Proof: In [11], it has been shown that if an argumen-

tation system satisfies closure and direct consistency then

it also satisfies indirect consistency. The system has to be

able to derive all possible conclusions in each extension

(closure of the strict rules) and the set of strict rules must be

consistent.

Indeed, let FAS be an argumentation system which

satisfies closure and direct consistency. As AS
satisfies direct consistency then ∀Ei,i=1,...,n, Concs(Ei)
and Output are consistent, and as FAS
satisfies closure then ∀Ei,i=1,...,m, Concs(Ei) =
ClRs

(Concs(Ei)) and Output = ClRs
(Output), then

∀Ei,i=1,...,n, ClRs
(Concs(Ei)) and ClRs

(Output) are

consistent.

It has been shown in [11] that if an AS satisfies closure

and direct consistency, it also satisfies indirect consistency.


