
 
 

 

  

Abstract—Fuzzy cognitive maps (FCMs) are cognition fuzzy 
influence graphs, which are based on fuzzy logic and neural 
network. In this paper, we propose a novel method combining 
Memetic Algorithms (MAs) and Neural Networks (NNs) to learn 
large-scale FCMs, which is labeled as MA-NN-FCM. In 
MA-NN-FCM, MAs are used to determine the regulatory 
connections in the network from multiple observed response 
sequences and NNs are used to calculate the interactions 
between concepts. In the experiments, the performance of 
MA-NN-FCM is validated on synthetic data with different 
number of nodes. The experimental results demonstrate the 
efficiency of our method, and show MA-NN-FCM can construct 
FCMs with high accuracy without expert knowledge. The 
performance of MA-NN-FCM is better than that of other FCM 
learning algorithms, such as ant colony optimization, non-linear 
Hebbian learning, and real-coded genetic algorithm. 
 

Keywords: Fuzzy cognitive maps, memetic algorithms, neural 
networks. 
 

I. INTRODUCTION 
Fuzzy cognitive maps (FCMs), introduced by Kosko [1], 

are a kind of effective understand tools for creating models of 
complex systems. An FCM is a fuzzy-graph representing 
causal reasoning which consists of nodes and weighted edges. 
Nodes in the graph stand for real world concepts (events, 
actions, values, goals, etc.) and weighted edges represent the 
relations between nodes. FCMs have several advantages in 
terms of abstraction, flexibility, adaptability, and fuzzy 
reasoning than traditional modeling techniques such as expert 
systems and neural networks. Therefore, they have been 
proposed and applied in a variety of applications such as 
medical diagnosis [2, 3, 4], time series analysis [5, 6], control 
[7], political and social sciences [8], business [9], information 
technology [10], and modeling of software development 
project [11, 12]. 

Papageorgiou et al. in [13] reviewed the learning 
algorithms which have been used to improve the quality of 
FCMs systematically. All these learning approaches are 
concentrated mainly on modifying the FCM weight matrix, 
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which is updated on the basis of experts’ knowledge and/or 
historical data. On the basis of the type of knowledge used, 
the most important learning approaches can be classified into 
three types, i.e., Hebbian-based, evolutionary-based, and 
hybrid of Hebbian-based and evolutionary-based learning 
algorithms, where evolutionary algorithms are a kind of 
stochastic global optimization methods inspired by the 
biological mechanism of evolution and heredity, and have 
been successfully used to solve various problems [14-19]. 

Among the Hebbian-based learners, one representative 
method is the nonlinear Hebbian learning (NHL) algorithm 
proposed by Papageorgiou et al. in [20, 21]. But the NHL 
method requires experts to build an initial network with 
expert knowledge. However, some application areas are 
difficult for experts to build FCMs and this method is not 
available to reconstruct the regulatory networks with only 
limited prior knowledge. Therefore, evolutionary-based 
learning algorithms such as genetic algorithm [22], particle 
swarm optimization [23] and artificial bee colony algorithm 
[24] have been proposed to learn FCMs directly from data. 
But most of the evolutionary-based learning methods 
optimizing the floating point weights in a network are slow. 

Therefore, we propose a hybrid method for learning FCMs 
by combining memetic algorithms (MAs) and neural 
networks (NNs), which is named as MA-NN-FCM. The MA 
is an evolutionary-based algorithm that was first introduced 
by Moscato in his technical report [25] in 1989. The method 
is widely used as a synergy of evolutionary with separate 
local improvement procedures for problem search. MAs have 
been proved to be more efficient than conventional 
evolutionary algorithms in a variety of problem. The 
advantage of MAs lies in its effective exploitation both in 
global and local search space.  

In our method, one chromosome represents a subset of 
nodes in the FCM model. Appropriate crossover, mutation, 
and local search operators are employed to search for the best 
combination of nodes. The fitness of each chromosome is 
evaluated by a signal-layer NN which is used to calculate the 
influence of a concept affect another. As the network 
structure is unknown, the value of interconnection weight 
between nodes is difficult to be determined. Our method can 
not only find the plausible combinations of nodes, but also 
optimize the interconnection weights matrix rapidly. In the 
experiments, MA-NN-FCM is applied on various FCM 
models with 20 to 100 nodes. The results show that the 
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proposed method is capable of learning FCM models 
effectively. The rest of this paper is organized as follows: 
Section 2 gives an introduction on FCMs, while our learning 
algorithm is presented in Section 3. In Section 4, 
experimental results are reported. Finally, Section 5 
concludes the paper. 

II.  FUZZY COGNITIVE MAPS 
Fuzzy cognitive maps are cognitive maps within which the 

relations between the elements (e.g. concepts, events, project 
resources) of a “mental landscape” can be used to compute 
the “strength of impact” of these elements [1]. An FCM is a 
signed fuzzy digraph, structured as Nn concept nodes, and the 
state values of these nodes are denoted as a vector C, 
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where Ci∈[0, 1], i=1, 2, ..., Nn.. That is, each concept node has 
a state value ranging from 0 to 1. For example, if the concept 
representing “Appreciation of Scary Movies”, we use 1 to 
express strongest appreciation, and 0.5 to express neutral 
emotion, and 0 to express maximum disgusting. And the 
casual relationships between concept nodes are defined as an 
Nn×Nn weight matrix w, 
 

11 12 1

21 22 2

1 2

=

n

n

n n n n

N

N

N N N N

w w w

w w w

w w w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…

…

# # % #
…

w                      (2) 

 
where wij is in the range of [-1, 1], and represents the 
relationship between concepts i and j, i, j=1, 2, …, Nn. Each 
edge has a weight which indicates how much one concept 
affects another. Values range from -1 (strongest negative 
impact), through 0 (no impact), to +1 (strongest positive 
impact). Fig.1(a) shows a simple example with 5 concept 
nodes, and the corresponding weight matrix is shown in 
Fig.1(b). For example, w12=0.4 denotes there is a positive 
excitatory pointing from node 1 to 2 with 0.4 strength. w13=0 
means there is no relationship between nodes 1 and 3. 
Similarly, w44=0.9 suggests that node 4 has a positive 
feedback on itself. 
 

 
 
The state value of a concept node at the (t+1)th iteration is 
determined by the strength of the relationship and state values 

of related concept nodes at the tth iteration. Thus, the 
dynamics of FCMs is determined by the following equation, 
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where t

iC  is the state value of node i at the tth iteration in one 
response, and g(⋅) is a transfer function that is used to bound 
the state value to the range of [0, 1], namely the range of 
allowable state values. Various transfer functions can be used. 
According to the comparison study in [26], the sigmoid 
transfer function outperforms the others in general. Thus, the 
following sigmoid transfer function is employed, 
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where λ is a parameter used to characterize the steepness of 
the function around zero, and its value should be chosen 
according to the nature of the problem. Usually a small λ is 
suitable for highly nonlinear system. In this paper, λ is set to 5 
because this is a widely used value in many FCM learning 
research [27]. 

III. PROPOSED METHOD 
The proposed approach is based on taking a node for 

learning and updating target node for the next learning step. A 
similar method named as “Concept by Concept (CbC) 
learning” which use the Big Bag-Big Crunch learning method 
as the global learning method is also presented in [28]. In this 
paper we proposed a hybrid method combines memetic 
algorithms with a single-layer NN. As an evolutionary-based 
learning algorithm, MA is fast in finding a set of regulated 
nodes, but slow in searching for the floating interconnection 
weights. And Neural Networks are a kind of efficient tools to 
compute values from inputs by feeding information through 
the network. Therefore, the neural component uses the 
gradient descent strategy to determine the weights. The 
proposed algorithm is named as MA-NN-FCMs. The details 
of each step are described as follows,  

 
STEP 1 

If all nodes have been optimized, output the interaction 
matrix learned; otherwise choose a node that has not been 
optimized as the target node. 
STEP 2 

Initialize the population of chromosomes. Each gene, 
which represents one of the node in the network (the ith gene 
represents for the ith node), is initialized with the state value 
chosen from the historical data of temporal pairs. As we have 
no idea about the structure of the FCM, we initialize each 
gene a sign (0 or 1) randomly to indicate whether this node is 
“open”, and the sign follows the gene recombination, 
mutation and so on. For example, the sign of ith gene in a 
chromosome is 1 means the ith node is allowed to affect the 
target node, whereas the sign of ith gene in a chromosome is 0 
means the ith node is forbidden to affect the target node. A 

    

(a)                                      (b) 

Fig.1. An FCM with 5 concept nodes, (a) the topological structure, 
(b) the corresponding weight matrix. 
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chromosome and the target node form a training set of 
input-output pairs. The population is a set of chromosomes 
and each chromosome is evaluated by assigning to it a fitness 
function value (see STEP 4). 
STEP 3 

Use the gradient descent method to calculate the value of 
weights between the “open” nodes in a chromosome and the 
target node (the weights between “closed” nodes and the 
target node are set to 0). This process needs historical data 
that consist of multiple sequences of state vectors. If the 
historical data is observed from state 1 to N, we can get N-1 
training sets to calculate the values of weights. This technique 
used the back propagation equations: 
 

1
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where dp and yp is the observed value and estimated value of 
the pth training set, respectively, xip is the ith gene of the 
chromosome in the pth training set. K is the number of 
training sets. η is the learning coefficient which defines the 
learning capability of a neural network during training. After 
several iterations, the weight values between target node and 
input nodes can be determined. 
STEP 4 

Calculate the estimated data sequences of the target node 
according to (3). Suppose we have Ns response sequences of 
each gene, and the length of each sequence is Nt. Then, the 
problem can be formulated as a numerical optimization 
problem, and the objective is to minimize the following 
function, 
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where arg (s)t

t etC  is the tth value of the target node in the  sth 
observed data series. arg

ˆ t
t etC  is the  tth value of the target node 

in the sth estimated data series. Output_Error is used to 
measure the differences between the observed data sequence 
and the estimated data sequence, and is the fitness value for 
each chromosome. 
STEP 5 

Use the standard crossover and mutation operators on all 
chromosomes in the current population to vary the 
combination of nodes. 
STEP 6 

Select 10% individuals which have higher fitness in the 
population, and conduct the local search on these individuals 
as follows. For each selected chromosome, change the sign of 
an arbitrary single gene. If the change produces a 
chromosome with better fitness, then keep this change; 
otherwise, reject this change and change the sign of another 
arbitrary single gene, repeating the above process until the 
stop criteria of local search is met. 

 
 
 

STEP 7 
2-tournament selection is employed to generate the next 

population. 
STEP 8 

If the termination criteria are met, record the calculated 
weights of the interconnection matrix based on the best 
chromosome, and go to STEP 1; otherwise go to STEP 3. 
 

Since the historical data which is used to train 
MA-NN-FCM need to be split into several input-output pairs; 
that is to say, the current state vector depends only on the state 
vector at the preceding iteration and does not depend on any 
other state vectors, even if the historical data matrix has 
missing rows, MA-NN-FCM is still capable of handling it. 

IV. EXPERIMENTS 
We used the method in [29] to generate simulated data to 

test the performance of MA-NN-FCM. First, the 
interconnection matrix of FCM is constructed by random 
values in the interval [-1, 1]. The value will be set to 0 if the 
absolute value of the generated random number is less than 
0.05. This is because causal relation with strength less than 
0.05 usually has no significance in practical problems [30]. In 
consideration to the FCM model are always sparse in actual 
world, only a small number of weights are random numbers 
and the others are set to 0. Second, initial state values in the 
range of [0, 1] are created randomly and assigned to each 
node. The response sequence is generated by (3). The 
parameters of MA-NN-FCM are presented in Table I. 

 
TABLE I 

THE PARAMETER SETTING OF MA-NN-FCM 
Parameters Values 
Crossover 
Mutation 
Selection 

Local-search 
Gradient descent 

Learning coefficient 
Iterations 

Single point, 0.9 
Random, 0.1 

Binary Tournament 
Hill climbing method 

Standard/Step 
0.9 

20-100 
 

A. Performance Measures 
Data Error, Model Error, and SS Mean are calculated to 

evaluate the performance. Data Error is used to measure the 
differences between the observed data sequence and 
estimated data sequence and is defined as 
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Model Error is used to compare the weight matrix of 

learned FCM model and the target FCM model directly, and 
is defined as 
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In order to predict the existence of an edge between two 
nodes, the learned weight need to be transformed to binary 
one based on the rule described in [29]; that is, if the absolute 
value of weight less than 0.05, it is set to 0 and defined as 
positive results; otherwise set to 1 and defined as negative 
result. SS Mean is also calculated to identify the plausible 
causal relations (existence or non-existence) among the FCM 
nodes. SS Mean is calculated by the following equation, 
 

2 Specificity SensitivitySS mean
Specificity Sensitivity
× ×=

+
              (9) 

where 
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TP FN

N
Specificity

N N
=

+
                          (10) 

TN

TN FP

N
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N N
=

+
                            (11) 

where NTP is the number of true positives, NFN is the number 
of false negatives, NTN is the number of true negatives, NFP is 
the number of false positives. They are defined in Table II. 
 

TABLE II. The definition of TP, FN, TN, and FP. 
 Target Networks 

0 1 

Learned Networks 
0 TP FP 
1 FN TN 

B. Experimental Results 
We test the proposed algorithm on the data sets with 

various scales and properties. The number of nodes (Nn) is set 
to 20, 40, and 100, respectively, and the edge density is set to 
20% and 40% for each scale. Three sets of experiments are 
conducted. The first set of experiments is conducted on one 
sequence with 20 time points per node (Ns=1, Nt=20). The 
second set of experiments is conducted on 5 response 
sequences with 4 time points per sequence (Ns=5, Nt=4). The 
third set of experiments is conducted on 40 response 
sequences with 10 time points per sequence (Ns=40, Nt=10). 
The experimental results are compared with those of NHL 
[20], DDNHL [31], RCGA [22], ACO [29], ACORD [32] in 
terms of Data Error, Model Error, and SS Mean. The results 
are reported in Tables III and IV. All results are averaged over 
30 independent runs for FCMs with 20-40 nodes and 15 
independent runs for FCMs with 100 nodes. 

As can be seen from the results, in terms of Data Error, 
ACORD performs well when the number of nodes is 20, but 
among the six cases for 40 nodes, the performance of 
MA-NN-FCM is the best in 3 cases and performs better than 
ACORD in 5 cases. In terms of Model Error, MA-NN-FCM 
outperforms ACO, RCGA, DDNHL, and NHL in all cases, 
and the performance is better than ACORD in most cases for 
20, 40, and 100 nodes. 

We also compare the SS mean of different algorithms to 
show the ability of MA-NN-FCM in predicting the existence 
of links. The results show that MA-NN-FCM is better than 
ACORD, ACO, RCGA, DDNHL, and NHL in all cases except 
three. 

 
 

TABLE III 
The comparison in terms of Data Error, Model Error, and SS mean with the 

density 20% (Average±Standard Deviation) 
Algorithm(Ns-Nt) Data Error Model Error SS mean 

#Nodes = 20, Density = 20% 
MA-NN-FCM(1-20) 
ACORD(1-20) 
ACO(1-20) 

MA-NN-FCM(5-4) 
ACORD (5-4) 
ACO(5-4) 

MA-NN-FCM(40-10) 
ACORD (40-10) 
ACO(40-10) 

RCGA 
DDNHL 
NHL 

0.001±0.000 
0.004±0.003 
0.002±0.001 

0.013±0.008 
0.008±0.004 
0.011±0.005 

0.008±0.004 
0.000±0.000 
0.009±0.002 

/ 
/ 
/ 

0.141±0.028 
0.299±0.033 
0.513±0.026 

0.103±0.010 
0.242±0.040 
0.461±0.019 

0.093±0.037 
0.014±0.021 
0.348±0.017 

0.426 
0.464 
0.461 

0.47 
0.24 
0.13 

0.62 
0.25 
0.16 

0.69 
0.97 
0.21 

0.16 
0.14 
0.13 

#Nodes = 40, Density = 20% 
MA-NN-FCM(1-20) 
ACORD(1-20) 
ACO(1-20) 

MA-NN-FCM(5-4) 
ACORD (5-4) 
ACO(5-4) 

MA-NN-FCM(40-10) 
ACORD (40-10) 
ACO(40-10) 

RCGA 
DDNHL 
NHL 

0.001±0.001 
0.033±0.008 
0.006±0.006 

0.012±0.002 
0.144±0.011 
0.020±0.005 

0.017±0.011 
0.107±0.009 
0.019±0.006 

/ 
/ 
/ 

0.150±0.007 
0.388±0.098 
0.525±0.011 

0.113±0.007 
0.390±0.054 
0.508±0.010 

0.094±0.006 
0.205±0.065 
0.448±0.021 

0.453 
0.468 
0.489 

0.37 
0.14 
0.13 

0.48 
0.14 
0.12 

0.49 
0.35 
0.15 

0.15 
0.12 
0.15 

#Nodes = 100, Density = 20% 
MA-NN-FCM(1-20) 
ACORD(1-20) 
ACO(1-20) 

MA-NN-FCM(5-4) 
ACORD (5-4) 
ACO(5-4) 

MA-NN-FCM(40-10) 
ACORD (40-10) 
ACO(40-10) 

0.065±0.010 
0.283±0.008 

/ 

0.026±0.002 
0.170±0.012 

/ 

0.054±0.004 
0.300±0.021 

/ 

0.469±0.042 
0.424±0.031 

/ 

0.116±0.002 
0.400±0.035 

/ 

0.106±0.003 
0.286±0.042 

/ 

0.48 
0.14 

/ 

0.32 
0.15 

/ 

0.41 
0.26 

/ 

V. CONCLUSION 
A novel learning algorithm, which combines memetic 

algorithm and neural network, is proposed for learning the 
interconnection weight matrix of an FCM. The experiment 
results show that the proposed algorithm is efficient to learn 
FCMs with 100 nodes. Future work will include the 
application of the hybrid method on more complex problems 
as well as practical problems. 
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