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Abstract—Real life circumstances used to provide us
with linguistically vague expression of data in nature.
Thus, type-1 fuzzy set (T1F set) was introduced to model
this uncertainty. Additionally, same words will mean
variously to different people, which means ambiguous
uncertainty also exists when associated with the mem-
bership function of a T1F set. Type-2 fuzzy set(T2F set)
is then invented to express the hybrid uncertainty of
both primary fuzziness and secondary one of membership
functions. On the one hand, T2F variable models the
vagueness of information better. On the other hand, those
variables are hard to deal with its three-dimensional
feature given. To address problems in presence of such
variables with hybrid fuzziness, a new class of T2F
regression model is built based on credibility theory,called
the T2F expected value regression model. The new model
will be developed in this paper. This paper is a further
work based on our former research of T2F qualitative
regression model.

Index Terms—Type-2 fuzzy set, regression model,
Credibility theory, expected value,

I. INTRODUCTION

In daily life people face linguistically vague infor-

mation. Using characteristic function to define whether

an element belongs to a certain set (event),traditional

set theory is rigorous without such uncertainty. To

deal with the problem, fuzzy set (T1F set) was first

introduced in 1965 by Lofti A Zadeh [29]. After that,

Watada and Tanaka developed a fuzzy quantification

method in 1987 [23]. From then on, it is able to

describe an artificial membership function with its

output called primary membership grades, to which

extend one element belongs to a certain set (event).

On the background that the membership function of

a T1F set may also have uncertainty associated with

it, Lotfi A. Zadeh invented Type-2 fuzzy sets(T2F set)

in 1975 [33]. A T2F set lets us incorporate fuzziness

about the membership function into fuzzy set theory

and is a way to address the above concern of T1F

sets head-on. However, T2F set didn’t become popular

immediately given its complexity of calculation. T2F

sets are difficult to understand and use because: (1)

the three-dimensional nature of T2F sets makes them

difficult to handel. (2) using T2F sets is computation-

ally more complicated than using T1F sets. Thus, the

conception was only investigated by a few researchers;

for example, Mizumoto and Tanaka [12] discussed

what kinds of algebraic structures the grades of T1F

sets form under join, meet and negation; Dubois and

Prade [3] investigated the operations in a fuzzy-valued

logic. It is not until recent days that T2F sets have been

applied successfully to T2F logic systems to handle

linguistic and numerical uncertainties [4], [5], [7], [8],

[28].

On the other hand, various fuzzy regression models

were introduced to cope with qualitative data coming

from uncertain environments where human (expert)

subjective estimates are concerned. The first fuzzy

linear regression model was proposed by Tanaka et

al. [17]. Tanakat et al.[20], Tanaka and Watada[18],

Watada and Tanaka[22] presented possibilistic regres-

sion based on the concept of possibility measure.

Chang[2] discussed a fuzzy least-squares regression,

by using weighted fuzzy-arithmetic and the least-

squares fitting criterion. Watada[24] developed mod-

els of fuzzy time-series by exploiting the concept of

intersection of fuzzy numbers.

Most of the existing studies on modeling fuzzy

regression analysis have focused on data consisting of

numeric values or T1F variables without T2 hybrid

uncertainty into consideration. In practical situations,

there exists a growing need to cope with data in

presence of more complicated uncertainty. However,

with regard to the complexity of T2F variables, there

are only a few mathematical algorithms learning T2F

inputs and predicting T2F outputs [1] [6] [11] [15]

[16] [34] [21]. Recently, Wei and Watada developed

a T2F qualitative regression model [25][26][27] using

possibilistic structure built by Tanaka and Watada.
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However, the model is not completed, for it only

applies T2F variables as coefficients of system but

inputs and outputs. Liu [9] and Liu and Liu [10] created

a notion of credibility measure for fuzzy sets, which

is a convex combination of possibility measure and

necessity measure. We are able to make the calculation

of fuzzy sets much easier than before by using the

credibility theory. We obtained the idea to build an

advanced T2F regression algorithm.

Motivated by the above reasoning, the objective of

this paper is to introduce a class of T2F regression

model based on credibility theory to deal with T2F

inputs and outputs. We use credibility theory intro-

duced by Liu [9] to define the expected value of a

T2F variable. After that, we transfer the T2F variable

into T2F expected value and build an credibility-based

T2F expected value regression model with the expected

value. This paper will be a further work based on our

former research of T2F qualitative regression model.

The remainder of this paper is organized as follows.

In Section 2, we cover some preliminaries of credibility

theory and T2F sets. Then we define the expected

value T2F set and T2F variable. Notice that these two

conceptions of expected values are different. Section

3 discusses a general T2F regression and introduce a

new approach to T2F regression in section 4. In section

5, an algorithm is offered to solve the model. Section

6 provides an application for our model. Finally, con-

cluding remarks are presented in Section 6.

II. PRELIMINARIES

A. Credibility Theory

Recently, Liu has succeeded in establishing an ax-

iomatic foundation for uncertainty. He created a notion

of credibility measure, which is a convex combination

of possibility measure and necessity measure. Given

some universe Γ, let Pos be a possibility measure

defined on the power set P(Γ) of Γ. Let ℜ be the

set of real numbers. A function A : Γ → ℜ is said to

be a fuzzy variable defined on Γ . The possibility dis-

tribution µA of A is defined by Pos{A = t} ≡ µA(t),
t ∈ ℜ, which is the possibility of event {A = t}. For

fuzzy variable A with possibility distribution µA, the

possibility, necessity and credibility of event {A ≤ r}
are given as follows

Pos{A ≤ r} = sup
t≤r

µA(t),

Nec{A ≤ r} = 1− sup
t>r

µA(t),

Cr{A ≤ r} =
1

2

(
1 + sup

t≤r

µA(t)− sup
t>r

µA(t)

)
.

(1)

Note that equqtion (1) defines the credibility measure

with an average of the possibility and the necessity

measure, i.e., Cr{·} = (Pos{·}+Nec{·})/2, and it is

a self-dual set function, i.e., Cr{A} = 1 − Cr{Ac}
for any A in P(Γ). The credibility theory is first

introduced by Liu [9]. The motivation behind the

introduction of the credibility measure is to develop a

certain measure which is a sound aggregate of the two

extreme cases such as the possibility (expressing a level

of overlap and being highly optimistic in this sense)

and necessity (articulating a degree of inclusion and

being pessimistic in its nature). Moreover, we are able

to calculate the expected value of a fuzzy set from then

on. For fuzzy variables, there are many ways to define

an expected value operator. See, for example, Dubois

and Prade [3]]. The most general definition of expected

value operator of fuzzy variable was given by Liu and

Liu [9]. Based on credibility measure, the expected

value of a fuzzy variable is presented as follows.

Let A be a fuzzy variable. The expected value of A
is defined as

E[A] =

∫ ∞

0

Cr{A ≥ r}dr−

∫ 0

−∞

Cr{A ≤ r}dr (2)

provided that the two integrals are finite.

Assume that A = (a, cl, cr)T is a triangular fuzzy

variable whose possibility distribution is

µA(x) =





x− cl

a− cl
, cl ≤ x ≤ a

cr − x

cr − a
, a ≤ x ≤ cr

0, otherwise.

Making use of (2), we calculate the expected value of

A to be

E[A] =
cl + 2a+ cr

4
.

B. Type-2 Fuzzy Set

Developed from T1F sets, T2F sets express the non-

numeric membership with imprecision and uncertainty.

A T2F set denoted by Ã, is characterized by a T2

membership function µ
Ã
(x, µA(x)), where x ∈ X

and µA(x) ∈ Jx ⊆ [0, 1]. µA(x) are called primary

memberships of x in A and the memberships of the

primary memberships, µ
Ã
(x), are called secondary

memberships of x in Ã. i.e.,

A = {x, µA(x)|x ∈ X} (3)

Ã = {(x, µA(x)), µÃ
(x, µA(x))|

x ∈ X µA(x) ∈ Jx ⊆ [0, 1]} (4)

in which µA(x) ∈ Jx ⊆ [0, 1] and µ
Ã

⊆ [0, 1]. T2F

sets Ã can also be expressed as

∫
(x∈X)

∫
(µA(x)∈Jx⊆[0,1])

µ
Ã
(x, µA(x))/(x, µA)

(5)
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Regarding T2F set, another important concept is the

footprint of uncertainty. Uncertainty in the primary

memberships of a T2F set, consists of a bounded region

that we call the footprint of uncertainty (FOU). It is

the union of all primary memberships, i.e.,

FOU(Ã) =
⋃

x∈X Jx (6)

Fig. 1. Pictorial Representation of a T2F set

The term footprint of uncertaintyis useful, because

it not only focuses our attention on the certainties

inherent in a specific T2 membership function, whose

shape is a direct consequence of the nature of these

uncertainties, but it also provides a convenient verbal

description of the entire domain of support for all

the secondary grades of a T2 membership function.

It also enables us to depict a T2F set graphically in

two-dimensions instead of three dimensions, which

let us overcome the first difficulty about T2F sets-

their three-dimensional nature which makes them very

difficult to draw. The shaded FOUs imply that there

is a distribution that sits on top of it the new third

dimension of T2F sets. What that distribution looks

like depends on the specific choice made for the

secondary grades.

C. Expected Value of T2F set and T2F variable based

on Credibility Theory

After introducing credibility and T2F sets, we define

the expected value of T2F set using credibility measure

here. We may see later that using the expected value

and variance to model T2F variables will reduce huge

complexity in the process of calculation and enable us

to deal with T2F variables.

Suppose that (Γ1,P(Γ1),Pos1) is a possibility

space. Let Γ1 be the universe of discourse, and P(Γ1)
on Γ1 is a class of subsets of Γ1 that is closed under

arbitrary unions, intersections, and complement in Γ1.

Fig. 2. FOU of a T2F set

Let ℜ be the set of real numbers. Then a map A :
Γ1 → ℜ is said to be a T1F set defined on Γ1. We also

define another possibility space for T2F sets, which is

(Γ2,P(Γ2),Pos2). A function Pos2 : P(Γ2) → [0, 1]
and a T2F set is a mapping Ã : Γ2 → Γ1. The most

normal T2F set is constructed in a triangular style

which is illustrated as follows:

Let A be a fuzzy set defined on possibility space

(Γ1,P(Γ1),Pos). Define that for every A ∈ Γ1,

Ã(A) = (A + a,A + cl, A + cr)Γ2, which is a

triangular T2F set defined on some possibility space

(Γ2,P(Γ2),Pos).

Moreover, a T2F variable is defined as a mapping

Ãv : Γ2 → ℜ. The normal form of a T2F variable is

in the form of interval and a more complicated one is

in the form of triangle defined as follows:

Let A be a fuzzy variable defined on possibility

space (Γ1,P(Γ1),Pos). For every x ∈ ℜ, it follows

a triangular primary membership function as A(x) =
(x + a, x + cl, x + cr)Γ1 and for every A ∈ Γ1, it

also follows a triangular secondary membership func-

tion Ã(µA) = (µA(x0), µA(x0) + el, µA(x0) + er)Γ2

which is a T2F set defined on some possibility space

(Γ2,P(Γ2),Pos). Here, T1F set A and its membership

function µA(x) roughly show the same meaning while

they have a difference indeed.

For any T2F set Ã on Γ2, for each A in Γ1, the

expected value of the T2F set Ã is denoted by E[Ã]
given µA, which has been proved to be a measurable

function of A i.e., it is a T1F variable. The mathmatical

definition is as follows:

Let Ãv be a T2F variable and Ã be a T2F set defined

on a possibility space (Ω, P (Ω),Pos), which describes

the secondary membership grades forÃv . The expected

value of T2F set Ãv is defined as follows.
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E[Ã] =

∞∫

0

Cr
Ã
{Ã ≥ µA(x)}dµA(x)

−

0∫

−∞

Cr
Ã
{Ã ≤ µA(x)}(µA(x)) (7)

Assume that original outputs for the primary mem-

bership function of Ãv is the following possibility

distribution of µA(x0), where x0 ∈ ℜ. To get the

expected value of T2F variable, we may take the place

of the original primary grades by using the result

of equation(7) Hence, µA will be transformed into a

new function defined as expected primary membership

function denoted as µ
E[Ã].Its credibility is denoted

as Cr
E[Ã] instead of CrA. We called this process as

”Reduction”. The expected value of T2F variable is

then defined as follows:

E[Ãv]=

∞∫

0

Cr
E[Ã]{A ≥ x}dx−

0∫

−∞

Cr
E[Ã]{A ≤ x}dx

(8)

Furthermore, we will give a simple example here

to help understand the definition. Assume that there is

a triangular T2F variable Ã0. Its primary membership

function for real values is A = (a, cl, cr)Γ1 whose

possibility distribution is

µA(x) =





x− cl

a− cl
, cl ≤ x ≤ a

cr − x

cr − a
, a ≤ x ≤ cr

0, otherwise.

Meanwhile, for any x0 ∈ ℜ included in A =
(a, cl, cr)Γ1 with its primary grades expressed as

µA(x0) , the secondary one for µA(x0) is assumed

to be Ã(µA(x0)) = (µA(x0), µA(x0) + el, µA(x0) +
er)Γ2 , whose possibility distribution is

µ
Ã
(µA(x)) =





µA(x)− el

µA(x0)− el
, el ≤ µA(x) ≤ µA(x0)

er − µA(x)

er − µA(x0)
, µA(x0) ≤ µA(x) ≤ er

0, otherwise.

where A ∈ Γ1, Ã ∈ Γ2. Notice that µA(x0) will be

the center of the T2F membership grades.

We may calculate those expected values for T2F sets

first.

For boundaries of primary grades of Ã0 where

values of them are 0, the secondary nonmembership

function is Ã(0) = (0, 0 + el, 0 + er)Γ2, and the

expected value of them according to equation (7) will

be

E[A] =
el + er

4
.

For center of primary grades where its value is 1,

the secondary membership function is Ã(b) = (1, 1 +
el, 1 + er)Γ2, and the expected value will be

E[A] =
el + 2 + er

4
.

It should be noticed that even there will be surplus

more than 1 in the calculation process, it will not affect

the final result.

Then we will perform the ”Reduction” by substi-

tuting expected primary grades for original ones and

form an expected primary membership function. The

original one satisfies µA(a) = 1 , µA(c
l) = 0 and

µA(c
r) = 0 as shown in Fig. 3. After transformation,

the expected one follows distribution as the follow-

ing equation and satisfies µA(a) =
el + 2b+ er

4
,

µA(c
l) =

el + er

4
and µA(c

r) =
el + er

4
as shown

in (1) in Fig. 4.

µ
E[Ã](x) =





x− cl

2(a− cl)
+

el + er

4
, cl ≤ x ≤ a

cr − x

2(cr − a)
+

el + er

4
, a ≤ x ≤ cr

el + er

4
, otherwise.

Noticed that after transformation into the expected

primary function, the function biases a value

at el+er

4 higher for the universe, which is not

reasonable. Thus we need to make some adjustment

through shaping the function into triangular one

again We call it the process of ”Shaving”, which

looses the original boundaries a little bit. Thus,

the new expected T1F set of Ã0 will be A =

(a, cl −
(er + el)(a− cl)

2
, cr +

(er + el)(cr − a)

2
)Γ1,

whose possibility distribution follows:

µ
E[Ã](x) =





x− cl

2(a− cl)
, cl − (er+el)(a−cl)

2 ≤ x ≤ a

cr − x

2(cr − a)
, a ≤ x ≤ cr +

(er + el)(cr − a)

2
0, otherwise.

According to the definition:

Cr{A ≤ r} =
1

2

(
1 + sup

t≤r

µA(t)− sup
t>r

µA(t)

)
.

The credibility of the expected primary function will

be written as
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Fig. 3. Original primary function

Φ(x) = Cr
E[Ã](ǫ ≤ x) =




0, x ≤ γ

x−
(er + el)(a− cl)

2

4(a− cl +
(er + el)(a− cl)

2
)

, γ ≤ x ≤ a

cr +
(er + el)(cr − a)

2
+ x− 2a

4(cr − a+
(er + el)(cr − a)

2
)

, a ≤ x ≤ ζ

1, ζ ≥ x
(9)

where γ=cl − (er+el)(a−cl)
2 and ζ=cr + (er+el)(cr−a)

2

Now we are able to calculate the expected value

according to equations (8) and (9) as follows

E[Ã0] = a+
(er+el)(cr−a)

2 + cr − a

8

+
cl − (er+el)(a−cl)

2 − a

8

=
12a+ 2cr + 2cl + (er + el)(cr + cl − 2a)

16

III. FORMULATION OF A CLASS OF T2F

REGRESSION MODEL

The arithmetic operations of T1F set have been

studied by making use of the extension principle [13],

[14], [33], [33], [33]. These studies have involved the

definition of possibility. Tanaka and Watada figured

out that fuzzy equations discussed by Sanchez can be

regarded as a possibilistic structure [20] [18]. In the

sequel, a possibilistic system has been applied to the

linear regression analysis, A possibility structure has

much advantage to deal with inputs and outputs with

uncertainty. We will use the structure here to formulate

the T2F regression.

For a T2F regression model, input data X̃ij and

output data Ỹi, for all i = 1. · · · , N and k = 1, · · · ,M
are T2F variables, which are defined as

Ỹi = (yi, µYi
(yi), µỸi

(yi))

X̃ij = (xij , µXij
(xij), µX̃ij

(xij))
(10)

respectively.

yi and xij are the crisp value; µYi
(yi) and µXij

(xij)
are primary membership grades for yi and xij ; µ

Ỹi
(yi)

and µ
X̃ij

(xij) are secondary membership grades for

µYi
(yi) and µXij

(xij). These three factors construct

the basis for a T2F variable. i denotes sample i for

i = 1, · · · , N ; j denotes for the jth attributes for

j = 1, 2, · · · ,M .

As discussed before, we will use a possibilistic

structure here. Let us denote fuzzy linear regression

model with T1F coefficients A1, · · · , AM . Then the

T2F regression is in the form as follows:

Ỹi = A1X̃i1 +A2X̃i2 + · · ·+AM X̃iM , (11)

where Ỹi denotes an estimate of the T2F output and

Aj =

(
Al

j+Ar
j

2 , Al
j , A

r
j

)

T

are symmetric triangular

fuzzy coefficients when triangular T2F data X̃ij are

given for i = 1, · · · , N and j = 1, · · · ,M .

When outputs and inputs are defined as crisp value

or T1F variables, it is easy to determine the linear

regression model’s parameters by satisfying the esti-

mated model includes all given outputs. We will mimic

this process to formulate the T2F regression model as

follows, while all the inputs and outputs are T2 fuzzy

variables.

Ỹi = A1X̃i1 +A2X̃i2 + · · ·+AM X̃iM ⊃
FR

Ỹi,

i = 1, . . . N, (12)

where ⊃
FR

is a T2F inclusion relation whose precise

meaning will be explained later on.

IV. BUILDING AN EXPECTED VALUE T2F

REGRESSION MODEL WITH CREDIBILITY THEORY

We may reform an expected primary membership

function range for X̃v(ij) through reduction process

that we have defined above to reduce the dimensions

of data. According to the process, the X̃v(ij) will

transformed into a range of [E[X̃v(ij)
C ], E[X̃v(ij)

B ]].
We will assume the inputs will all be symmetric

triangular T2F variables whose primary membership

functions and secondary ones are all in triangu-

lar form with a center C and two equal distance

boundaries B. Thus, E[X̃v(ij)
C ] represents the center.

E[X̃v(ij)
B ] represents the bound. To simplify, we will

use [e
X̃v(ij)

, δ
X̃v(ij)

] instead of the original expression

and [e
Ỹv(i)

, δ
Ỹv(i)

] instead of Y
E[Ỹv(i)]

.Here is e
X̃v(ij)



6

represents the center of expected values calculated by

credibility theory e
X̃v(ij)

−δ
X̃v(ij)

and e
X̃v(ij)

+δ
X̃v(ij)

are the bonds of set of expected values calculated by

credibility theory. The same is to [e
Ỹv(i)

, δ
Ỹv(i)

].

Thus the T2F regression model will be reformulated

as follows

[T2F expected value regression model]

min
A

J(A) =
M∑
j=1

(
Ar

j −Al
j

)

subject to
Ar

j ≥ Al
j ,

Yi =
M∑
j=1

Aj · [eX̃v(ij)
, δ

X̃v(ij)
]

⊃
∼
h

[e
Ỹv(i)

, δ
Ỹv(i)

],

for i = 1, . . . N, j = 1, · · · ,M.





(13)

V. THE SOLUTION OF THE MODEL

The solution of the model can be rewritten as a

problem of N samples with one output and M input

interval values. This problem is hard to solve, since

it consists of N × M products between the fuzzy

coefficients and primary grades intervals. In order to

solve the proposed model, we can employ a vertex

method as given below. That is, these multidimensional

vertices are taken as new sample points with fuzzy

output numbers. In the sequel, we can solve this

problem using the conventional method.

T2F regression model can be developed to include

the mean interval values of all samples in the model.

Therefore, it is sufficient and necessary to consider

only both two vertices of the end points of the interval

of each dimension of a sample. For example, one

sample with one input interval feature can be expressed

with two vertices of the end points of the interval

with a fuzzy output value. As a consequence, in T2F

regression form, if we denote ILij and IUij left and right

end points of the expected primary grade intervals of

the input Xik, respectively, that is

ILij = e
X̃v(ij)

− δ
X̃v(ij)

, IUij = e
X̃v(ij)

+ δ
X̃v(ij)

,

for i = 1, 2, · · · , N, j = 1, 2, · · · ,M, the original

model can be converted into the following conventional

fuzzy regression model by making use of the vertice

method:

TABLE I
T2F INPUT -T2F OUTPUT DATA TRANSFORMED IN THE RANGE

OF EXPECTED PRIMARY GRADES

Sample Output Inputs

i [eY , δY ] [eX1
, δX1

] · · · [eXK
, δXK

]
1 [eY1

, δY1
] eX11

, δX11
] · · · [eX1K

, δX1K
]

2 [eY2
, δY2

] [eX21
, δX21

] · · · [eX2K
, δX2K

]
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

i [eYi
, δYi

] [eXi1
, δXi1

] · · · [eXiK
, δXiK

]
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

N [eYN
, δYN

] [eXN1
, δXN1

] · · · [eXNK
, δXNK

]

min
A

J(A) =
M∑
j=1

(
Ar

j −Al
j

)

subject to
Ar

j ≥ Al
j ,

(1) → Yi = A1 · I
L
i1 +A·I

L
i + · · ·

+AM · ILiM ⊃
∼
[e

Ỹv(i)
, δ

Ỹv(i)
],

(2) → Yi = A1 · I
U
i1 +A2 · I

L
i2 + · · ·

+AM · ILiM ⊃
∼
[e

Ỹv(i)
, δ

Ỹv(i)
],

(3) → Yi = A1 · I
L
i1 +A2 · I

U
i2 + · · ·

+AM · ILiM ⊃
∼
[e

Ỹv(i)
, δ

Ỹv(i)
],

...
...

...

(2M ) → Yi = A1 · I
U
i1 +A2 · I

U
i2 + · · ·

+AK · IUiM ⊃
∼
[e

Ỹv(i)
, δ

Ỹv(i)
],

for i = 1, . . . N, j = 1, · · · ,M





(14)

where ⊃
∼
h

denotes the fuzzy inclusion relation realized

at level h.

We may also define for the output:

ILYi
= [e

Ỹv(i)
− δ

Ỹv(i)
], IUYi

= [e
Ỹv(i)

+ δ
Ỹv(i)

]
The regression model can be easily solved by

transferring ⊃
∼
h

into inequalities. And this conventional

solution is explained in detail in our former work [?].

VI. APPLICATION ON ARBITRAGE PRICING

THEORY

In this section, we will expand a famous pricing

theory in finance, which is the arbitrage pricing the-

ory(APT). We will use T2F regression model based

on credibility theory to redefine the formula of APT

and to show the benefit of the new model in practice.

A. Mathmetical model of Arbitrage Pricing Theory

In finance, arbitrage pricing theory (APT) is a

general theory of asset pricing that holds that the

expected return of a financial asset can be modeled as
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a linear function of various macro-economic factors or

theoretical market indices, where sensitivity to changes

in each factor is represented by a factor-specific beta

coefficient.

The form of arbitrage pricing theory is like:

E(rj) = rf + bj1 ∗RP1 +

· · · , bjn ∗RPn,

where E(rj) is the expected return of the jth asset;

RPk is the risk premium of the kth factor; rf is the

risk-free rate. That is, the expected return of an asset

j is a linear function of the asset’s sensitivities to the

n factors.

B. Arbitrage Pricing Theory with T2F regression

based on Credibility Theory

Chen, Roll and Ross (1986) identified the following

macro-economic factors as significant in explaining

security returns: 1)surprises in inflation;2)surprises in

GNP as indicated by an industrial production index;

3)surprises in investor confidence due to changes in

default premium in corporate bonds; 4)surprise shifts

in the yield curve. However, these factors are with great

fuzziness due to their macro feature. So it comes to us

to express these factors in the form of T2F sets. The

form of T2F sets are capable of containing more infor-

mation and will cater the feature of macroeconomical

data. Moreover, we try to use our new model to deal

with these T2F data.

Thus, we expanded the traditional APT into the T2F

APT as follows:

Ẽ(rj) = rf +A1R̃P1 +A2R̃P2 + · · ·+AM R̃PM ;(15)

where coefficients A in the formula are T1F sets.

The expected return of the jth asset E(rj) is in the

form of T2F sets. The risk premium of the kth factor

RPk is T2F sets as well ;

Because we don’t have macro data on hand, we have

choosed the yearly return of the stock of one lisiting

company as the output for our model. Meanwhile, we

have choosed the yearly performance of the whole

stock market as one variable and the growth of the

company’s sales as the other variable. All the data are

showing in the form of percentage.

First, we need to reduce the T2F inputs and outputs

into T1F set. Then it will meet the form of T2FR.

According to our former deduction, the new expected

T1F set of Ã will be A = (a, cl − (er+el)(a−cl)
2 , cr +

(er+el)(cr−a)
2 )Γ1. Thus the T2F regression model for

the given data reads as follows:

Ȳi = Ā1I[eXi1
, δXi1

] + Ā2I[eXi2
, δXi2

],

where I[eXik
, δXik

] for k = 1, 2 are the new expected

T1F set of Ã. Since N = 4,K = 2, taken (Āk)h0 =
[Āl

k, Ā
r
k], k = 1, 2, the T2FR model can be built as

min
Ā

J(Ā) = Ār
1 − Āl

1 + Ār
2 − Āl

2

subject to
Ār

1 ≥ Āl
1, Ā

r
2 ≥ Āl

2

Ȳ1 = (Ā1)h0I[eX11
, δX11

]
+(Ā2)h0I[eX12

, δX12
]⊃
∼

I[eY1
, δY1

],

Ȳ2 = (Ā1)h0I[eX21
, δX21

]
+(Ā2)h0I[eX22

, δX22
]⊃
∼

I[eY2
, δY2

],

Ȳ3 = (Ā1)h0I[eX31
, δX31

]
+(Ā2)h0I[eX32

, δX32
]⊃
∼

I[eY3
, δY3

],

Ȳ4 = (Ā1)h0I[eX41
, δX41

]
+(Ā2)h0I[eX42

, δX42
]⊃
∼

I[eY4
, δY4

].





(16)

First of all, we need to calculate all the

I[eXik
, δXik

] and I[eYk
, δYk

] for i = 1, 2, 3, 4, k =
1, 2. By using the calculation A = (a, cl −
(er + el)(a− cl)

2
, cr +

(er + el)(cr − a)

2
)Γ1, we ob-

tain all the pairs
(
eXik

, δXik

)
and

(
eYk

, δYk

)
.

TABLE II
EXPECTED T1F INPUT DATA

i I[eXi1
, δXi1

] I[eXi2
, δXi2

]

1 [2.94, 4.06] [3.05, 4.75]
2 [4.75, 9.25] [2.94, 4.06]
3 [11.63, 15.37] [9.50, 17.90]
4 [12.75, 17.25] [18.40, 22.40]

TABLE III
EXPECTED T1F OUTPUT DATA

i I[eYi
, δYi

]

1 [8.52, 23.88]
2 [15.19, 20.01]
3 [20.12, 29.48]
4 [26.16, 42.64]

Thus, the T2FR regression model is given in the

form:

Ȳi = Ā1I[eXi1
, δXi1

] + Ā2I[eXi2
, δXi2

]

= Ā1I[eXi1
, δXi1

]

+

(
Āl

2 + Ār
2

2
, Āl

2, Ā
r
2

)

T

I[eXi2
, δXi2

]

= 1.31I[eXi1
, δXi1

]

+(3.29, 0.0, 6.57)T I[eXi2
, δXi2

].

According to the example, we have successfully

expanded the ATP. When compared with traditional

models, the new model introduces a new algorithm to

deal with the dimensions of T2F inputs and outputs and
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have more accurate prediction rate. We have compared

the prediction accurate rate by using the method of

percent of overlap of the range. The T2F APT model

get over 67 %t accurate rate while the APT model only

get 43 %.

VII. CONCLUDING REMARKS AND FUTURE WORKS

In this paper, we built a T2F expected value regres-

sion model based on credibility theory. The innovation

of this paper stands on several stakes as follows: 1)

we defined the expected value for T2F variable based

on credibility theory. 2) we formulated a general form

of T2F regression model with a possiblistic structure.

3) Moreover, we transform the general form into a

T2F expected value form. 4) We have expanded the

traditional arbitrage pricing theory and build a new T2F

APT. This paper generalized our previous work [16]

[1]. Our further work will establish on the definition

of variance for T2F variable.
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