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Abstract—In this paper, we present a novel lattice-based
memory model called max-plus projection autoassociative mor-
phological memory (max-plus PAMM). The max-plus PAMM
yields the largest max-plus combination of the stored patterns
which is less than or equal to the input. Such as the original au-
toassociative morphological memories (AMMs), it is idempotent
and it gives perfect recall of undistorted patterns. Furthermore,
the max-plus PAMM is very robust to dilative noise and it
has less spurious memories than its corresponding AMM. This
paper also presents two variations of the max-plus PAMM. The
first yields the max-plus combination that is the Chebyshev-
best approximation of the input while the second uses a noise
masking strategy.

I. INTRODUCTION

Lattice computing refers to a broad collection of tools and
methodologies that apply or use lattice theory [1], [2], [3].
It includes minimax algebra [4], mathematical morphology
[5], fuzzy set theory [6], and a broad class of artificial neural
networks [7], [8]. Autoassociative morphological memories
(AMMs) also belong to the lattice computing framework.

The AMMs, also known as lattice autoassociative memo-
ries, have been developed initially by Ritter and Sussner in
the middle 1990s [9], [10], [11]. As an associative memory,
they are designed for the storage and recall of patterns by
association or by their contents – in a manner similar to the
human brain [12]. We would like to recall that the AMMs
are called morphological because they perform the basic
operations from mathematical morphology [10], [13].

The AMMs have been formerly conceived for the storage
of real-valued pattern [10]. However, since they are built
on lattice theory, they can possibly be extended to process
lattice-ordered data such as sets, symbols, intervals, fuzzy
sets, etc. For instance, the classes of fuzzy and interval-valued
fuzzy associative memories are used to process fuzzy sets as
well as interval-valued fuzzy sets [14], [15], [16]. Applica-
tions of AMMs and some of their variations include restora-
tion of corrupted images [17], [18], [19], [20], identification
of structures in resting state fMRI data [21], autonomous
determination of endmembers in hyperspectral images [22],
[23], vision-based self-localization in mobile robots [24],
[25], times-series prediction [26], and classification [17].

In contrast to many traditional models such as the Hopfield
network [12], the original AMMs are able to store an
unlimited number of patterns and give perfect recall of any
undistorted item [10], [17]. Also, they converge in one single
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step when employed with feedback and are robust in the
presence of either dilative or erosive noise. On the down-
side, the original AMMs have a large amount of spurious
memories. In view of this fact, we introduce the max-plus
projection AMM (max-plus PAMM). The novel memory has
a reduced number of spurious memories and, consequently, is
more robust to dilative noise than its corresponding original
AMM. In this paper, we also present two variations of the
max-plus PAMM.

The paper is organized as follows. Next section presents
the mathematical background. A brief review on the original
AMMs are provided subsequently. Section III also presents
some variations of the AMMs. The novel max-plus PAMM
as well as their variations are introduced in Section IV.
Illustrative examples are given in both Sections III and IV.
The paper finishes with some concluding remarks and the
appendix containing the proofs of lemmas and theorems.

II. SOME MATHEMATICAL BACKGROUND

The memory models considered in this paper are described
by lattice-based operations from minimax algebra, a math-
ematical structure motivated by problems from scheduling
theory, graph theory, and dynamic programming [4]. Roughly
speaking, the minimax algebra is developed in a mathemat-
ical structure obtained by enriching a complete lattice with
two group operations [9], [10], [17], [13]. For the purposes
of this paper, however, we consider the totally ordered field
of real numbers (which is not a complete lattice) as the
mathematical background. The supremum and the infimum
of a bounded set X ⊆ R are denoted respectively by the
symbols

∨
X and

∧
X . In case X = {x1, . . . , xn} ⊆ R is a

finite set, the operations of computing the maximum and the
minimum are written as

∨n
j=1 xj and

∧n
j=1 xj , respectively.

Given two matrices A ∈ Rn×k and B ∈ Rk×m, the max-
product and the min-product of A by B, denoted respectively
by C = A ∨� B ∈ Rn×m and D = A ∧� B ∈ Rn×m, are
given by the following equations for all i = 1, . . . , n and
j = 1, . . . ,m:

cij =
k∨
ξ=1

(aiξ + bξj) and dij =
k∧
ξ=1

(aiξ + bξj). (1)

Note that the max-product satisfy

A ∨� (B + α) = (A ∨� B) + α, ∀α ∈ R. (2)

Here, B+α is the matrix obtained by adding α to each entry
of B. Similarly, we have

A ∧� (B + α) = (A ∧� B) + α, ∀α ∈ R. (3)
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In other words, both lattice-based products are invariant under
vertical translations [27].

The conjugate of A ∈ Rn×k is the matrix A∗ ∈ Rk×n
whose entries satisfy a∗ij = −aji for all indexes i, j. Note that
(A∗)∗ = A for any matrix A. The conjugate can be used to
establish the following identities concerning the min-product
and the max-product:

(A ∧� B)∗ = B∗ ∨� A∗ and (A ∨� B)∗ = B∗ ∧� A∗. (4)

In addition, the lattice-based matrix operations are related by
means of the following adjuction relationship for matrices
A ∈ Rn×k, B ∈ Rk×m, and C ∈ Rn×m:

A ∨� B ≤ C ⇔ B ≤ A∗ ∧� C ⇔ A ≤ C ∧� B∗. (5)

In analogy to the notion of linear combination, a max-plus
combination of vectors from a set X = {x1, . . . ,xk} ⊆ Rn
is any vector y ∈ Rn of the form

y =
k∨
ξ=1

(αξ + xξ), αξ ∈ R. (6)

In words, y is the maximum of vertical translations of
x1, . . . ,xk. The set of all max-plus combinations of vectors
from X is denoted by V(X ), i.e.,

V(X ) =

y ∈ Rn : y =

k∨
ξ=1

(αξ + xξ), αξj ∈ R

 . (7)

Note that y ∈ V(X ) if and only if y = X ∨� α for some
α = [α1, . . . , αk]

T ∈ Rn, where X = [x1, . . . ,xk] ∈ Rn×k
is the matrix whose columns corresponds to the vectors of
X . Similarly, any vector z ∈ Rn of the form

z =
n∧
j=1

k∨
ξ=1

(aξj + xξ), aξj ∈ R. (8)

is called a minimax combination of vectors from X . The set
of all minimax combinations is denoted by S(X ), i.e.,

S(X ) =

z ∈ Rn : z =

n∧
j=1

k∨
ξ=1

(aξj + xξ), aξj ∈ R

 . (9)

It is not hard to show that X ⊆ V(X ) ⊆ S(X ).
We would like to recall that reversing the arguments of

a partial ordering yields the so called dual partial ordering
[28], [5]. For instance, the relation “greater than or equal”
is the dual partial ordering of “less than or equal”. The dual
ordering establishes the duality principle: to every statement
or notion there corresponds a dual one. For instance, the
max-product is the dual of the min-product. Furthermore,
the duality principle can used to define concepts similar to
the ones expressed by (6) and (8). For example, a min-plus
combination is any vector given by the min-product X ∧� α,
where α ∈ Rn.

III. A BRIEF REVIEW ON AUTOASSOCIATIVE
MORPHOLOGICAL MEMORIES

Autoassociative memories (AMs) are mathematical con-
structs inspired by the human brain ability to store and recall
information. They are systems designed for the storage of
a set X = {x1, . . . ,xk}, called the fundamental memory
set. For the purposes of this paper, let xξ be a column-
vector in Rn for all ξ ∈ K = {1, . . . , k}. Hence, given a
fundamental memory set X ⊆ Rn, an AM corresponds to
a mapping M : Rn → Rn such that M(xξ) = xξ for all
ξ ∈ K. Furthermore, the mapping M must exhibit some
noise tolerance in the sense that M(x̃ξ) = xξ for a noise
version x̃ξ of the fundamental memory xξ. We say that a
vector x ∈ X is a fixed point of the AMM ifM(x) = x. A
fixed point that does not belong to the fundamental memory
set is called a spurious memory.

A. Original Autoassociative Morphological Memories

The original AMMs [9], [29], also referred to as lattice
autoassociative memories [11], [30], are mappings defined
in terms of the lattice-based matrix products. Specifically,
for any input vector x ∈ Rn, the AMM MXX : Rn → Rn
is given by

MXX(x) =MXX ∧� x (10)

for a certain matrix MXX ∈ Rn×n, called the synaptic weight
matrix. Similarly, we define the AMM WXX : Rn → Rn by
means of the equationWXX(x) =WXX ∨� x for all x ∈ Rn.
It follows from (4) that MXX and WXX are dual models,
i.e., one AMM can be derived from the other by replacing
the max-product by the min-product, and vice-versa. Thus,
we shall focus only on the AMM MXX .

The synaptic weight matrix MXX is the solution of the
following problem: Given a fundamental memory set X =
{x1, . . . ,xp}, the matrix MXX is given by

MXX =
∨
{A ∈ Rn×n : A ∧� xξ ≤ xξ,∀ξ ∈ K}, (11)

In words, MXX is the greatest matrix A such that the
inequality A ∧� xξ ≤ xξ holds for all ξ ∈ K. In practice, the
solution of (11) can be easily computed using the product

MXX = X ∨� X∗, (12)

where X = [x1, . . . ,xp] ∈ Rn×p is the matrix whose
columns correspond to the fundamental memories.

The vector recalled by the AMMMXX upon presentation
of an input x ∈ Rn can also be expressed in terms of a mini-
max combination of the fundamental memories [17], [30].
Precisely, for any input pattern x = [x1, . . . , xn]

T ∈ Rn, the
output z =MXX(x) satisfies

z =
n∧
j=1

k∨
ξ=1

(
(xj − xξj) + xξ

)
, (13)

where xξj denotes the jth entry of the fundamental memory
xξ. In addition, we have that z given by (13) is the largest
minimax combination of X which is less than or equal to
the input x. Alternatively, z is the infimum of x in the set
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of fixed points of MXX [17]. Mathematically, the mapping
MXX : Rn → Rn also satisfies the equation

MXX(x) =
∨
{z ∈ S(X ) : z ≤ x}, (14)

where S(X ) is the set given by (8).
From (14), we conclude that the AMM MXX is idempo-

tent. In other words, the output remain stable under repeated
applications of MXX . Moreover, any finite minimax com-
bination of the fundamental memories is a fixed point of
MXX . Hence,MXX projects the input x onto the set of all
minimax combinations of the fundamental memories. Since
any xξ ∈ X also belongs to S(X ), we infer that MXX

exhibits perfect recall of any undistorted fundamental mem-
ory. Nevertheless, the AMM has many spurious memories.
In fact, any finite vector in the set difference S(X ) \ X is a
spurious memory of MXX .

The characterization of the output ofMXX given by (14)
also reveals that MXX(x) ≤ x for all x ∈ Rn. Hence, this
AMM is able to recall an original pattern xξ only if the input
x is greater than xξ. In other words, MXX is suited for the
reconstruction of patterns corrupted by dilative noise, but it is
incapable of handling erosive or mixed (dilative and erosive)
noise. Recall that a distorted version x of the original pattern
xξ has undergone a erosive change if x ≤ xξ and a dilative
change if x ≥ xξ [10].

Example 1. Consider the fundamental memory set

X =

x1 =


2
0
7
4
3

 ,x2 =


3
7
2
3
4

 ,x3 =


6
1
4
8
4


 . (15)

Also, consider the vector

x =
[
10 0 7 4 2

]T
, (16)

which have been obtained by corrupting x1 by mixed noise.
In fact, we have x = x1 + [8, 0, 0, 0,−1]T .

The synaptic weight matrix MXX given by (12) satisfies

MXX =


0 5 2 0 2
4 0 5 4 3
5 7 0 3 4
2 7 4 0 4
1 3 2 1 0

 .
Moreover, upon presentation of x as input, we obtain from
MXX the pattern

MXX(x) =
[
4 0 6 4 2

]T
, (17)

which differs from the original pattern x1 except in the
second and forth components. Note that MXX(x) does not
belong to the fundamental memory set X . Thus, it is an
spurious memory of MXX .

A quantitative measure of the performance of MXX as
well as the other memory models considered in this paper
is presented in Table I. The first row of this table contains
the normalized mean squared errors (NMSEs) between the

TABLE I
NORMALIZED MEANS SQUARED ERRORS.

1o argument NMSE(·,x1) NMSE(·,x2) NMSE(·,x3)

x 0.833333 1.471264 0.345865
MXX(x) 0.076923 0.816092 0.218045
Z(x) 0.025641 0.816092 0.308271
M#

XX(x) 0.653846 1.126437 0.240602
MM

XX(x) 0.435897 1.091954 0.067669
VXX(x) 0.025641 0.816092 0.308271
V#
XX(x) 0.846154 1.275862 0.368421
VM
XX(x) 0.435897 1.091954 0.067669

fundamental memories xξ and the input x, for ξ = 1, 2, 3.
Recall that the NMSE is defined by

NMSE(x,y) =

∑n
j=1(xj − yj)2∑n

j=1 y
2
j

=
‖x− y‖22
‖y‖22

, (18)

where ‖ · ‖2 denotes the usual Euclidean norm. The second
row of Table I shows the NMSE produced by MXX . Note
that, although x1 has more components equal to the input x
than to the recalled patternMXX(x), NMSE

(
MXX(x),x1

)
is significantly smaller than NMSE(x,x1).

B. Generalized Kernel Method for the Original AMMs

The original AMM MXX , which uses the min-product
in the retrieval phase, is suitable for patterns degraded by
dilative noise. Dually, the AMM MXX , whose retrieval is
based on the max-product, is suitable for patterns corrupted
by erosive noise. The idea of the kernel method and its
generalization is to combine the max-product and the min-
product in the retrieval phase of an AMM which, hopefully,
will be able to deal with both dilative and erosive noise [10],
[31], [32].

The notion of a kernel has primarily been defined in
[10], [31]. The following presents the generalized kernel
introduced by Sussner in [32]: A matrix Z ∈ Rp×k, p ≥ k,
is a generalized kernel for X if the equation

WZX ∨� (MX
Z ∧� X) = X (19)

holds true where the matrices WZX and MX
Z are given by

WZX = X ∧� Z∗ and MX
Z = (Z ∨� X∗) ∧� (X ∨� X∗).

(20)
Note that the dimension p of a generalized kernel Z may
differ from the dimension n of X . Furthermore, given a
matrix X = [x1, . . . ,xk] whose columns correspond to the
fundamental memories and a generalized kernel Z for X , the
mapping Z : Rn → Rn given by

Z(x) =WZX ∨� (MX
Z ∧� x), ∀x ∈ Rn, (21)

is called generalized kernel AMM (GK-AMM). Theoretical
results as well as computational experiments confirmed the
excellent noise tolerance of the GK-AMM for the storage
and recall of binary patterns [32].

Example 2. Consider the matrix X = [x1,x2,x3] ∈ R5×3

whose columns correspond to the fundamental memories in
(15). It is rather straightforward to verify that the matrix Z =
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10I3×3, where I3×3 denotes the identity matrix of size 3×3,
is a generalized kernel for X . Hence, the GK-AMM designed
for the storage of X in (15) is the mapping Z given by (21)
where

WZX=



−8 −7 −4
−10 −3 −9
−3 −8 −6
−6 −7 −2
−7 −6 −6


and MX

Z =


8 10 3 6 7
7 3 8 7 6
4 9 6 2 6

.

Upon presentation of the input x given by (16), we obtain
as output of the GK-AMM the pattern

Z(x) =
[
2 0 6 4 2

]T
,

which coincides with the original pattern x1 except in the
third and fifth components, where the difference is one.

We would like to point out that feeding Z with the output
of MXX and conversely yields

Z
(
MXX(x)

)
6=MXX(x) and MXX

(
Z(x)

)
= Z(x).

Therefore, Z(x) is a fixed point of MXX but MXX(x) is
not a fixed point of Z . Indeed, the memory Z has less spuri-
ous memories than the original AMM MXX . Furthermore,
as shown in the first column of Table I, the GK-AMM Z
(third row) produced an NMSE smaller than that yielded by
MXX in this example.

C. Chebyshev-Best Approximation AMMs

Recall from (14) that the original AMM MXX(x) yields
the largest minimax combination of X which is less than or
equal to the input x. The retrieval phase of this AMM can
be slightly adapted to yield the minimax combination of X
that is the closest approximation x [17].

First, recall that the Chebyshev distance between two
vectors x, z ∈ Rn, denoted by ‖x − z‖∞, is the greatest
component-wise absolute difference between x and y, i.e.,

‖x− z‖∞ =

n∨
j=1

|xj − zj |. (22)

Now, the solution of the constrained optimization problem

Minimize ‖x− z‖∞ subject to z ∈ S(X ), (23)

is the vector z# = µ + MXX ∧� x, where MXX is the

matrix given by (12) and µ =
1

2
(MXX ∧� x)∗ ∨� x [4], [17].

Remembering that MXX(x) = MXX ∧� x, we can express
the Chebyshev-best approximation of x as µ+MXX(x) ∧� x
where µ = (M∗XX(x) ∨� x)/2.

The remarks in the previous paragraph provide support to
the following memory model [17]: The Chebyshev-best ap-
proximation AMM (CBA-AMM) corresponds to the mapping
M#

XX : Rn → Rn defined by

M#
XX(x) =

1

2
M∗XX(x) ∨� x+MXX(x), ∀x ∈ Rn.

(24)
Such as the original AMM MXX , the CBA-AMM M#

XX

projects the input x onto the set S(X ) of all minimax com-
binations of the fundamental memories. As a consequence,

the CBA-AMM also has optimal absolute storage capacity
and the output remain stable under repeated applications
of M#

XX . In addition, since the inequality M#
XX(x) ≤ x

does not necessarily hold true, the CBA-AMM exhibits some
tolerance to mixed noise [17]. On the downside, because
MXX and M#

XX have the same set of fixed points, the
CBA-AMM also has a large number of spurious memories.

Example 3. Consider the fundamental memory set X and
the input pattern x given respectively by (15) and (16). In
this case, µ =

(
M∗XX(x) ∨� x

)
/2 = 3 and the output of the

CBA-AMM M#
XX is

M#
XX(x) =

[
7 3 9 7 5

]T
.

Note that ζ
(
M#

XX(x),x
)
= 3 while ζ

(
MXX(x),x

)
= 6.

Thus, the output of M#
XX is closer to the input – using

the Chebyshev distance – than MXX(x). Notwithstanding,
Table I reveals that the NMSEs produced byM#

XX are larger
than those yielded by MXX in this example.

D. Noise Masking Strategy

Urcid et al. observed that the noise tolerance of the original
AMMs can be significantly improved by masking the noise
contained in a corrupted input pattern [33], [34]. In few
words, noise masking converts an input degraded by mixed
noise into a pattern corrupted by either dilative or erosive
noise. Let us clarify this idea.

Suppose that X = {x1, . . . ,xk} have been stored in
the AMM MXX . Also, assume that x is a version of the
fundamental memory xη corrupted by mixed noise. Then,
xηp = x∨xη is the masked input pattern which contains only
dilative noise, i.e., the inequality xηp ≥ xη holds true. Since
MXX is robust to dilative noise, we expect the AMM to
recall perfectly the original pattern xη under presentation of
the masked vector xηp.

The noise masking idea has a practical shortcoming: we
do not known a priori which fundamental memory have been
corrupted. Hence, Urcid and Ritter suggested to compare, for
all ξ = 1, . . . , k, the masked pattern xξp = x ∨ xξ with the
input x as well as with the fundamental memory xξ [33]. The
comparison is based on some meaningful measure such as the
NMSE defined by (18). Subsequently, the masked pattern xηp
that minimizes the average errors

Dξ =
1

2

(
NMSE(xξ,xξp) + NMSE(x,xξp)

)
,∀ξ ∈ K, (25)

is fed intoMXX . The following lemma provides an alterna-
tive formula for computing the index η that minimizes (25).

Lemma 1. Given X = {x1, . . . ,xk} ⊆ Rn and x ∈ Rn, an
index η satisfies Dη = ∧kξ=1Dξ if and only if

‖x− xη‖22
‖x ∨ xη‖22

=
k∧
ξ=1

{
‖x− xξ‖22
‖x ∨ xξ‖22

}
. (26)

Concluding, the technique of noise masking for recall of
real-valued patterns usingMXX yields the memoryMM

XX :
Rn → Rn given by MM

XX(x) =MXX(x∨ xη), where η is
an index that satisfies (26).
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Example 4. Consider the fundamental memory set and the
input pattern given respectively by (15) and (16). In this case,

‖x− x1‖22
‖x ∨ x1‖22

= 0.37,
‖x− x2‖22
‖x ∨ x2‖22

= 0.56,
‖x− x3‖22
‖x ∨ x3‖22

= 0.20.

Note that η = 3 satisfies (26). Thus, the output of MM
XX is

MM
XX(x) =MXX(x ∨ x3) =

[
6 1 7 8 4

]T
,

which coincides with the fundamental memory x1 only in
the third component. Indeed, the pattern recalled by MM

XX

is more similar to x3 than to x1. The NMSEs produced by
MM

XX is also shown in Table I.

IV. MAX-PLUS PROJECTION AUTOASSOCIATIVE
MORPHOLOGICAL MEMORY

We can design an AMM model with a reduced number of
spurious memories by replacing S(X ) by the set V(X ) of
all max-plus combination of vectors of X in (14). Precisely,
given a fundamental memory set X = {x1, . . . ,xk} ⊆ Rn,
we define an AMM VXX : Rn → Rn as follows for any
input pattern x ∈ Rn:

VXX(x) =
∨
{y ∈ V(X ) : y ≤ x}. (27)

Such as the original AMMMXX , the novel memory VXX
is idempotent. In fact, the mapping VXX projects the input
pattern x onto the set of all max-plus combinations of the
fundamental memories x1, . . . ,xk. Thus, VXX is referred
to as a max-plus projection autoassociative morphological
memory or max-plus PAMM for short.

Obviously, VXX also exhibit perfect recall of undistorted
patterns because xξ ∈ V(X ) for all ξ ∈ K. Notwithstanding,
the inequality VXX(x) ≤ x holds for all x. Therefore, such
as the original AMM MXX , the max-plus PAMM is suited
for the reconstruction of patterns corrupted by dilative noise,
but it is incapable of handling erosive or mixed noise.

The advantage of VXX is that it has less spurious memories
than MXX . In fact, any finite vector in the set difference
V(X ) \ X is a spurious memory of VXX . It follows from
the inclusion V(X ) ⊆ S(X ) that any spurious memory of
VXX is also a spurious memory of MXX . However, the
converse S(X ) ⊆ V(X ) does not hold true. Let us conclude
by remarking that the inequalities VXX(x) ≤MXX(x) ≤ x
hold for all x ∈ Rn.

The following theorem provides a formula to compute
the output of VXX given by (27). Furthermore, analogous
to (13), the pattern recalled by the novel max-plus PAMM
is characterized in terms of extrema operations and the
fundamental memories.

Theorem 1. Let X = [x1, . . . ,xk] ∈ Rn×k be the matrix
whose columns correspond to the fundamental memories
stored in a max-plus PAMM VXX . For any input pattern
x ∈ Rn, the output of VXX satisfies

VXX(x) = X ∨� α, where α = X∗ ∧� x. (28)

Alternatively, the output of VXX(x) can be expressed as

VXX(x) =
k∨
ξ=1

n∧
j=1

(
(xj − xξj) + xξ

)
. (29)

At this point, we invite the reader to compare (29) with
(13), the equations that characterize the patterns recalled by
VXX and MXX , respectively. Note that the maximum and
minimum operations have exchanged their places. However,
the following example shows that the two memories may
produce different output upon presentation of the same input.

Example 5. Consider the fundamental memory set X and
the input pattern x given respectively by (15) and (16). The
vector α given by (28) satisfies

α =
[
−1 −7 −4

]T
,

and the output of the max-plus PAMM is

VXX(x) =
(
α1 + x1

)
∨
(
α2 + x2

)
∨
(
α3 + x3

)
=


(−1)+



2
0
7
4
3




∨


(−7)+



3
7
2
3
4




∨


(−4)+



6
1
4
8
4





=



1
−1
6
3
2


∨



−4
0
−5
−4
−3


∨



2
−3
0
4
0


=



2
0
6
4
2


Note that VXX(x) differs from x1 only in the third and
fifth components. As expected, the inequalities VXX(x) ≤
MXX ≤ x hold true. Also, the pattern recalled by VXX is
equal to the pattern recalled by the GK-AMM of Example 2.
Hence, the pattern recalled by VXX is a fixed point ofMXX

but the converse does not hold true. In addition, as shown in
the first column of Table I, the memory VXX outperformed
the original AMM MXX as well as its variations M#

XX

and MM
XX . In the following subsection, we investigate the

relationship between Z and VXX .

Let us now briefly examine the coefficients αξ of the vector
α given by (28). It is not hard to show that αξ ≥ 0 if and only
if x ≥ xξ. Conversely, αξ < 0 if and only if there is at least
one index j ∈ N such that xj ≤ xξj . Hence, in some sense,
αξ measures the truth of the inequality xξ ≤ x. In view of
this remark, let us define the mapping A : Rn ×Rn → R as
follows for any vectors x and y:

A(y,x) =
n∧
j=1

(xj − yj) = y∗ ∧� x, (30)

Therefore, αξ = A(xξ,x) for all ξ ∈ K and the max-plus
PAMM satisfies

VXX(x) =
k∨
ξ=1

(
A(xξ,x) + xξ

)
, (31)
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for any x ∈ Rn. Alternatively, the pattern recalled by VXX
can be determined as follows:

Theorem 2 (Dual Representation of VXX ). Given a funda-
mental memory set X = {x1, . . . ,xk}, the memory VXX
given by (27) satisfies

VXX(x) =
∧
{y ∈ Rn : A(xξ,x) ≤ A(xξ,y),∀ξ ∈ K},

(32)
for all input x ∈ Rn.

Example 6. In Example 5, for any ξ ∈ {1, 2, 3}, we have
αξ = A(xξ,x) < 0. Thus, there exists at least one index j

such that xj ≤ xξj . Indeed, x5 = 2 ≤ 3 = x15, x2 = 0 ≤ 7 =
x22, and x4 = 4 ≤ 8 = x34. Note that the memory VXX failed
to recall the fundamental memory x1 because A(x1,x) < 0.

We would like to point out that the coefficients αξ =
A(xξ,x) can be computed in parallel. Thus, they do not
pose any computational burden in applications of VXX for
the storage of large-scale patterns. Indeed, in contrast to the
original AMM and the Hopfield network [12], the novel
memory does not require the storage of a synaptic weight
matrix of size n × n. On the downside, the information on
the fundamental memories is not distributed over the weights
of the max-plus PAMM.

A. Max-Plus PAMM as a GK-AMM

In accordance with the idea used in the kernel method,
(28) reveals that the max-product and the min-product are
combined in the retrieval phase of the max-plus PAMM. In
this subsection, we explore further the relationship between
the novel memory and the GK-AMM given by (21). Precisely,
we provide a generalized kernel Z such that the mappings
VXX and Z coincide in an hyperbox.

In many practical situations, the entries of the fundamental
memories as well as the components of the input pattern are
confined into an interval I = [a, b]. In this case, we write
X = {x1, . . . ,xk} ⊆ In and x ∈ In. Also, we are able to
state the following theorem:

Theorem 3. Given a set X = {x1, . . . ,xk} of fundamental
memories with entries in I = [a, b], define the diameter ω =
b − a and the matrices X = [x1, . . . ,xk] and Z = ωIk×k,
where Ik×k is the identity matrix of size k. The matrix Z
is a generalized kernel for X . Furthermore, this generalized
kernel yields a GK-AMM Z such that Z(x) = VXX(x) for
all input pattern x ∈ In.

Example 7. Note that the entries of the fundamental mem-
ories x1,x2,x3 in (15) belong to the interval I = [0, 10],
whose diameter is ω = 10. From Theorem 3, we conclude
that the max-plus PAMM of Example 5 coincides with the
GK-AMM of Example 2 for all input in I5, including the
pattern x given by (16).

B. Two Variations of the Max-plus PAMM

The max-plus memory VXX shares many properties with
the original memory MXX . As a consequence, the recall
performance of VXX can be improved in a straightforward

way by noise masking the input pattern. Alternatively, the
recall phase of VXX can be adapted to yield the Chebyshev
best-approximation max-plus combination of the input pat-
tern. The following presents these two variations of VXX .

First, analogous to the CBA-AMM M#
XX , the retrieval

phase of the max-plus PAMM VXX can be modified to
yield the following memory model: The Chebyshev-best
approximation PAMM (CBA-PAMM) is the mapping V#

XX :
Rn → Rn given by the following equation for any input
x ∈ Rn:

V#
XX(x) =

1

2
V∗XX(x) ∨� x+ VXX(x). (33)

Using previous results (e.g. Theorem 7 of [17]), it is rather
straightforward to show that V#

XX yields the Chebyshev-
best approximation of x by max-plus combinations of the
fundamental memories x1, . . . ,xk. In other words, V#

XX is
the solution of the constrained optimization problem:

Minimize ‖x− y‖∞ subject to y ∈ V(X ), (34)

where V(X ) is the set defined in (7). Needless to say that
V#
XX inherits from VXX all desired properties except the

anti-extensiveness expressed by the inequality VXX(x) ≤ x,
for all x.

Also, a robust memory model VMXX is obtained by re-
placing MXX by VXX in the original technique of noise
masking proposed by Urcid et at. Precisely, the mapping
VMXX : Rn → Rn is defined by means of the equation

VMXX(x) = VXX(x ∨ xη), ∀x ∈ Rn, (35)

where η is an index that satisfies (26).

Example 8. Consider the fundamental memory set X given
by (15). Presenting the pattern x in (16) as input to V#

XX

and VMXX , we obtain as output the patterns

V#
XX(x) =


6
4
10
8
6

 and VMXX(x) =


6
1
7
8
4

 .
Note that V∗XX(x) ∨� x = 8 and V#

XX(x) = 4 + VXX(x).
Also, such as in Example 4, the index η = 3 have been used
in (35). As a consequence, the NMSE between the pattern
recalled by VMXX and x3 is less than NMSE

(
VMXX(x),x1

)
.

The NMSEs produced by V#
XX and VMXX are also shown in

Table I.

V. CONCLUDING REMARKS

In this paper, we briefly reviewed the original autoassocia-
tive morphological memories (AMMs) introduced by Ritter
and Sussner in the middle 1990s [9], [10]. In particular, we
recalled that the output of the AMM MXX corresponds to
the largest minimax combination of the fundamental memo-
ries which is less than or equal to the input (cf. Equation
14). We also reviewed some of their variations including

58



the generalized kernel method [32], the Chebyshev-best ap-
proximation AMM [17], and the noise masking technique
proposed by Urcid and Ritter [33].

Subsequently, we introduced the max-plus projection
AMM (max-plus PAMM) VXX by replacing the set of all
minimax combinations S(X ) by V(X ), the set of all max-
plus combinations of the fundamental memories (cf. Equation
27). We showed that the output of the novel memory can be
expressed as a maximum of minima in vertical translations
of the fundamental memories (cf. Equation 29). In addition,
we showed that the novel memory corresponds to a certain
generalized-kernel AMM. We also presented two variations
of the max-plus AMM: one based on the Chebyshev-best ap-
proximation and the other using the noise masking technique.

Such as the original AMM MXX , the novel memory
is idempotent and anti-extensive, i.e., VXX

(
VXX(x)

)
=

VXX(x) and VXX(x) ≤ x for all x ∈ Rn. Furthermore,
any fundamental memory is a fixed point of VXX , i.e.,
VXX(xξ) = xξ. The advantage of the max-plus PAMM
VXX is that it has less spurious memories than MXX .
Consequently, it is more robust to dilative noise than the
latter. Also, the recall phase of VXX can be optimized by
parallelizing the computation of the vector α and do not
require the storage of a synaptic weight of size n× n.

In the future, we plan to further investigate the noise
tolerance of the max-plus PAMM. In particular, we intent
to evaluate the performance of the novel memories for the
reconstruction of images corrupted by different types of
noise.

APPENDIX
PROOFS OF THEOREMS AND LEMMAS

Proof of Lemma 1: The components of the masked
pattern xξp satisfy (xξp)j = xξj for all j ∈ Jξ = {j : xξj ≥ xj}.
Similarly, we have (xξp)j = xj for j 6∈ Jξ. Therefore, the
average distance given by (25) satisfies

Dξ =
1

2‖xξp‖22

n∑
j=1

((
xξj − (xξp)j

)2
+
(
xj − (xξp)j

)2)

=
1

2‖xξp‖22

∑
j∈Jξ

((
xξj − (xξp)j

)2
+
(
xj − (xξp)j

)2)

+
∑
j 6∈Jξ

((
xξj − (xξp)j

)2
+
(
xj − (xξp)j

)2)
=

1

2‖xξp‖22

∑
j∈Jξ

(xj − xξj)
2 +

∑
j 6∈Jξ

(xξj − xj)
2


=

1

2‖xξp‖22

n∑
j=1

(xj − xξj)
2 =

1

2

‖x− xξ‖22
‖x ∨ xξ‖22

.

Since the masked input xηp is computed using an index η that
minimizes Dξ, we may discard the factor 1/2.

Proof of Theorem 1: First of all, recall that y ∈ V(X )
if and only if it satisfies (6). Furthermore, the following

equivalences hold true for y ∈ V(X ), N = {1, . . . , n}, and
K = {1, . . . , k}:

y ≤ x ⇔ yj ≤ xj ,∀j ∈ N (36)

⇔
k∨
ξ=1

(αξ + xξj) ≤ xj ,∀j ∈ N (37)

⇔ αξ + xξj ≤ xj ,∀j ∈ N ,∀ξ ∈ K (38)

⇔ αξ ≤ xj − xξj ,∀j ∈ N ,∀ξ ∈ K (39)

⇔ αξ ≤
n∧
j=1

(xj − xξj),∀ξ ∈ K. (40)

Therefore, the largest y ∈ V(X ) such that y ≤ x is given
by (6) with

αξ =
n∧
j=1

(xj − xξj), ∀ξ = 1, . . . , k. (41)

Writing α = [α1, . . . , αk]
T ∈ Rk, we obtain (28). Finally,

we derive (29) by substituting the expression for αξ given by
(41) in (6). Here, recall that the addition is monotonic and,
thus, it commutes with the minimum operation.

Proof of Theorem 2: From (28) and (5), we conclude
that

VXX(x) =
∧
{y ∈ Rn : VXX(x) ≤ y}

=
∧
{y ∈ Rn : X ∨� (X∗ ∧� x) ≤ y}

=
∧
{y ∈ Rn : X∗ ∧� x ≤ X∗ ∧� y}

=
∧
{y ∈ Rn : A(xξ,x) ≤ A(xξ,y),∀ξ ∈ K},

for any input x ∈ Rn.
Proof of Theorem 3: First of all, it is rather straightfor-

ward to show that if X ⊆ In, x ∈ In, and ω = b−a denotes
the diameter of the interval I then the inequalities

(xj − ω) ≤

 k∧
ξ=1

n∧
j=1

xξj

 ≤
 k∨
ξ=1

n∨
j=1

xξj

 ≤ (xi + w),

(42)
hold true for all j ∈ N .

Now, we only need to show that the mapping Z given by
(21) with Z = ωIk×k coincide with the max-plus PAMM
VXX . Indeed, since VXX has optimal absolute storage ca-
pacity, we conclude that

VXX(xξ) = Z(xξ) =WZX ∨� (MX
Z ∧� xξ) = xξ.

In a matrix form, we have WZX ∨� (MX
Z ∧� X) = X . Thus,

the matrix Z is a generalized kernel for X .
Let us now establish a relationship between X and the

matrices WZX and MX
Z . From (42), we conclude that the

entries of WZX = X ∧� Z∗ ∈ Rn×k satisfies the following
equalities for all i ∈ N and η ∈ K:

(WZX)iη =
k∧
ξ=1

(xξi − z
ξ
η) = (xξi −ω)∧

( ∧
ξ 6=η

xξi

)
= xξi −ω.
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In other words, we have WZX = X−ω if Z = ωIk×k. From
the dually relationship given by (4), we obtain

Z ∨� X∗ = (X ∧� Z∗)∗ = (X − ω)∗ = X∗ + ω.

Recalling that the original AMM WXX also exhibit optimal
absolute storage capacity, we conclude that the identities X =
WXX ∨� X = (X ∧� X∗) ∨� X hold true. Therefore, by (3)
and (4), we deduce the identities

MX
Z = (Z ∨� X∗) ∧� (X ∨� X∗) = (X∗ + ω) ∧� (X ∨� X∗)

= X∗ ∧� (X ∨� X∗) + ω =
(
(X ∧� X∗) ∨� X

)∗
+ ω

= X∗ + ω.

Finally, the memories Z and VXX satisfy the following
equations for all x ∈ In:

Z(x) =WZX ∨� (MX
Z ∧� x) = (X − ω) ∨�

(
(X∗ + ω) ∧� x

)
= X ∨� (X∗ ∧� x)− ω + ω = VXX(x),

Here, we used the identities in (2), (3), and (28).
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“Lattice independent component analysis for appearance-based mobile
robot localization.” Neural Computing and Applications, vol. 21, no. 5,
pp. 1031–1042, 2012.

[25] P. Sussner, E. L. Esmi, I. Villaverde, and M. Graña, “The Kosko
Subsethood Fuzzy Associative Memory (KS-FAM): Mathematical
Background and Applications in Computer Vision,” Journal of Mathe-
matical Imaging and Vision, vol. 42, no. 2–3, pp. 134–149, Feb. 2012.

[26] P. Sussner and M. E. Valle, “Recall of Patterns Using Morphological
and Certain Fuzzy Morphological Associative Memories,” in Proceed-
ings of the IEEE World Conference on Computational Intelligence
2006, Vancouver, Canada, 2006, pp. 209–216.

[27] P. Maragos, “Lattice Image Processing: A Unification of Morphologi-
cal and Fuzzy Algebraic Systems,” Journal of Mathematical Imaging
and Vision, vol. 22, no. 2-3, pp. 333–353, 2005.

[28] G. Birkhoff, Lattice Theory, 3rd ed. Providence: American Mathe-
matical Society, 1993.

[29] G. X. Ritter, J. L. D. de Leon, and P. Sussner, “Morphological
Bidirectional Associative Memories,” Neural Networks, vol. 6, no. 12,
pp. 851–867, 1999.

[30] G. X. Ritter and P. Gader, “Fixed Points of Lattice Transforms and
Lattice Associative Memories,” in Advances in Imaging and Electron
Physics, P. Hawkes, Ed. New York, NY: Academic Press, 2006, vol.
144.

[31] P. Sussner, “Observations on Morphological Associative Memories and
the Kernel Method,” Neurocomputing, vol. 31, pp. 167–183, Mar. 2000.

[32] ——, “Associative morphological memories based on variations of the
kernel and dual kernel methods,” Neural Networks, vol. 16, no. 5, pp.
625–632, Jul. 2003.

[33] G. Urcid and G. Ritter, “Noise Masking for Pattern Recall Using a
Single Lattice Matrix Auto-Associative Memory,” in Fuzzy Systems,
2006 IEEE International Conference on, 2006, pp. 187–194.

[34] G. Urcid and G. X. Ritter, “Noise Masking for Pattern Recall Using
a Single Lattice Matrix Associative Memory,” in Computational In-
telligence Based on Lattice Theory, V. Kaburlasos and G. Ritter, Eds.
Heidelberg, Germany: Springer-Verlag, 2007, ch. 5, pp. 81–100.

60




