
Fuzzy Community Detection in Social Networks
Using a Genetic Algortihm

Jianhai Su
Department of Computer Science

Michigan Technological University
Houghton, Michigan 49931
Email: jianhais@mtu.edu

Timothy C. Havens
Department of Electrical and Computer Engineering

Department of Computer Science
Michigan Technological University

Houghton, Michigan 49931
Email: thavens@mtu.edu

Abstract—Community structure in a network usually is an
indicator of some important hidden pattern, and thus can deepen
our understandings of some phenomenon and also enable useful
applications. Even though the introduction of Newman’s mod-
ularity stimulates a magnitude of modularity-based community
detection methods, only a few of them are designed for uncovering
fuzzy overlapping communities in a network, which in practice
are really common in social networks. Considering that modu-
larity maximization is NP-hard and that a genetic algorithm’s
ability to find fairly good solutions of an NP-hard problem, an
O(n2) genetic algorithm for fuzzy community detection (GAFCD)
is proposed based on the generalized modularity, a one-step
extension of Newman’s modularity. Crossover in GAFCD works
as an outer-layer search framework that statistically determines
sub search spaces with which a novel mutation operator finds
the best partition in each sub search space. We compare our
proposed GAFCD method with an existing fuzzy community
detection algorithm, MULTICUT spectral FCM (MSFCM), and
GALS, one of the most effective disjoint (or crisp) community
detection, on 10 real world data sets; it is observed that GAFCD
outperforms the other algorithms in terms of finding max-
modularity communities. Furthermore, GAFCD is able to find
both fuzzy partitions and crisp partitions while MSFCM can only
find fuzzy partitions and GALS can only find crisp partitions.
This unique feature makes GAFCD the first genetic algorithm
for finding truly fuzzy (i.e., inclusive of both fuzzy and crisp
communities) max-modularity community structure in a network.

I. INTRODUCTION

COMMUNITY Structure is an important pattern in a
social networks, which has nourished many applications,

e.g., online commodity recommendation system for online
retail companies and dedicated service configuration of mirror
servers. In the common view, community structure is groups
of vertices such that the number of edges within each group is
larger than the number of edges that connect the vertices within
the group to the rest of the network. Uncovering community
structure is called community detection. Under graph theory,
community detection in a network is the process of finding a
c×n partition U of a graph G = (V,E,W), where each entry
uki in U , k = [c], i = [n], is the membership of vertex i in
community k. Three types of partitions, possibilistic partitions,
fuzzy partitions, and crisp/hard partitions, are respectively

TABLE I. NOTATIONS AND SYMBOLS

Symbol Description
[i : n] set of integers from i to n

[n] set of integers from 1 to n
n number of nodes (vertices) in network
c number of communities
G graph G = (V,E,W)
V set of n vertices
E set of edges, eij connects vertices vi and vj

W adjacency matrix, W ∈ Rn×n, where wij is weight of edge eij
mi degree of vertex vi

m degree vector m = (m1, . . . ,mn)
T

B modularity matrix B = W −mtm/‖W‖
U partition or cover matrix, U = [uki]

c×n, uki ∈ [0, 1]
ui ith column of U
1d d-dimensional vector of all ones, (1, 1, . . . , 1)
0d d-dimensional vector of all zeros, (0, 0, . . . , 0)

defined as [1]:

Mpcn =

{
U ∈ Rc×n; 0 ≤ uki ≤ 1,∀k, i; (1a)

c∑
k=1

uki ≤ c,∀i;
n∑

i=1

uki < n,∀k

}
,

Mfcn =

{
U ∈Mpcn;

c∑
k=1

uki = 1,∀i

}
, (1b)

Mhcn = {U ∈Mfcn;uki ∈ {0, 1}} . (1c)

Note that Mhcn ⊂ Mfcn ⊂ Mpcn. Hence, possibilistic parti-
tions include fuzzy partitions, which include crisp partitions.

The validity of community detection methods is based
on the “goodness” of the found partitions, as evaluated by
some quality function. The most popular quality function
for community detection is modularity, first introduced by
Newman and Girvan [2] to evaluate crisp partitions (or disjoint
community structures) of a network. Based on Newman’s mod-
ularity, a number of methods for disjoint community detection
have sprung up, the the majority of which are categorized into
greedy methods, extremal optimization, simulated annealing,
and spectral optimization [3]. Many methods use heuristics
to find good solutions because the modularity maximization
problem is NP-complete [4].

Due to the effectiveness in approximating the solution to
NP-hard problems, genetic algorithms (GAs) have attracted
an increasing attention in community detection. In general,
these GAs are divided into two groups according to their

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 2039

chromosome representations. The first group uses a string-
of-group encoding, introduced by Tasgin and Bingol [5], to
represent a chromosome. The second is based on the locus-
based adjacency representation (LAR), which was first adopted
to a GA by Pizzuti [6], together with traditional crossover
and mutation operators. Following Pizzuti’s work, a new and
one-way like crossover operator was introduced by Shi et
al. [7], which makes their GA the first to be appropriate for
large networks. To further improve the clustering quality, Di
et al. [8] proposed a new LAR-based GA called GALS. The
main innovation of GALS is its mutation operator, which is a
local search strategy that optimally assigns a community label
for each marginal node.

All existing GAs for modularity-based community detec-
tion can only find disjoint communities in a network. But
fuzzy communities are very common in real world networks.
For example, a person can only partially dedicate herself to
all her communities, e.g. school, friends, and clubs, but not
spend equal energy in each of them. So, we are motivated to
propose a GA for fuzzy community detection that is based
on the generalized modularity (GM) [9], a soft extension of
Newman’s modularity. The rest of this paper is organized
as follows: first, the generalized modularity is introduced in
Section II; then, the design of our GA is discussed in Section
III, followed by experiments and discussion in Section IV;
lastly, Section V summarizes.

II. GENERALIZED MODULARITY

Newman’s modularity is built on the assumption that no
community structure exists in a random graph. So, for a crisp
c-partition U of a graph G = (V,E,W), the modularity is
computed by comparing the edges within communities with
such edges in a null model that is a random graph with the
same vertex degrees as that in the input network. Here, W is
a positive and symmetric edge weight matrix of G, where wij

is the weight of the edge that connects vertices vi and vj . Let
the c crisp vertex subsets be V1, ..., Vc. Then, the modularity
of partition U for network G is

Qh =

c∑
k=1

[
S(Vk, Vk)

S(V, V)
−
(
S(Vk, V)

S(V, V)

)2
]
, (2)

where S(Va, Vb) =
∑

i∈Va,j∈vb wij . By letting mi =
S(i, V) =

∑n
j=1 wij and ‖W‖ =

∑n
i,j=1 wij , an equivalent

equation of (2) is given in [3]:

Qh =
1

‖W‖

c∑
k=1

∑
i,j∈vk

(
wij −

mimj

‖W‖

)
. (3)

Adding a selection variable ukiukj to Newman’s modularity,
(3) is extended into the generalized modularity, shown at (4).

Qg =
1

‖W‖

c∑
k=1

∑
i,j∈Vk

(
wij −

mimj

‖W‖

)
ukiukj , (4a)

=
1

‖W‖

c∑
k=1

UkBU
T
k , (4b)

= tr
(
UBUT

)
/‖W‖. (4c)

where B = [W − (mTm/‖W‖)] and m = (m1, ..., nn)T . As
we can see, the selection variable ukiukj tells the degree of

Initialization

Stop?

Selection

Crossover, pc

Mutation, pm

population

No

Return the best
chromosome

Yes

Genetic
Algorithm

Starts

Genetic
Algorithm

Ends

Fitness Evaluation

Fig. 1. The diagram of Standard Genetic Algorithm

truth to which both vi and vj belong to community k. Qg is
a truly soft modularity such that it can be used to evaluate
all three types of partitions. Furthermore, Qg reduces to Qh

for crisp partitions. It also explicitly shows how a partition is
involved in the computation of modularity.

Although Zhang et al. [10] and Liu [11] proposed other
modified modularities for fuzzy community detection, their
fuzzy modularities are not truly soft because both modularities
require an input fuzzy partition to be first hardened. Their
rules for hardening a fuzzy partition are different, but the
resulting modularities are the same, which is proven in [9].
GM, together with a modified MULTICUT spectral fuzzy c-
means method (MSFCM) [12], shows a better performance in
finding community structure than each of the two modularities
proposed by Zhang and Liu (with their corresponding commu-
nity detection methods). MSFCM applies FCM to the resulting
spectral features extracted from the graph G.

III. GENETIC ALGORITHM FOR FUZZY COMMUNITY
DETECTION

The standard genetic algorithm (SGA) proposed in [13]
aims to solve optimization problems by mimicking natural
selection, where competitive individuals have a higher chance
to survive and reproduce. In SGAs, an individual (also named
chromosome), as represented by a binary bit string, is a
candidate solution of the targeted problem. Before evolution,
a population of individuals are randomly initialized. At each
iteration, the competitiveness of individuals are first evaluated
based on some quality function that assigns a fitness score to
each individual. Then, individuals are selected for crossover
and mutation with predefined probabilities pc and pm respec-
tively. The selection process guarantees that an individual with
a higher fitness score will be chosen with a higher probability.
After a new generation is produced, SGA terminates and
returns the best individual of the current generation if some
stopping conditions are satisfied. Otherwise, another iteration
begins. The diagram of an SGA is illustrated in Fig. 1.

Existing GAs still adopt the population-based framework
of SGA, but use an appropriate representation for a given
problem solution and modify each operation accordingly.

2040

Inspired by the idea of GALS, one of the most effective
disjoint community detection methods, we design a genetic
algorithm for fuzzy community detection called GAFCD. In
GAFCD, a chromosome is represented by a fuzzy partition,
while the fitness score of the individual is its GM. Two
stopping conditions are applied in GAFCD: 1) a maximum
number of generations gmax have been computed; and 2) the
highest-ranking solution’s fitness score has reached a plateau
such that no more than εQ improvement is observed between
two successive generations for a given number of iterations,
occmax. For population initialization, a given number, npc,
of fuzzy partitions with the same community number c,
cmin ≤ c ≤ cmax are initialized by the one-step FCM ini-
tialization in Alg. 1. Thus, the total population size, popSize,
is npc× (cmax − cmin + 1).

Algorithm 1: One-Step FCM for Random Cover Initial-
ization

Input: Adjacency matrix W ; number of communities c
Output: Initialized partition U
m = 1.7

1 I is a random permutation of [n]
2 V = (v1, . . . ,vc) = (0n, . . . ,0n)
3 for k = [c] do
4 vk,I(k) = 1
5 dki = ‖wi − vk‖2/(m−1), i = [n]

6 uki =

(∑c
j=1

dki
dji

)−1
, i = [n]

In each iteration, the current population is first sorted in
descending order according to their fitness scores, then the
top cp percent of the current population are directly selected
as potential chromosomes in the next generation. This is
called elitism. Next, all chromosomes are randomly paired
for crossover and mutation with probabilities pc and pm,
respectively. For each parent pair, two children are produced
independently via crossover and mutation. Here, crossover acts
like a guide that leads GAFCD to swiftly converge to an
optimal (or good enough) solution; while mutation aims to find
the best fuzzy partition in a search subspace. This subspace is
all fuzzy partitions that have the same number of communities
c as the mutated partition. Finally, all new children are grouped
together with the kept elite chromosomes and are sorted in
descending GM order; the top popSize individuals are picked
to be the new population. GAFCD iterates until either of the
two stopping conditions is met and returns the best individuals
in that generation. The diagram of GAFCD is shown in Fig. 2,
while the algorithm is defined in Alg. 2. To our knowledge,
GAFCD is the first GA that can uncover max-modularity fuzzy
community structure of a network.

A. Crossover

The GAFCD crossover operator is composed of two steps:
community number determination and fuzzy partition forma-
tion. The work flow of crossover is shown in Fig. 3. First, the
community number, c, of a child is chosen from the interval
2 to the sum of its parents’ community numbers, which we
call the legitimate range, and is decided by roulette wheel
selection (RWS) such that the probability of choosing c is

Algorithm 2: Genetic Algorithm For Fuzzy Community
Detection (GAFCD)

Input: adjacency matrix, W ; crossover probability, pc;
mutation probability, pm; range of community
numbers, [cmin, cmax]; number of initialized
partitions with the same community number,
npc; copy percentage in elitism strategy, cp;
stopping criteria, (εQ, gmax, occmax, tmax).

Output: partition, U
1 n← the number of rows in W
2 B = W −mTm/‖W‖
3 popSize = npc× (cmax − cmin + 1)
4 Initialize each population chromosome by Alg. 1 for
c ∈ [cmin, cmax]

5 Compute initial best modularity prebestQ of population
6 g = 1, numOcc = 0, tempPop← ∅,
eliteSize = ceil(popSize ∗ cp)

7 while g ≤ gmax do
8 ecnss = average GM of population
9 R = random permutation of integers [popSize]

10 for curpopsize = 0 : 2 : popSize do
Selection:

11 ch1 = population(R(curpopSize+ 1))
12 ch2 = population(R(curpopSize+ 2))

Crossover:
13 if unifrnd(0, 1) <= pc then
14 [ch1, ch2] = crossover(n, ecnss, ch1, ch2)

Mutation:
15 if unifrnd(0, 1) <= pm then
16 ch1 = mutation(W, ch1, B, ‖W‖, tmax, εQ)

17 if unifrnd(0, 1) <= pm then
18 ch2 = mutation(W, ch2, B, ‖W‖, tmax, εQ)

19 add ch1 and ch2 to tempPop
20 curPop← {top eliteSize chromosomes of

population} ∪ tempPop
21 population← top popSize chromosomes of

curPop
22 g = g + 1, bestQ← max{Qg(population)},

tempPop← ∅
23 if bestQ− prebestQ < εQ then
24 numOcc = numOcc+ 1
25 if numOcc > occmax then
26 return U ← best partition of population

27 else
numOcc = 0

28 return U ← best partition of population

2041

Initialization

curInd<
popSize?

Fitness Evaluation
& Random Match

Crossover, pc

Mutation, pm

population

Yes

Return the best individual

curInd = curInd + 2

pop

curInd = 0
choose parents:

p1 = pop(curInd+1)
p2 = pop(curInd+2)

Elitism Selection, cp

top cp percent of
population, pop_cp

pop_cp +
current population

top popSize
individuals

Stop GA?

No

No

GAFCD
starts

GAFCD
ends

GAFCD

Each
Iteration

Yes

Fig. 2. GAFCD diagram

proportional to the average fitness score of chromosomes in
the current generation, each of which has c communities in
its representative partition. For example, if one parent has 3
communities and the other parent has 4 communities, then the
number of communities of the child would be selected from the
interval [2 : 7], where each c in this interval has a probability of
being chosen proportional to the fitness of current population
members with each of those community numbers. This ensures
that strong community structures are selected more often than
weak ones. The averaged fitness score for a community number
is denoted community number score (CNS). If a community
number is in the legitimate range, then its corresponding CNS
is denoted legitimate community number score (LCNS). All
LCNSs are first scaled such that no negative LCNS exists
(because modularity can be negative for very poor community
structure), then normalized and fed into the RWS probability
calculation. However, for some community numbers in the
legitimate range, there might not exist corresponding partitions
in the current population. The scores for these community
numbers are denoted non-existing legitimate community num-
ber scores (NLCNSs). Then, for the supplementary set of these
community numbers, their scores are named existing legitimate
community number scores (ELCNSs). Because of the mech-
anism of RWS, non-existing legitimate community numbers
would never be chosen and thus corresponding solution spaces
would not be explored. That is, these solutions spaces are
dead. To enable our crossover operator to explore the dead
solution spaces, scores of all these legitimate but (currently)
non-existing community numbers are set to be equal to the
minimum ELCNSs divided by the total number of NLCNSs.
After the community number c of a child is selected, a child is
born by randomly selecting c communities (rows of U) from
the parents and then normalizing each column of the child’s
partition so that the child represents a fuzzy partition. The
whole crossover algorithm is described in Alg. 3.

B. Mutation

GAFCD muttation aims to find an optimal partition whose
community number is the same as that of its input partition.
This optimization problem is solved by iteratively calling a

p1:
c1 X n

p2:
c2 X n

Temp:
(c1+c2)

X
n

RWS(community number score[2:(c1+c2)])

Averaged Fitness Of Individuals With
The Same Community Number

c X n
Random

Child:
c X n

Normalization
Along Column

c1
c2

c

Fig. 3. GAFCD Crossover diagram

Algorithm 3: Crossover
Input: number of nodes in network, n; existing

community number scores, ecnss; two parents,
p1 and p2

Output: two children, child1 and child2
1 cp1, cp2← community numbers of p1, p2 respectively
2 if (cp1 + cp2) < n then
3 maxC = cp1 + cp2
4 else
5 maxC = n− 1

legitimate community scores:
6 elcnss← legitimate scores in ecnss
7 numnlcn ← the total number of non-existing but

legitimate community numbers
8 each entry of nlcnss ← min elcnss

numnlcn

9 legitimate community number scores
lcnss← (elcnss, nlcnss)

10 selectionProbs← scale and normalize lcnss
Child 1:

11 c1← RWS(selectionProbs)
12 ch1← randomly pick c1 communities from {p1 ∪ p2}
13 normalize U of ch1 along its columns

Child 2:
14 c2← RWS(selectionProbs)
15 ch2← randomly pick c2 communities from {p1 ∪ p2}
16 normalize U of ch2 along its columns

local search strategy called One-Step Modularity Maximization
(OSMM) [14]. OSMM determines the community member-
ships of a given node (i.e., the corresponding column of a
partition U) without altering the memberships of all other
nodes such that the modularity of U is maximized. For a
detailed derivation of the OSMM process, please refer to [14];
we now give a brief introduction to OSMM, outlined in Alg. 4,
and present the OSMM mutation operator, outlined in Alg. 5.

The OSMM process directly maximizes GM by operating
upon the membership values of one node at a time, i.e., one
column of U at a time. Based on the GM at (4), we can define
the contribution of node i—that is, the partition elements ui =

2042

Algorithm 4: One-Step Modularity Maximization
(OSMM)

Input: partition matrix U ∈ [0, 1]c×n; the number of
communities, c; the index of the chosen node, i;
the modularity matrix B; the degree of the
adjacency matrix, ‖W‖

Output: updated partition matrix, U ′; improvement of
modularity, ∆Qi

Relaxed OSMM:
1 for k = [c] do
2 uoki = 1

−Bii

∑n
j=1,j 6=i(Bijukj)

Simple Quadratic Knapsack Problem:
3 H ← a c× c identity matrix, f = −uTi
4 Aeq = 11×c, beq = 1
5 u∗i ← apply SQKP on the problem (H, f,Aeq, beq)
6 U ′ ← replace the ith column of U with u∗i

CIM:
7 ∆Qi = Bii

‖W‖
∑c

k=1(u∗ki − uki)(u∗ki + uki − 2uoki)

Algorithm 5: Mutation
Input: partition, U ; adjacency matrix, W ; modularity

matrix, B; community number, c; stopping
criteria, (εQ, tmax).

Output: partition, U
1 n← number of rows in W ;
2 t← 0; ε = Q, modularity of U ; occ = 0
3 while t < tmax and ε < εQ do
4 ε = 0; I = random permutation of [n]
5 for i = 1 : n do
6 [U,∆Qi] = OSMM(U, c, Ii, B, ‖W‖)
7 ε = ε+ ∆Qi

8 Remove zero-rows in U and Return U

(u1i, . . . , uki)—to Qg as

Qi =
1

‖W‖

c∑
k=1

2uki

n∑
j=1,j 6=i

(Bijukj) +Biiu
2
ki

 . (5)

It can be shown that instituting an improvement in Qi by
some amount improves the overall GM Qg by the same
amount. Hence, if we can maximize Qi, then we can iteratively
maximize Q by applying the process on each i ∈ [1 : n]. This
is proven in [14].

The OSMM problem is thus formulated as iterated updates
of

u∗i = arg max
ui

Qi,
c∑

k=1

uki = 1, 0 ≤ uki ≤ 1, ∀i, k. (6)

The solution of (6) turns out to be a two-step process. The
first step is called Relaxed OSMM (ROSMM), which is
accomplished by a closed-form solution of (6) ignoring the
constraints 0 ≤ uki ≤ 1. The solution of ROSMM is

uoki =
1

−Bii

n∑
j=1,j 6=i

(Bijukj). (7)

The second step of OSMM is a projection of each uo
i (i.e.,

the ith column of Uo) into the unit hypercube defined by the
inequality constraint 0 ≤ uoki ≤ 1. It is shown in [14] that this
second step is equivalent to solving the simplified quadratic
knapsack program (SQKP), given by

u∗i = arg min
u

{
uTu

2
− (uo

i)Tu

}
, 1Tu = 1, 0c ≤ u ≤ 1c,

(8)

which is essentially a search for the nearest vector to uo
i that

lies in the unit hypercube 0c ≤ u ≤ 1c. The significant
finding in [14] is that the application of ROSMM at (7)
and then SQKP at (8) is a equivalent to finding the global
optimum u∗i at (6). Hence, OSMM essentially does a local
search for the maximum modularity partition by constraining
the optimization to the c variables that are the ith column of
U .

The objective function of the SQKP at (8) is convex and
can be solved in polynomial time by the ellipsoid method [15]
and several kinds of interior point methods [16]–[19]. More
importantly, the SQKP can be solved in a linear time with
either a binary search method [20] or randomized algorithm
[21]. In our problem, the number of variables in SQKP is c,
the number of communities. Then whole algorithm for OSMM
is given in Alg. 4.

By applying OSMM on a given column of U , we transform
a given cover U to a new cover U ′ that is proven in [14] to
be at least as good as, if not better than, the original in terms
of modularity. So, we propose the mutation operator at Alg. 5
that iteratively applies OSMM on the input partition U until
it is observes tmax iterations or no more than ε improvement
in GM.

C. Time Complexity

The most time consuming part of GAFCD is the mutation
algorithm, which is called at most popSize times in each
iteration. In mutation, OSMM is called at most tmax×n times.
OSMM is solved by applying ROSMM to find the point uo

i and
then SQKP to find the optimal partition column u∗i . The time
complexity of ROSMM is O(cn), while the time complexity of
SQPK is O(c). Then, the improved modularity is calculated in
a cost of c multiplications, which is denoted as CIM in Alg. 4.
So, the time complexity of OSMM is deduced as

T (OSMM) = T (ROSMM) + T (SQKP) + T (CIM),

= O(cn) +O(c) +O(c),

= O(cn).

In real world networks, the number of communities c is much
smaller than the number of nodes n, so c can be treated as a
constant here. That is, the complexity of OSMM is O(n). Thus,
mutation and GAFCD run in O(tmax × n2) and O(gmax ×
popSize × tmax × n2). For significantly large n, all gmax,
popSize and tmax can be considered as constant. Thus, the
time complexity of GAFCD becomes O(n2).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We compare GAFCD with MSFCM and GALS on 10
real-world data sets that are described in Table II. Metabolic

2043

TABLE II. REAL-WORLD NETWORKS USED IN THE EXPERIMENTS

Abbr. Name |V | |E| Network Description
K Karate 34 78 Zachary’s karate club [23]
D Dolphin 62 159 Dolphin social network [24]
P PolBooks 105 441 Books on US politics [25]
F Football 115 613 American college football [2]
J Jazz 198 2742 Jazz musicians network [26]
S Sawmill 36 62 Sawmill communication network [27]
L LesMis 77 254 Coappearances of characters in the mu-

sical Les Miserables [28]
W Words 112 425 Adjacencies of adjectives and nouns [29]
M Metabolic 453 2025 Metabolic Network of C.elegans [30]
E Email 1133 5451 Network of e-mail interchanges [31]

TABLE III. RANGE OF COMMUNITY NUMBER FOR MSFCM AND
GAFCD ON EACH DATA SET

Data set K D P F J
Range of c [2,10] [2,10] [2,10] [5,15] [2,10]

Data set S L W M E
Range of c [2,10] [2,10] [2,10] [2,20] [2,30]

Network is an undirected, weighted graph, but it has 15 loops
or self-connections (none of the algorithms here can handle
these loops). Here, we simply remove these loops to make
Metabolic Network a simple graph. Karate and LesMis datasets
are weighted and undirected, while all the other data sets are
undirected and unweighted. For both GAFCD and MSFCM,
a range of community numbers should be guessed beforehand
for each data set, which is shown in Table III. For MSFCM, the
community number is limited in this interval. But this is not
the case for GAFCD, which can return community numbers in
the interval [2 : n]. The parameters of MSFCM are: m = 1.7,
termination criterion ε = 10−5, and maximum number of
iterations tmax = 500. While the parameters of GAFCD are:
gmax = 200, pc = 0.9, pm = 1.0, npc = 10, cp = 0.1,
εQ = 1e − 5, occmax = 10 and tmax = 100. Due to the lack
of available implementation of the linear SQKP algorithms
[20], [21], we use the qpip solver [22], which is based on a
primal-dual predictor-corrector algorithm.1 For GALS, we run
the code of Ding et al. [8] with their parameter settings except
that the number of runs is changed from 50 to 100. Since
GALS only works with unweighted graphs, we simply set the
edge weights of a weighted network to 1 when the weight is
> 0 and 0 else (this is only for the computation of the GALS
partition; the weighted graph is used for the calculation of the
final modularity value).

For each data set, each of the three methods is tested
for 100 independent runs that are accomplished in a single
dedicated core of the Superior Computing Cluster [32]. Ex-
perimental results are reported from three perspectives, shown
in Table IV: 1) averaged modularity and standard deviation,
where bold indicates statistically superior results under the 2-
sample t-test; 2) the best modularity and the corresponding
community number, where bold indicates the highest modu-
larity; 3) running times in seconds, where bold indicates the
fastest running time. As seen in these three tables, GAFCD is
far superior to MSFCM and beats GALS in most tests in terms
of modularity. Even though GALS is an O(n) method—if the

1Note that the qpip solver is a generalized QP solver that is not specifically
built for SQKP problems; hence, we believe that a dedicated SQKP solver
could be used to further improve on the run-time results of GAFCD.

Fig. 4. LesMis, Q = 0.5667, c = 6, best partition found is crisp

TABLE V. METABOLIC: COMMUNITIES TO WHICH EACH FUZZY
NODE BELONGS (SEE FIG. 7)

FN1 FN2 FN3 FN4 FN5 FN6

Communities 2 , 3 3 , 4 , 5 2 , 5 3 , 6 4 , 6 4 , 6

input graph is sparse—GALS runs slower than GAFCD on
the 8 relatively small data sets. Possibly, some parameters in
GALS, like population size and maximum generations, impair
its efficiency.

To demonstrate that GAFCD is a truly fuzzy community
detection method, we applied Visual Assessment of Tendency
(VAT) [33] to visualize the best partition found by GAFCD
on each of the 10 data sets. First, a dissimilarity matrix
R = 1 − UTU is computed based the best partition U ; then
R is reordered into RV by VAT; the image of RV is our
visualization. Using the visualization result, we observed that
GAFCD uncovers fuzzy but not crisp community structures
in the Jazz, Word, and Metabolic data sets, and finds crisp
community structures in the remaining networks. Neither MS-
FCM nor GALS is able to do this; MSFCM always finds
fuzzy communities and GALS always finds crisp communities.
For brevity, we show only visualization results of Jazz, Les
Miserables, Words, Metabolic, and Email in Figs. 4–8, the
data sets for which GAFCD outperforms GALS (and MSFCM
for that matter). The best partitions found by GAFCD of Les
Miserables and Email are crisp, while the best partitions found
of Jazz, Words and Metabolic are fuzzy.

To simplify our description, we use FNi to represent the ith
fuzzy node in a fuzzy partition. For each of Jazz and Words,
seen in Figs. 6 and 8, only one fuzzy node is found, which
has membership in both community 1 and community 2 in the
corresponding fuzzy partition. For Metabolic, shown in Fig. 7,
6 fuzzy nodes are found. The detail of belongingness of these
nodes in the 9 communities is given in TableV.

V. CONCLUSIONS

In this paper, we propose an O(n2) genetic algorithm
that detects fuzzy communities in network data by directly
maximizing generalized modularity. The main operators of
GAFCD, i.e., crossover and mutation, are designed as follows:

2044

TABLE IV. COMPARED PERFORMANCE OF COMMUNITY DETECTION ALGORITHMS

Algo. K D P F J S L W M E

mean Q

std Q

MSFCM
0.4129 0.3963 0.4596 0.5266 0.3980 0.3279 0.4897 0.0052 0.2588 0.3452
0.0001 0.0043 0.0009 0.0008 0.0200 0.0001 0.0108 0.0013 0.0118 0.0241

GAFCD
0.4449 0.5285 0.5272 0.6046 0.4452 0.5501 0.5667 0.3107 0.4261 0.5741
0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009 0.0014 0.0015

GALS
0.4449 0.5282 0.5272 0.6045 0.4448 0.5501 0.5313 0.3094 0.4153 0.5441
0.0000 0.0004 0.0000 0.0003 0.0001 0.0000 0.0013 0.0020 0.0068 0.0091

Qbest

c

MSFCM
0.4132 0.3991 0.4601 0.5268 0.4078 0.3280 0.4971 0.0083 0.2876 0.3804

3 4 3 10 4 5 5 9 7 4

GAFCD
0.4449 0.5285 0.5272 0.6046 0.4452 0.5501 0.5667 0.3126 0.4287 0.5782

4 5 5 10 4 4 6 7 9 12

GALS
0.4449 0.5285 0.5272 0.6046 0.4449 0.5501 0.5439 0.3121 0.4280 0.5575

4 5 5 10 4 4 6 7 18 38
Time
(secs)

GAFCD 1295 3783 5505 7193 10061 1488 3593 19744 180024 682141
GALS 5853 9634 15555 18085 32295 4933 11990 19991 78062 192533

Fig. 5. Email, Q = 0.5782, c = 12, best partition found is crisp

1

2

3

4

FN1

Fig. 6. Jazz, Q = 0.4452, c = 4

1

2

3

4

5

6

7

FN1

FN2

FN3

FN4

FN5
FN6

8Community 9

Fig. 7. Metabolic, Q = 0.4287, c = 9

1
2

3

4

6

7

FN1

Fig. 8. Words, Q = 0.3126, c = 7

2045

1) crossover is designed to make GAFCD converge quickly to
a best (or fairly good) solution while effectively exploring the
search space over all possible community numbers. This is ac-
complished by statistically determining the optimal community
number for a child based on the available scores of different
community numbers and community numbers of the two se-
lected parents; 2) mutation aims to find the best partition whose
community number is the same as that of the input partition.
This is realized by iteratively calling the OSMM algorithm [14]
on columns of the input partition. In other words, crossover
behaves as a guide to lead mutation to optimally search the
best solution in many search subspaces, where each subspace
represents the partitions of a single community number. We
compared the GAFCD algorithm with the MSFCM and GALS
methods; GAFCD shows a better performance in finding the
best partition of a network in terms of modularity in all tests.
Also, GAFCD can reveal a fuzzy partition of a network when
it is appropriate and find a crisp partition of a network when
appropriate. But MSFCM or GALS can only uncover one of
the two types of partitions—MSFCM finds fuzzy partitions
and GALS finds crisp partitions. To our knowledge, GAFCD is
the only modularity-based community detection algorithm that
can return a community in the crisp sub-set of fuzzy partitions
when a crisp partition is appropriate. In the future, we will put
our efforts to enable our GAFCD workable for large social
networks. With the assumption that large social networks are
usually sparse graphs, we will attempt to reduce the time cost
for computing Qg for a fuzzy partition. Meanwhile, we will
work towards a new effective and but more efficient algorithm
to replace the current mutation operator.

REFERENCES

[1] J. C. Bezdek, J. Keller, R. Krisnapuram, and N. Pal, Fuzzy Models and
Algorithms for Pattern Recognition and Image Processing. Norwell,
MA, USA: Kluwer Academic Publishers, 1999.

[2] M. Girvan and M. E. J. Newman, “Community structure in social and
biological networks,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 99, pp. 7821–7826, June 2002.

[3] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, pp. 75–174, 2010.

[4] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski,
and D. Wagner, “Maximizing modularity is hard,” arXiv preprint
physics/0608255, 2006.

[5] M. Tasgin and A. Bingol, “Communities detection in complex networks
using genetic algorithms,” in Proc. of the European Conference on
Complex Systems (ECSS06), 2006.

[6] C. Pizzuti, “Community detection in social networks with genetic
algorithms,” in Proceedings of the 10th annual conference on Genetic
and evolutionary computation. ACM, 2008, pp. 1137–1138.

[7] C. Shi, Y. Wang, B. Wu, and C. Zhong, “A new genetic algorithm
for community detection,” in Complex Sciences. Springer, 2009, pp.
1298–1309.

[8] D. Jin, D. He, D. Liu, and C. Baquero, “Genetic algorithm with
local search for community mining in complex networks,” in Tools
with Artificial Intelligence (ICTAI), 2010 22nd IEEE International
Conference on, vol. 1. IEEE, 2010, pp. 105–112.

[9] T. Havens, J. Bezdek, C. Leckie, K. Ramamohanarao, and
M. Palaniswami, “A soft modularity function for detecting fuzzy
communities in social networks,” Fuzzy Systems, IEEE Transactions
on, vol. PP, no. 99, pp. 1–1, 2013.

[10] S. Zhang, R. Wang, and X. Zhang, “Identification of overlapping com-
munity structure in complex networks using fuzzy c-means clustering,”
Physica A: Statistical Mechanics and its Applications, vol. 374, pp.
483–490, 2007.

[11] J. Liu, “Fuzzy modularity and fuzzy community structure in networks,”
The European Physical Journal B, vol. 77, no. 4, pp. 547–557, October
2010.

[12] D. Verma and M. Meila, “A comparison of spectral clustering algo-
rithms,” 2003.

[13] J. H. Holland, Adaptation in natural and artificial systems: An intro-
ductory analysis with applications to biology, control, and artificial
intelligence. U Michigan Press, 1975.

[14] J. Su and T. C. Havens, “Quadratic program-based modularity maxi-
mization for fuzzy community detection in social networks,” in review,
IEEE Trans. Fuzzy Systems, 2013.

[15] M. K. Kozlov, S. P. Tarasov, and L. G. Khachiyan, “The polynomial
solvability of convex quadratic programming,” USSR Computational
Mathematics and Mathematical Physics, vol. 20, no. 5, pp. 223–228,
1980.

[16] D. Goldfarb and S. Liu, “An O(n3L) primal interior point algorithm for
convex quadratic programming,” Mathematical Programming, vol. 49,
no. 1-3, pp. 325–340, 1990.

[17] R. D. Monteiro, I. Adler, and M. G. Resende, “A polynomial-time
primal-dual affine scaling algorithm for linear and convex quadratic
programming and its power series extension,” Mathematics of Opera-
tions Research, vol. 15, no. 2, pp. 191–214, 1990.

[18] M. Kojima, S. Mizuno, and A. Yoshise, “An O(
√
nL) iteration potential

reduction algorithm for linear complementarity problems,” Mathemati-
cal Programming, vol. 50, no. 1-3, pp. 331–342, 1991.

[19] P. M. Pardalos, Y. Ye, and C.-G. Han, “Algorithms for the
solution of quadratic knapsack problems,” Linear Algebra and its
Applications, vol. 152, no. 0, pp. 69 – 91, 1991. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/002437959190267Z

[20] P. Brucker, “An O(n) algorithm for quadratic knapsack problems,”
Operations Research Letters, vol. 3, no. 3, pp. 163–166, 1984.

[21] P. M. Pardalos and N. Kovoor, “An algorithm for a singly constrained
class of quadratic programs subject to upper and lower bounds,”
Mathematical Programming, vol. 46, no. 1-3, pp. 321–328, 1990.

[22] A. Wills, “A primal-dual predictor-corrector algorithm based solvoer
for general strictly convex quadratic programming problems,” May
2007. [Online]. Available: http://sigpromu.org/quadprog/index.html

[23] W. W. Zachary, “An information flow model for conflict and fission in
small groups,” Journal of Anthropological Research, vol. 33, pp. 452–
473, 1977.

[24] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and
S. M. Dawson, “The bottlenose dolphin community of doubtful sound
features a large proportion of long-lasting associations,” Behavioral
Ecology and Sociobiology, vol. 54, pp. 396–405, 2003.

[25] V. Krebs, “Books about U.S.A. politics.” [Online]. Available:
http://www.orgnet.com/

[26] P. M. Gleiser and L. Danon, “Community structure in jazz,” Adv.
Comlex System, pp. 656–573, July 2003.

[27] J. H. Michael and J. G. Massey, “Modeling the communication network
in a sawmill,” Forest Products, vol. 47, pp. 25–30, 1997.

[28] D. E. Knuth, The Stanford GraphBase: a platform for combinatorial
computing. Addison-Wesley Reading, 1993, vol. 4.

[29] M. E. J. Newman, “Finding community structure in networks using
the eigenvectors of matrices,” Phys. Rev. E, vol. 74, p. 036104, Sep
2006. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevE.74.
036104

[30] J. Duch and A. Arenas, “Community detection in complex networks
using extremal optimization,” Phys. Rev. E, vol. 72, p. 027104, Aug
2005. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevE.72.
027104

[31] R. Guimerà, L. Danon, A. Dı́az-Guilera, F. Giralt, and A. Arenas,
“Self-similar community structure in a network of human interactions,”
Phys. Rev. E, vol. 68, p. 065103, Dec 2003. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.68.065103

[32] “Superior: A high performence computing cluster.” [Online]. Available:
http://superior.research.mtu.edu/

[33] J. Bezdek and R. Hathaway, “VAT: a tool for visual assessment of
(cluster) tendency,” in Neural Networks, 2002. IJCNN ’02. Proceedings
of the 2002 International Joint Conference on, vol. 3, 2002.

2046

