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Abstract—The principle of ratios has been applied to many 
real world problems, e.g. the part-to-part and part-to-whole 
ratio formulations.  As it is difficult for humans to provide an 
exact ratio in many real situations, we introduce a fuzzy ratio 
in this paper.  We use some notions from fuzzy arithmetic to 
analyze fuzzy ratios captured from humans.  An application of 
the formulated fuzzy ratio to a Single Input Rule Modules 
connected Fuzzy Inference System (SIRMs-FIS) is 
demonstrated.  Instead of using a precise weight, fuzzy sets are 
employed to represent the relative importance of each rule 
module.  The resulting fuzzy weights are explained as a fuzzy 
ratio on a weight domain.  In addition, a new SIRMs-FIS 
model with fuzzy weights and part-to-whole fuzzy ratio is 
devised.  A simulated example is presented to clarify the 
proposed SIRM-FIS model. 
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I. INTRODUCTION 
In general, a ratio is concerned with the relationship of 

two magnitudes of the same kind, e.g., the size of two 
objects, or the height of two persons [1].  Two types of 
ratios are available, i.e., part-to-part and part-to-whole 
ratios.  As an example, there are five students in a class, 
with two boys and three girls.  Based on the principle of the 
part-to-part ratio, the ratio of boys to girls is 2:3.  On the 
other hand, based on the principle of the part-to-whole ratio, 
the ratio of boys to all students is 2:5 and.  Similarly, the 
ratio of girls to all students is 3:5. 

In this paper, we argue that it sometimes is difficult (if 
not impossible) for humans to provide an exact ratio based 
on their experience, in some real-world scenarios.  A ratio 
can be imprecise in nature too.  As an example, one may 
suggest that a good micro-nutrient ratio to burn body fat is 
30% protein, 15-20% fat, 50-55% carbohydrates [2].  
Another example in civil engineering is that to produce an 
approximately 3000 psi cubic yard of concrete (27 cubic 
feet), a workable concrete mixture ratio is suggested to be 
517 pounds of cement, 1560 pounds of sand, 1600 pounds 
of stone, and 32-34 gallons of water (or approximately 
267.2-283.9 pounds) [3].  In the financial world, an 
experienced financial advisor would suggest a good debt to 
income ratio for an individual is near or below 30% [4]. 

In this paper, the idea of a fuzzy ratio is introduced.  It is 
argued that one out of two (or both) magnitudes of the same 
type are known imprecisely, instead of precisely.  As such, a 
fuzzy set is used to represent the magnitude of the same 
type.  Here, the trapezoidal fuzzy set, which is a 
generalization of the triangular fuzzy set and interval set [5], 
is used.  Some notions from fuzzy arithmetic [5-6]  are 
employed to analyze fuzzy ratios.  The validity of the 
proposed approach is further analyzed mathematically. 

A Single Input Rule Modules connected Fuzzy Inference 
System (here after denoted as SIRMs-FIS) [7-8] is used to 
demonstrate the applicability of the proposed fuzzy ratio.  
SIRMs-FIS is a relatively new fuzzy reasoning model in 
which its final output is obtained by summarizing the 
product of the importance degree and inference result from 
single input fuzzy rule modules [7].  In our previous 
investigations, a new fuzzy failure mode and effect analysis 
(FMEA) methodology with SIRMs-FIS was proposed [9], 
and the use of harmony search to optimize an SIRMs-FIS 
model was demonstrated [10]. 

One of the issues of SIRMs-FIS is the difficulty to 
determine the exact (precise) weight for each rule module.  
The weight can be imprecise in some real-world 
applications.  Therefore, an imprecise weight (i.e., a 
trapezoidal fuzzy set) is employed to represent the relative 
importance of each rule module, instead of a precise weight, 
is suggested.  This allows uncertainty of the weights to be 
included.  The weight domain needs to be formally defined.  
In this paper, these fuzzy weights are explained as a fuzzy 
ratio pertaining to the weight domain, which can be 
normalized.  A simulated example is presented to clarify the 
proposed approach.  The resulting approach is useful for 
tackling decision making and assessment problems, e.g., 
FMEA [9]. 

This paper is organized as follows.  In Section II, 
trapezoidal fuzzy sets and fuzzy arithmetic are reviewed.  In 
Section III, the idea of fuzzy ratios is introduced, with an 
example included.  In Section IV, the new SIRMs-FIS 
model with fuzzy weights is explained.  Finally, concluding 
remarks and suggestions for further work are provided in 
Section V. 
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II. PRELIMINARIES 

A. Trapezoidal fuzzy set and its variants 
A trapezoidal fuzzy set is a generalization of the triangle 

fuzzy set and interval set.  A normal trapezoidal fuzzy set,  ܣ ෩ , in the space of ܺ is shown in Fig. 1.  It is defined as 
follows. 

 
Fig. 1. A trapezoidal fuzzy set 

 

Definition 1:  The trapezoidal fuzzy set,  ܣ ෩ , in the space 
of ܺ is parameterized as ܣ ෩ ൌ (ܽ, ܾ, ܿ,  ҧ is the centroidܣ  .(݀
of fuzzy set ܣ ෩ , which can be obtained using Eq. (1) [11]. 

ҧܣ  ൌ 13 ܽ  ܾ  ܿ  ݀ െ ݀ܿ െ ܾܽ(݀  ܿ) െ (ܽ  ܾ)൨ 
(1) 

The trapezoidal fuzzy set is a triangular fuzzy set when ܾ ൌ ܿ . Then, the triangular fuzzy set is parameterized 
as   ܣ ෩ ൌ (ܽ, ܾ, ݀).  The centroid of the triangular fuzzy set 
(i.e., ܣҧ ) is obtained using Eq. (2) [11].  

ҧܣ ൌ 13 ሾܽ  ܾ  ݀ሿ 
(2) 

If ܽ ൌ ܾ  and ܿ ൌ ݀ , the trapezoidal fuzzy set is a 
rectangular fuzzy set. A rectangular fuzzy set can be 
interpreted as an interval set.  An interval set is 
parameterized as ܣ ෩ ൌ (ܽ, ݀).  The centroid of the fuzzy set 
(i.e., ܣҧ ) is obtained using Eq. (3). ܣҧ ൌ 12 ሾܽ  ݀ሿ (3) 

B. Fuzzy arithmetic operations 
Two trapezoidal fuzzy sets, i.e., A ෩ ଵ ൌ (aଵ, bଵ, cଵ, dଵ) ; A ෩ ଶ ൌ (aଶ, bଶ, cଶ, dଶ) , are considered.  The arithmetic 

operations of A ෩ ଵ and A ෩ ଶ [3-4] are summarized in Table I. 

 

 

 

 

TABLE I.  ARITHMETIC OPERATIONS FOR TRAPEZOIDAL FUZZY SETS 

Arithmetic 
operation 

Mathematic 
notation 

Definition. 

Addition ܣ෩ ଵ ْ ෩ܣ ଶ (ܽଵ  ܽଶ, ܾଵ  ܾଶ, ܿଵ  ܿଶ, ݀ଵ  ݀ଶ) 

Subtraction ܣ෩ ଵ ٓ ෩ܣ ଶ (ܽଵ െ ݀ଶ, ܾଵ െ ܿଶ, ܿଵ െ ܾଶ, ݀ଵ െ ܽଶ) 

Multiplication ܣ෩ ଵ ٔ ෩ܣ ଶ (ܽଵ ൈ ܽଶ, ܾଵ ൈ ܾଶ, ܿଵ ൈ ܿଶ, ݀ଵ ൈ ݀ଶ) 

Division ܣ෩ ଵ ٕ ෩ܣ ଶ (ܽଵ݀ଶ , ܾଵܿଶ , ܿଵܾଶ , ݀ଵܽଶ) 

Definition 2: The multiplication operation between 
trapezoidal fuzzy set ܣ ෩ ଵ ൌ (ܽଵ, ܾଵ, ܿଵ, ݀ଵ)  and a precise 
value, i.e., ݇, is defined as follows: ݇ ൈ ෩ܣ ଵ ൌ (݇ ൈ ܽଵ, ݇ ൈ ܾଵ, ݇ ൈ ܿଵ, ݇ ൈ ݀ଵ )  

III. FUZZY RATIO 

The following scenario of a dimension is examined. 

Definition 3: Consider a dimension, ܴ , in which the 
variables in ܴ are always greater than zero.  Both ̃ݎଵ and  ̃ݎଶ 
are imprecise elements of ܴ , and they are represented as 
fuzzy sets, i.e., ̃ݎଵ, ଶݎ̃ א  ܴ, respectively.  As such, ̃ݎଵ and ̃ݎଶ 
are parameterized as follows. ̃ݎଵ ൌ (ܽଵ, ܾଵ, ܿଵ, ݀ଵ);  ̃ݎଶ ൌ (ܽଶ, ܾଶ, ܿଶ, ݀ଶ)  

A. Part-to-part fuzzy ratio 
The part-to-part fuzzy ratio between ̃ݎଵ and ̃ݎଶ is denoted 

as ̃ݎଵ: :ଶݎ̃ ଶ orݎ̃ ̃భ,̃మݍ ଵ. Its proportion is denoted asݎ̃  or  ݍ̃మ,̃భ , 
respectively, as shown in Eq (4). ݍ ̃భ,̃మ ൌ ଵݎ̃ ٕ ̃మ,̃భݍ  ;ଶݎ̃ ൌ ଶݎ̃ ٕ  ଵ (4)ݎ̃

Theorem 1: ݍ̃భ,̃మ ൌ ൫ݍ̃మ,̃భ൯ିଵ
is always true. 

Proof:  1ݍ̃మ,̃భ ൌ ଶݎ1̃ ٕ  ଵݎ̃

̃మ,̃భݍ1 ൌ 1ቀమௗభ , మభ , మభ , ௗమభቁ 

Using the division operation in Table 1, 1ݍ̃మ,̃భ ൌ ൬ܽଵ݀ଶ , ܾଵܿଶ , ܿଵܾଶ , ݀ଵܽଶ൰ 

̃మ,̃భݍ1 ൌ ଵݎ̃ ٕ ଶݎ̃ ൌ  ̃భ,̃మݍ

B. Part-to-whole fuzzy ratio 
The part-to-whole fuzzy ratio between ̃ݎଵ  and ̃ݎଶ  on ܴ  is 

denoted as ̃ݎ: ݅ ௪ , whereݎ̃ ൌ 1,2 and  ̃ݎ௪ ൌ ଵݎ̃ ْ  ଶ.  Here, aݎ̃

1587



  

scale and move transformation method is used to normalize ̃ݎ: :̃ݍ ௪  into a fuzzy ratio in the form ofݎ̃  ௪ . The propertyݍ
of the part-to-whole fuzzy ratio is summarized as follows. i. ̃ݎ௪ ൌ ଵݎ̃ ْ ̃ݍ .ଶ iiݎ̃ ൌ ݏ ൈ ௪ ൌݍ .. iiiݎ̃ ̃భݍ ْ ̃మݍ ൌ ݏ ൈ   ௪ݎ̃

Note that ݍ̃  is re-sized with a scale factor, ݏ, which is 
obtained from Eq. (5).  Besides that, ݎҧ is the centroid of ̃ݎ, 
and ݎҧ is obtained using Eq. (6).  By expanding Eq. (5) using 
Eq. (6), Eq. (7) is obtained. ݏ ൌ ҧଵݎ)   ҧଶ)ିଵ (5)ݎ

ҧݎ ൌ 13 ܽ  ܾ  ܿ  ݀ െ ݀ܿ െ ܾܽ(݀  ܿ) െ (ܽ  ܾ)൨ 
(6) 

 

ݏ ൌ 3 ൭ ܽ  ܾ  ܿ  ݀ െ ݀ܿ െ ܾܽ(݀  ܿ) െ (ܽ  ܾ)൨ୀଶ
ୀଵ ൱ିଵ

(7) 

Theorem 2: 
ଶݎଵ̃ݎ̃ ൌ ̃మݍ̃భݍ is always true. 

Proof:  ݍ̃భݍ̃మ ൌ ݏ  ൈ ݏଵݎ̃ ൈ ଶݎ̃ ൌ  ଶݎଵ̃ݎ̃
 

C. An example 
An example from [2] is considered.  It is suggested that 

a good micro-nutrient ratio in a daily meal to burn body fat 
is 30% protein, 15-20% fat, 50-55% carbohydrates [2].  This 
ratio is written as (30,30,30,30)  (15,15,20,20) (50,50,55,55) .  The centroids for (30,30,30,30)  , (15,15,20,20)  and (50,50,55,55)  are 30, 17.5 and 52.5, 
respectively, and ݏ ൌ 30  17.5  52.5 ൌ 100 .  After 
scaling, the ratio is (0.30,0.30,0.30,0.30)  (0.15,0.15,0.20,0.20)  .(0.50,0.50,0.55,0.55)

It is also assumed that energy provided by proteins, fats 
and carbohydrates are 4 calories per gram, 9 calories per 
gram, and 4 calories per gram, respectively [2].  For 
someone who needs 2000 calories daily, the proportions of 
protein, fat, and carbohydrates in a daily meal are as 
follows. 

• 2000 ൊ 4 ൈ (0.30,0.30,0.30,0.30) ൌ(150,150, 150, 150) grams of protein  

• 2000 ൊ 9 ൈ (0.15,0.15,0.20,0.20) ൌ(33.3,33.3, 44.4, 44.4) grams of fats  

• 2000 ൊ 4 ൈ (0.50,0.50,0.55,0.55) ൌ(250,250,275,275) grams of carbohydrates 

IV. A NEW SIRMS-FIS MODEL WITH FUZZY WEIGHTS 

A. Proposed formulation 
A zero-order SIRMs-FIS, i.e., ݕ  ൌ (ҧݔ)݂ , where ݔҧ ൌ(ݔଵ, ଶݔ …  ); is considered.  The definitions of the inputݔ

and output spaces of the zero-order SIRMs-FIS model are as 
follows. 

Definition 4: Consider an input space, ଵܺ ൈ ܺଶ ൈ ܺଷ ൈ… ൈ ܺ, and an output space, ܻ.  Variables ݔҧ and ݕ are the 
elements of ଵܺ ൈ ܺଶ ൈ ܺଷ ൈ … ൈ ܺ  and ܻ , respectively, 
i.e., ݔ א ܺ, ݅ ൌ 1,2,3, … , ݊, and ݕ א ܻ.  

The zero-order SIRMs-FIS model consists ݊ fuzzy rule 
modules.  Each rule module consists of ݉ fuzzy rules, as 
follows. ܵܯܴܫ-݅:    ቄܴ݈݁ݑ: ݕ ݄݊݁ݐ ܣ ݏ݅ ݔ ݂݅ ൌ ܿ  ቅୀଵ

 

where ܵܯܴܫ-݅ is the ݅-th rule module, ݔ is the sole variable 
in the antecedent of the fuzzy rules.  ܴ݈݁ݑ  is the ݆-th rule 
in ܵܯܴܫ-݅, where 1  ݆  ݉.   ܣ  is a fuzzy set in domain ܺ (denoted as ߤ(ݔ)), and ܿ  is a numerical output or fuzzy 
singleton.  A fuzzy rule, ܴ݈݁ݑ , can also be viewed as a 
mapping from ܣூ  to ܿ , i.e., ܴ݈݁ݑ:  ՜ܣ ܿ . 

The output of ܵܯܴܫ-݅, i.e., ݕ , is obtained using Eq. (8).  
The outputs from the rule modules are aggregated using Eq. 
(9), where ݓ  is a numerical value or a precise weight that 
reflects the relative importance of the ݅-th rule module. 

ݕ ൌ Σୀଵ (ݔ)ߤൣ ൈ ܿ൧Σୀଵ ൧(ݔ)ߤൣ   

 
ݕ (8) ൌ ୀଵߑ ሾݓݕሿ (9)

B. The Proposed SIRMs-FIS Model 
As explained earlier, the traditional zero-order SIRMs-

FIS model adopts a precise weight to reflect the relative 
importance of a rule module to the inference output.  In this 
paper, imprecise weights, represented by a trapezoidal fuzzy 
set, are used instead.  An SIRMs-FIS model with imprecise 
weights is illustrated in Fig. 2.  The imprecise weights 
provided by human experts are denoted as ̃ݎ.  The domain 
containing ̃ݎ  is defined in Definition 5.  The relationships 
among ̃ݎ  are explained as ratios.  Note that ̃ݎ  should be 
scaled to ݓ .  The domain containing ݓ  and/or ݓ  is 
defined in Definition 6.  

Definition 5: A weight space, i.e., ܴ, is considered. The 
imprecise weight variables in ܴ are denoted as ̃ݎ , and are 
represented as fuzzy sets, i.e., ̃ݎ א  ܴ  and  ̃ݎ ൌ(ܽ, ܾ, ܿ, ݀), ݅ ൌ 1,2,3, … , ݊. 

Definition 6: A weight space, i.e.,  ܹ , is considered.  
The precise weight variables in ܹ are denoted as ݓ , i.e., ݓ א ܹ  where. ݅ ൌ 1,2,3, … , ݊ .  The imprecise weight 
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variables in space ܹ  are denoted as ݓ , i.e., ݓ  א ܹ , in 
which ݓ is a fuzzy set. 

 
Fig. 2 An SIRMs-FIS model with imprecise weights 

 

Similarly, the output of ܵܯܴܫ‐ ݅ , i.e., ݕ , is obtained 
using Eq. (8).  In this paper, the outputs of all rule modules, 
i.e., ݕଵ, ଶݕ … , and ݕ , reside in the ܻ  domain. The final 
inference result is obtained by a weighted sum of all rule 
modules, as in Eq. (10).  

ݕ ൌ ଵݕ) ൈ (ଵݓ ْ ଶݕ) ൈ (ଶݓ ْ …ْ ݕ) ൈ  (ݓ
(10) 

where ݓ ൌ ݏ ٔ   (11)ݎ̃

and ݏ ൌ ሾΣ݅ൌ1݊  ሿିଵ  (12)(ҧ݅ݎ)

Both ̃ݎ and ݓ are fuzzy sets used to reflect the relative 
importance of the ݅ -th rule module to the final inference 
result, i.e., ݕ.  ̃ݎ is scaled to ݓ with a scale factor ( i.e., ݏ ) 
as in Eq. (14).  ̃ݎ: ᇲݎ̃  and ݓ:  ,ᇲ are always in proportionݓ
where ݅, ݅ᇱ א ሾ1, ݊ሿ and ݅ ് ݅ᇱ.  Eq. (12) can be expanded to 
Eq. (13) and Eq. (14). ݕ ൌ ଵݕ) ٔ ݏ ٔ (ଵݎ̃ ْ ଶݕ) ٔ ݏ ٔ (ଶݎ̃ ْ … ْ ݕ) ٔ ݏ ٔ   (ݎ̃

ݕ ൌ ൬ݏ  ܽୀଵݕ , ݏ  ܾୀଵݕ , ݏ  ܿୀଵݕ , ݏ  ݀ୀଵݕ ൰ (13) 

 

തݕ ൌ 3ݏ  ݕ ܽ  ܾ  ܿ  ݀ െ ݀ܿ െ ܾܽ(݀  ܿ) െ (ܽ  ܾ)൨
ୀଵ  

(14) 

C. A Simulated Example 
A two-input SIRMs-FIS model, i.e., ݕ ൌ ଵݔ)݂ א ଵܺ, ଶݔ (ଶܺא , with two rule modules is considered, as shown in 

Fig. 3.  The two rule modules are ܵܯܴܫ‐ 1 and ܵܯܴܫ‐ 2, in 
which ݔଵ  and ݔଶ  are the sole variables at the antecedents.  
The fuzzy sets at ଵܺ and ܺଶ are depicted in Fig. 4 and Fig. 5, 
respectively. 

‐ܯܴܫܵ 1: ቐܴ݈݁ݑଵଵ:ܴ݈݁ݑଵଶ:ܴ݈݁ݑଵଷ: ݄݊݁ݐ ଵଵܣ ݏ݅ ଵݔ ݂݅ ଵଵݕ ൌ ݄݊݁ݐ ଵଶܣ ݏ݅ ଵݔ 1݂݅ ଵଶݕ ൌ ଵଷݕ ݄݊݁ݐ ଵଷܣ ݏ݅ ଵݔ 10݂݅ ൌ 20ቑ 

‐ܯܴܫܵ ۔ۖەۖ    :2
ۓ :ଶଵ݈݁ݑܴ ଶଵݕ ݄݊݁ݐ ଶଵܣ ݏ݅ ଶݔ ݂݅ ൌ :ଶଶ݈݁ݑ1ܴ ଶଶݕ ݄݊݁ݐ ଶଶܣ ݏ݅ ଶݔ ݂݅ ൌ :ଶଷ݈݁ݑ3ܴ ݄݊݁ݐ ଶଷܣ ݏ݅ ଶݔ ݂݅ ଶଷݕ ൌ :ଶସ݈݁ݑ14ܴ ݄݊݁ݐ ଶସܣ ݏ݅ ଶݔ ݂݅ ଶସݕ ൌ 20ۙۘۖ

ۖۗ
 

Fig. 3 Rule modules for the example 

 

Fig. 4 Fuzzy set for ܵܯܴܫ‐ 1 

 

Fig. 5 Fuzzy set for ܵܯܴܫ‐ 2 

 

It is assumed that ̃ݎଵ ൌ (1.0,1.2, 1.8, 3.0)  and ଶݎ̃  ൌ(2.0,3.2, 3.8,4.0).  Using Eq. (1), the centroids of  ̃ݎଵand ̃ݎଶ 
are 1.79 and 3.21, respectively.  Using Eq. (12), the scale 
factor is determined, i.e., ݏ ൌ 0.2.  Let ݔଵ ൌ 2 and ݔଶ ൌ 3, 
the inference results for  ܵܯܴܫ‐ 1 and ܵܯܴܫ‐ 2 are ݕଵ ൌ0.5 ൈ 1  0.5 ൈ 10 ൌ 5.5  and ݕଶ ൌ 0.5 ൈ 3  0.5 ൈ 14 ൌ8.5, respectively.  Eq. (13) and Eq. (14) are used to produce ݕ ൌ (4.50, 6.76, 8.44, 10.1)  and തݕ  ൌ 7.42 .  A plot of ݕത 
versus ݔଵ and ݔଶ is depicted in Fig. 6. 

SIRM-1 ݔଵ 

SIRM-݅ ݔ 

SIRM-݊ ݔ 

 ڭ
 ڭ

 ଵݓ

 ݓ
 ݓ

 ଵݕ

 ݅ݕ

 ݊ݕ

ݕ  തݕ
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Fig. 6 The inference result from the proposed SIRMs-FIS model 

 

D. Remarks 
The contributions of this paper are two folds, (i) 

exploration of the general concept of the fuzzy ratio and 
fuzzy weight, and (ii) introduction of a new SIRMs-FIS 
model with fuzzy weights.  Fuzzy weights for the new 
SIRMs-FIS model are interpreted as a ratio of the 
importance of rule modules to the inference result. 

To the best of our knowledge, even though a number of 
investigations on SIRMs-FIS have been conducted, a proper 
definition of the weight domain for SIRMs-FIS is not 
available.  As such, a definition of the weight domain is 
provided (i.e., Definition 6) in this paper.  If an fuzzy 
ordering exists among ݓ, fuzzy ratio is possible.  Besides 
that, to the best of our knowledge, little attention is given to 
the definition of ݕ .  In this paper, we interpret the ݕ  
domain as ܻ .  Such definition is useful for practical 
application of SIRMs-FIS in assessment and decision 
making problems, e.g., FMEA [7]. 

 

V. CONCLUSIONS 
In this paper, the idea of a new fuzzy ratio is introduced.  

The proposed fuzzy ratio has been analyzed mathematically.  
The usefulness of the fuzzy ratio for modeling of SIRMs-
FIS with imprecise weights has also been illustrated and 
discussed. 

For further work, it is useful to examine the properties of 
the fuzzy ratio.  Besides that, the applicability of SIRMs-FIS 
with imprecise weights to real-world problems (e.g., FMEA 
[9] and education assessment [12]) will be investigated. 
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