
 
 

 

  

Abstract—In this paper, the robust stability of a PD type 
Single input Interval Type-2 Fuzzy Logic Controller 
(SIT2-FLC) structure will be examined via the well-known 
Popov criterion and Lyapunov’s direct method approach. Since 
a closed form formulation of the SIT2-FLC output is possible, 
the type-2 fuzzy functional mapping is analyzed in a two 
dimensional domain. Thus, mathematical derivations are 
presented to show that type-2 fuzzy functional mapping is a 
symmetrical function and always sector bounded. 
Consequently, the type-2 fuzzy system can be transformed into a 
perturbed Lur'e system to examine its robust stability. It has 
been proven that the stability of the PD type SIT2-FLC system is 
guaranteed with the aids of the Popov-Lyapunov method. A 
robustness measure of the type-2 fuzzy control system is also 
presented to give the bound of allowable uncertainties/ 
nonlinearities of the control system. Moreover, if this bound is 
known, the exact region of stability of the type-2 fuzzy system 
can be found since SIT2-FLC output can be presented in a 
closed form. An illustrate example is presented to demonstrate 
the robust stability analysis of the PD type SIT2-FLC system. 

Keywords—Interval type-2 fuzzy logic controllers; Lur'e 
system; Robust stability 

I. INTRODUCTION 
Recently, the main focus of the fuzzy control researches is 

on Interval Type-2 Fuzzy Logic Controllers (IT2-FLCs) since 
they have been demonstrated significant performance 
improvements. The structure of the IT2-FLC is similar to the 
type-1 counterpart. Though, the IT2-FLCs employ and use 
Interval Type-2 Fuzzy Sets (IT2-FSs), rather than Type-1 
Fuzzy Sets (T1-FSs), so there is a need of an extra 
type-reduction process [1]. Generally, IT2-FLCs achieve 
better control performance because of the additional degree 
of freedom provided by the Footprint of Uncertainty (FOU) in 
their Membership Functions (MFs) which also provides 
robustness against uncertainties [2-7]. The design problem of 
the IT2-FLCs is usually solved by blurring/extending the 
T1-FSs of its type-1 counterpart (since IT2-FS is a 
generalization of T1-FS). Thus, several studies have been 
performed in order to design PID type IT2-FLCs [4-8]. 
Recently, a new design strategy for PID type Single input 
IT2-FLCs (SIT2-FLCs) has been presented [9], [10]. 

It has been reported that the IT2-FLCs are generally more 
robust than type-1 counterparts [8]. However, since their 
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internal structure is typically more relatively more complex 
than their type-1 counterpart, it is difficult to analyze the 
robustness of the IT2-FLCs [8-12]. Several studies have been 
presented to investigate the robustness and stability of the 
IT2-FLCs [8], [13-15]. However, the existing PD/PID type 
IT2-FLCs do not provide any methodology to show the 
stability of the control system [5-9]. 

In this paper, the robust stability of a PD type SIT2-FLC 
system is examined with the aids of the Popov-Lyapunov 
approach for the first time in literature. The most important 
feature of the examined SIT2-FLC is the closed form 
presentation of its output. This gives the opportunity to 
investigate the type-2 fuzzy mapping in a two dimensional 
domain. Thus, mathematical derivations and analysis will be 
presented on the SIT2-FLC to show that it is a symmetrical 
function and is always sector bounded. This will give the 
opportunity to transform the type-2 fuzzy system into a 
perturbed Lur'e system to examine its robustness. In this 
context, the well-known Popov-Lyapunov method will be 
employed to guarantee the robust stability of the system. 
Moreover, a robustness measure will be presented to give a 
bound on allowable uncertainties/nonlinearities of the 
system. If this bound is known, then the exact region of 
stability (safe operating region) of the type-2 fuzzy system 
can be found since SIT2-FLC output has a closed form 
representation. The presented stability analysis will be 
illustrated a mass-spring-damper system.  

Section II will briefly present the structure of the PD type 
SIT2-FLC, Section III will present robust stability analysis of 
the SIT2-FLC system, Section IV will present an example to 
illustrate the stability analysis procedure, and Section IV will 
present conclusions and future work.  

II. THE GENERAL STRUCTURE OF PD TYPE SIT2-FLC 
In this section, the general structure of the PD type 

SIT2-FLC is presented. The SIT2-FLC is constructed by 
choosing the input to be the error signal (݁) and the output as 
the control signal (ݑ) as shown in Fig.1a [9]. Here, the input 
Scaling Factor (SF) ܭ can be defined such that the input is 
normalized to the universe of discourse where the antecedent 
MFs of the SIT2-FLC are defined. Thus, ܭ is defined as:  ܭ = 1 ൫ݎ(ݐ) െ ⁄൯(ݐ)ݕ  (1) 
where ݎ(ݐ) and ݕ(ݐ) are the values of the reference and 
system output at the time of the reference variation (t=tf) [6]. 
Thus ݁ is converted after normalization into ߪ which is the 
input of the SIT2-FLC while the its output (߮) is converted 
into the control signal (ݑ) as follows: 
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Fig. 1.  Illustration of the (a) PD type SIT2-FLC system (b) equivalent type-2 fuzzy control system (c) Perturbed Lur’e system ݑ = ߮ܭ  ܭ ݀߮݀ݐ  (2) 

where ܭ = ௨ܭܭ ܭ =  ௨ (3)ܭܭ
Here, ܭ and ܭ are the baseline PD controller gains, and ܭ is the output SF defined as ܭ௨ =  ,ିଵ. It can be seen thatܭ
the output of PD type SIT2-FLC is analogous to a 
conventional PD structure [9], [10]. Note that, the SFs and the 
baseline PD gains of the SIT2-FLC can directly affect the 
performance and robustness of the type-2 fuzzy control 
system [4-10].  

A. The Internal Structure of the SIT2-FLC 
In this study, a SIT2-FLC composed of three rules (ܫ = 3) 

is employed and preferred for simplicity. The rule structure of 
the SIT2-FLC is as follows: ܴ: IF	ߪ	is	ܣሚ	THEN	߮	is	ܤ	, ݅ = 1,2,3 (4) 
where ܣሚ  are triangular IT2-FSs (boomerang IT2-FSs) 
defining the antecedent MFs and ܤ are the consequent MFs 
of the SIT2-FLC and defined as ܤଵ = െ1, ଶܤ = 0  and ܤଷ = 1. Here, the antecedent IT2-FSs can be described in 
terms of upper MFs (ߤ෨)  and lower MFs 	(ߤ෨)	  which 
creates the FOU (which provides extra degree of freedom) in 
IT2-FSs [2-7]. As shown in Fig. 2, mi’s represent the height of 
the lower antecedent MFs and are the main design parameters 
of the presented SIT2-FLC. In order to have symmetrical 
MFs, the value of ݉ଵ must be equal to the value of ݉ଷ. Thus, 
the membership grades of the antecedent MFs for a crisp 
input ߪ′ are defined as: ߤ෨భ(ߪ′) = (′ߪ)෨యߤ = ,|ߪ| (′ߪ)෨భߤ = (′ߪ)෨యߤ = (′ߪ)෨మߤ ଵ (5)݉|′ߪ| = |1 െ ,|′ߪ (′ߪ)෨మߤ = |1 െ  ଶ (6)݉|′ߪ
In [1] and [9], it has been demonstrated that the defuzzified 
output of the SIT2-FLC is as follows: ߮ = (߮  ߮ ) 2⁄  (7) 
where ߮ and ߮  are the end points of the type reduced set 
and are defined for each region as follows: 

߮ = ∑ (′ߪ)෨ߤ ∙ ୀଵܤ  ∑ ேାଵ(′ߪ)෨ߤ ∙ ∑ܤ ୀଵ(′ߪ)෨ߤ  ∑ ேାଵ(′ߪ)෨ߤ  (8) 

߮ = ∑ (′ߪ)෨ߤ ∙ ோୀଵܤ  ∑ (′ߪ)෨ߤ ∙ ∑ேோାଵܤ ோୀଵ(′ߪ)෨ߤ  ∑ ேோାଵ(′ߪ)෨ߤ  (9) 

Here, (R, L) is the solution set such that which minimize/ 
maximize Equations (8) and (9), respectively [1]. Since it is 
always guaranteed that a crisp value of ߪ always belongs to 
two successive IT2-FSs, the switching points (R, L) are 
always equal to “1” (for any crisp input only two rules (N=2) 
are always activated) [9], [10]. ܣሚ1 ሚ3ܣ 	ሚ2ܣ

ߪ  
Fig. 2.  Illustration of the antecedent MFs of the IT2-FLC 

Theorem-1: Let ߮(ߪ)  denote the functional mapping 
achieved by the SIT2-FLC structure. Then, it holds that ߮(ߪ) = െ߮(െߪ)	for	∀ߪ ് 0	  and ߮(0) = 0 , i.e. ߮(ߪ) 
is symmetrical function with respect the input ߪ. 
Proof: First, the output of the SIT2-FLC given in Equation 
(7) is derived for the input interval ߪ ∈ ሾ0, 1ሿ as follows: ߮(ߪ) = 12ቆ (ߪ)෨యߤ(ߪ)෨యߤ  (ߪ)෨మߤ  (ߪ)෨యߤ(ߪ)෨యߤ   ቇ (10)(ߪ)෨మߤ

Replacing the membership grades given in Equations (5) and 
(6) into (10):  ߮(ߪ) = ߪ ∙  (11) (ߪ)݇
where ݇(ߪ) is the nonlinear gain generated from the type-2 
fuzzy inference and is defined as: ݇(ߪ) = 12 ൬ ߪ1  (1 െ ଶ݉(ߪ  ݉ଵ݉ߪଵ  (1 െ  ൰ (12)(ߪ
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Similarly, for the input interval ߪ ∈ ሾെ1,0ሿ, the output of the 
SIT2-FLC can be derived as: ߮(ߪ) = 12ቆ െߤ෨భ(ߪ)ߤ෨భ(ߪ)  (ߪ)෨మߤ  െߤ෨భ(ߪ)ߤ෨భ(ߪ)   ቇ (13)(ߪ)෨మߤ

Similarly, replacing Equations (5) and (6) into Equation (13):  ߮(ߪ) = െߪ ∙  (14) (ߪ)݇
It can be concluded from Equations (11) and (14) that, ߮(ߪ) 
is symmetrical function with respect the ߪ , i.e. ߮(ߪ) =െ߮(െߪ) and if ߪ = 0, then ߮(0) = 0.∎  

B. Gain analysis of the SIT2-FLC 
In this section, the gain analysis of the SIT2-FLC is 

presented. As it has been derived in the Equation (11) and 
(14), the SIT2-FLC output can be explicitly derived in the 
input domain. This simplifies the SIT2-FLC design method to 
a nonlinear control curve generation, instead of a control 
curve design [9]. Thus, we will examine the effect of the 
design parameters (݉ଶ,݉ଵ = ݉ଷ) on the SIT2-FLC output. 
For an easier analysis, we will employ ݉ଶ = ߙ  and ݉ଵ =1 െ  in the rest of the paper. The SIT2-FLC output (߮) and ߙ
the corresponding nonlinear gain ( (ߪ)݇ ) variations are 
illustrated in Fig.3a and Fig.3b, respectively. As it can be 
seen, for ߙଵ = 0.2  an aggressive control curve while for ߙଶ = 0.8 a smooth control curve is generated. The presented 
control curves are commonly used and preferred in nonlinear 
control theory. Moreover, it can be seen that the SIT2-FLC 
output is bounded in a sector as shown Fig.3b. 
Theorem-2: If ݉ଶ = and ݉ଵ ߙ = 1 െ  then the output of ,ߙ
the SIT2-FLC always belongs to a sector ሾܭ, ଶߪܭ :௫ሿܭ  ߮ߪ  ,ଶߪ௫ܭ for	∀ߪ ് 0	 (15) 
where ܭ ≡ infఙ∈ሾିଵ,ାଵሿఈ∈ሾ,ାଵሿ ,(ߪ)݇ ௫ܭ ≡ supఙ∈ሾିଵ,ାଵሿఈ∈ሾ,ାଵሿ  (16) (ߪ)݇

Here, ݇(ߪ) will map to different values of ܭ  and ܭ௫ 
with respect to ߙ, ଵߙ  :values as tabulated in Table I where ߪ = 12 ൫3 െ √5൯,			ߙଶ = 12 ൫െ1  √5൯ߪଵ = 0, ଶߪ = ଷߪ1 = െ1 െ ߙ  ଶെ1ߙ െ ߙ3  ଶߙ െ ඨ (1 െ ߙ  1)ߙଶ)ଶߙ െ ߙ3  ଶ)ଶߙ  (17) 

TABLE I.  THE EXTREMA VALUES OF THE TYPE-2 FUZZY GAIN  

 0  ߙ ൏ ଵߙ ଵߙ  ߙ ൏ ଶߙ ଶߙ  ߙ   (ଶߪ)݇ (ଵߪ)݇ (ଵߪ)݇ ௫ܭ (ଷߪ)݇ (ଷߪ)݇ (ଶߪ)݇ ܭ 1
Proof: If ݉ = ߙ  and ݉ଵ = 1 െ ߙ , then the functional 
mapping of the SIT2-FLC for the interval ߪ ∈ ሾ0, 1ሿ can be 
formulated as: ߮(ߪ) =  (18) (ߪ)݇	ߪ
where ݇(ߪ) = 12 ൬ ߙ1  ߪ െ ߪߙ  െ1  െ1ߙ   ൰ (19)ߪߙ

The candidate extrema values of ݇(ߪ)  are the boundary 
points ߪଵ = 0 , ଶߪ	 = 1 . Moreover, the critical point ߪଷ	(݀ܭ(ߪଷ) ߪ݀ = 0⁄ ) is a candidate point and is found as: ߪଷ = െ1 െ ߙ  ଶെ1ߙ െ ߙ3  ଶߙ െ ඨ (1 െ ߙ  1)ߙଶ)ଶߙ െ ߙ3   ଶ)ଶ (20)ߙ

By simply examining the first order derivative test ݀(ߪ)ܭ ߪ݀  0⁄  under the constraints 0 ൏ ߙ ൏ 1  and 0 ൏ ߪ  1; the following two cases can be derived that, 
Case-1: If 0 ൏ ߙ   is always an increasing (ߪ)݇ ଵ, thenߙ
function with respect to ߪ for the interval 0 ൏ ߪ  1 where ߙଵ is found as: ߙଵ = 12 ൫3 െ √5൯ (21) 

Case-2: If ߙଵ ൏ ߙ ൏ 1, then ݇(ߪ) is an increasing function 
with respect to ߪ  for the interval 0 ൏ ߪ  ଷߪ  while a 
decreasing function with respect to ߪ  for the interval ߪଷ  ݁  1.  

ߪ

߮

ߪ

݇ 
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Fig. 3.  Illustration of the (a) nonlinear control curves (b) ݇(ߪ) variations 

In Case-1, since ݇(ߪ) is always an increasing function, the 
maximum and minimum values of ݇(ߪ) will be the found in 
the boundary values ߪଵ	and	ߪଶ. Thus,  ܭ = min൫݇(ߪଵ), ௫ܭ ൯ (22)(ଶߪ)݇ = max൫݇(ߪଵ),  ൯ (23)(ଶߪ)݇

where ݇(ߪଵ) = 12ቆ1  ߙ െ ߙଶߙ ቇ , (ଶߪ)݇ = 1 (24) 

It can be simply derived from Equation (24) that, ݇(ߪଵ) ݇(ߪଶ) if and only if ߙ  ଶߙ :ଶ is found asߙ ଶ whereߙ = 12 ൫െ1  √5൯ (25) 

Thus, this inequality is always satisfied since ߙଶ is always 
greater then ߙଵ ଶߙ)   (ଵߙ  in the interval 0൏ ߙ  ଵߙ . 
Consequently, the sector bounds for Case-1 are: ܭ = ௫ܭ (26) (ଶߪ)݇ =  (27) (ଵߪ)݇

In Case-2, it is clear that ߪଷ is the minimizing value of ݇(ߪ), thus the minimum value of ݇(ߪ)	 will be always  ܭ = 	(ଷߪ)݇ (28) 
for the interval ߙଵ ൏ ߙ ൏ 1. Whereas, the maximum value 
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of ݇(ߪ) will be found in the boundary values ߪଵ	and	ߪଶ . 
Thus, in the light of ݇(ߪଵ)  ߙ if and only if (ଶߪ)݇ ൏  ,ଶߙ
the upper bound for the interval ߙଵ  ߙ ൏ ௫ܭ :ଶ isߙ =  (29) (ଵߪ)݇
while for the interval ߙଶ  ߙ ൏ ௫ܭ 1 =  (30) (ଶߪ)݇
Thus, since the functional mapping of the SIT2-FLC is a 
symmetrical function (proved in Theorem-1), the nonlinearity 
always belongs to the sector ሾܭ, ߪ∀  for	௫ሿܭ ് 0.∎ 

III. STABILITY ANALYSIS OF THE SIT2-FLC SYSTEM 
In this section, the stability analysis of the type-2 fuzzy 

control system is presented. At first, the control system will 
be transformed to the perturbed Lur’e systems and then the 
stability analysis are presented with the aids of the 
Lyapunov's direct method and the Popov criterion.  

A. The PD type SIT2-FLC System 
In this subsection, the type-2 fuzzy control system (shown 

in Fig.1a) will be transformed to the Lur’e systems. Thus, let 
us first define a SISO nonlinear system as follows:  ሶܺ = ݂(ܺ, ܷ)ܻ = ்ܿ ܺ  (30) 

where ܺ ∈ ܴ  is the state vector, ݊  is the number of the 
states, ܷ is the scalar system input and ݂ ∈ ܴ represents the 
nonlinear mapping. Let ܺ = ݔ  ܷ , andݔ = ݑ    denote the nominal operating point of the systemݑ  and	ݔ  whereݑ
given Equation (30). Then, by simply expanding the 
nonlinear system into a Taylor series around	(ݔ,  ), theݑ
following equation are obtained: ݔሶ = ݔ ߲݂߲ܺฬ(௫బ,௨బ)  ݑ ߲݂߲ܷฬ(௫బ,௨బ)  ,ݔ)݃  (31) (ݑ

where ݃(ݔ,  or the ݑ	and	ݔ inherits higher-order terms in (ݑ
uncertainties of the system. Letting ܣ denote the Jacobian 
matrix of ߲݂/߲ܺ  and ܾ  denote the Jacobian matrix of ߲݂/߲ܷ at the nominal operating point, we can obtain: ݔሶ = ݔܣ  ܾݑ  ,ݔ)݃ ݕ(ݑ = ்ܿ ݔ  (32) 

Here, if the nominal open-loop transfer function of the system 
has a relative degree 2 or more, then ்ܿ ܾ = 0. Besides, it 
will be assumed that the system satisfies ்ܿ ,ݔ)݃ (ݑ = 0.  

In order to examine the stability of the fuzzy system, let the 
reference to be zero (ݎ = 0). Thus, the output of the system is ݁ = െݕ = െܿଵ் ߪ (33) ݔ = ݁ܭ = െܭܿଵ் ݔ = െܿଶ் 	ݔ (34) 
Moreover, the input of the system is: ݑ = ߮ܭ  ܭ ݀߮݀ݐ  (35) 

It can be observed that the input signal inherits a derivative 
action. Thus, let us define a new state space model where the 
input signal is ߮ and the output is ߪ as follows: ݔሶ = ݔଵܣ  ܾଵ߮(ߪ)  ,ݔ)݃ ߪ(ݑ = െܿଶ் ݔ  (36) 

where ܣଵ, ܾଵ and ܿଵ்  can be obtained by defining new state 
variables or applying the integration method presented in 
[16]. The block diagram of Equation (36) is given in Fig. 1b.  

It has been proven in Theorem 2 that the output of the 
IT2-FLC (߮)  always belongs to the sector ሾܭ, ௫ሿܭ . 
Thus, by defining a new functional mapping as: ߮(ߪ) = ߮(ߪ) െ  (37) ߪܭ
Then, the inequality given in Equation (15) can be defined as 0  ߪ߮  ,ଶߪܭ for	∀ߪ ് 0	 (38) 
where ܭ = ௫ܭ െ  . Thus, the nonlinearity ߮ will be inܭ
the sector ሾ0, ሶݔ :ሿ and Equation (36) can be rewritten asܭ = ݔܣ െ (ߪ)ܾ߮  ,ݔ)݃ ߪ(ݑ = ݔ்ܿ  (39) 

where  ܣ = ଵܣ െ ܾଵܿଶ்ܭ ܾ = െܾଵ ܿ = െܿଶ்  (40) 
The new block diagram of the closed system is shown in Fig. 
1c. It can be seen that Equation (39) is a perturbed Lur’e 
system [17], [18]. Note that, this transformation is possible 
since the functional mapping of the IT2-FLC is symmetrical 
and sector bounded (Theorem-1 and Theorem-2).  

B. Stability Analysis of the Type-2 Fuzzy Control System 
In this section, the following theorem will be used to 

guarantee the stability of the type-2 fuzzy system [17], [18]. 
Theorem-3: If the system described by Equation (39) 
satisfies the following conditions, then the point ݔ = 0  is 
uniformly asymptotically stable.  
C1) the nonlinearity ߮ belongs to the sector ሾ0,  ܭ ሿ whereܭ
is a known and positive number. 
C2) the system matrix ܣ is Hurwitz (has all its eigenvalues 
strictly in the left-plane), i.e., (ݏ)ܩ = ܫݏ)்ܿ െ ଵܾି(ܣ  is 
stable and there exists a scalar ݎ  0 such that 1ܭ  ܴ݁ሾ(1  ሿ(ݓ݆)ܩ(ݎݓ݆  ݓ∀	0 ∈ ܴ (41) 

C3) Let  ݒ = 12 ்ܿܣݎ)  ܿ) ߛ = ்ܾܿݎ   (42) ܭ1

where ݎ  is chosen such that ߛ  0 . Given a symmetric 
positive define matrix ܹ; there exists a scalar ߝ  0, a vector ݍ symmetric positive define matrix ܲ and ܹ, and a scalar ߜ  0 satisfiying: ்ܲܣ  ܣܲ = െ்ݍݍ െ ܾܲ (43) ܹߝ െ ݒ = ඥܹߝ (44) ݍߛ = ߝ ܹ   (45) ܫߜ
C4) the nonlinearity ݃(ݔ, ,ݔ)݃‖  :is bounded and satisfies (ݑ ଶ‖(ݑ  ଶ‖ݔ‖ߚ  ଶ‖ܲ‖2ߜ  ଶଶ‖ܿ‖ܭݎ  ଶ (46)‖ݔ‖

where ߚ is a robustness measure, ‖ܲ‖ଶ denotes the spectral 
norm of the matrix ܲ, ‖. ‖ଶ represents 2-norm, and ܯ is the 
domain where ݃(ݔ,  .is bounded (ݑ
Proof: The proof of C1 was presented in Theorem 2 while the 
proof of C2 can be derived with the aids of the Popov 
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criterion [17], [18]. The proofs for C3 and C4 can be derived 
by using following Lyapunov function  ܸ(ݔ) = ݔ்ܲݔ  නݎ ఙݕ݀(ݕ)߮

  (47) 

Moreover, a stability domain (Ω) where ݔ = 0 is stable is 
defined as:  ߗ = ሼݔ ∈ ܴ|ܸ(ݔ)  	ሽߠ (48) 
The stability domain can be explicitly presented since the 
type-2 fuzzy mapping can be presented in a closed form [9]. 
The proofs of C3 and C4 can be found in [17], [18]	. ∎ 

The stability analysis of the SIT2-FLC system will be 
accomplished with respect to Theorem 3. Thus, first an 
appropriate ݎ  value from the Popov plot of ݓ݆ܩ) must be 
found such that Equation (41) is satisfied. In other words, a 
slope ݎ	ݎ)  0) of a line that intercepts the point െ1 ܭ  ݆0⁄  
must be found such that the Popov plot is always to the right 
to that line [18]. After evaluating ݒ and ߛ from Equation (42), 
a symmetric positive-definite matrix ܹ and a positive real 
number ߝ  must be selected to obtain the matrix ܲ  via the 
following Riccati equation: ܣ்ܲ  ܣܲ െ ܴܲܲ  ܳ = 0 (49) 
where ܣ = ܣ െ ߛ1 ்ݒܾ ܳ = ܹߝ  ߛ்ݒݒ ܴ = െ்ܾܾߛ  (50) 

Once a positive-definite matrix ܲ  is obtained, a 
positive-definite matrix ܹ is selected and an appropriate 	ߜ 
value can be determined to obtain the robustness measure ߚ 
given in Equation (46). Note that, if the value of ߚ  is 
relatively small, then the system might become unstable in 
the presence of uncertainties/nonlinearities [17]. 

IV. ILLUSTRATIVE EXAMPLE 
In this section, the stability analysis of the SIT2-FLC 

system is presented on a mass-damper-spring system. As it 
has been derived in Section 3, the boundaries (ܭ,  (௫ܭ
of the functional mapping varies with respect the design 
parameter ߙ. Thus, the robustness of the PD type SIT2-FLCs 
for the values ߙଵ = 0.2  (an aggressive control curve) and ߙଶ = 0.8 (a smooth control curve) and their corresponding 
region of stability (ߗ) will be examined and compared. In 
this example, the mass and damper constants of the system 
(shown in Fig. 4) are chosen to be equal and set as ݉ = ܿ = 1 
while the spring characteristic is defined as ݐ(ݔଵ) = 3 െ  ଵଷݔ
[17]. Thus, the dynamic equations of the mass-damper-spring 
system are as follows: ݔሶଵݔሶଶ൨ = ቂ 0 1െ3 െ1ቃᇣᇧᇧᇤᇧᇧᇥቂݔଵݔଶቃబ  ቂ01ቃด బݑ   ݕଵଷ൨ถ(௫)ݔ0 = ሾ1 0ሿᇣᇤᇥబ ቂݔଵݔଶቃ  (51) 

where ݔଵ  and ݔଶ  are the position and the velocity of the 
mass-damper-spring system, respectively.  

As it has been asserted in Section 2, the PD type SIT2-FLC 
is constructed where the error ݁ = ݎ െ ଵݔ  is the input and 

ݑ = ߮ܭ  ܭ ݀߮ ⁄ݐ݀  is the output. Thus, to be able to 
employ the stability analysis presented in Section 3, there is a 
need of defining new state space matrices since the output of 
the PD type SIT2-FLC inherits a derivative action. In this 
context, new state variables are defined as ݔଵ = ଶݔ ,ݕ = ሶݕ െܭ߮ and the following state space model is obtained. ݔሶଵݔሶଶ൨ = ቂ 0 1െ3 െ1ቃᇣᇧᇧᇤᇧᇧᇥቂݔଵݔଶቃభ   ܭܭ െ ൨ᇣᇧᇧᇤᇧᇧᇥ߮భܭ   ߪଵଷ൨ถ(௫)ݔ0 = ሾെ1 0ሿᇣᇧᇤᇧᇥమ ቂݔଵݔଶቃ  (52) 

Consequently, the configuration shown in Fig. 1b is obtained. 
Here, the SFs of the SIT2-FLC structure are set as ܭ = ܭ ,1 = 1  and the baseline PD parameters are chosen as ܭ = 1, ܭ  = 2 , accordingly ܭ = 1, ܭ  = 2 . The 
bounding sector for ߙଵ = 0.2  is found as ܭ୫୧୬	_ఈభ = _ఈభ	୫ୟ୶ܭ	 	,1.0 = 2.9 from Table I and ܭఈభ = 1.9 from Equation 
(38) while for ߙଶ = 0.8  the corresponding values are ܭ୫୧୬	_ఈమ = _ఈమ	୫ୟ୶ܭ 	,0.71 = 1.0 and ܭఈమ = 0.29. 

 
Fig. 4.  Schematic diagram of the mass-damper-spring system 

The state space representation of the SIT2-FLC system for ߙଵ = 0.2 and ߙଶ = 0.8 can be obtained from the Equation 
(39), and the corresponding transfer functions are: ܩఈభ(ݏ) = ݏ2  ଶݏ1  ݏ3  4 	for	ߙଵ = (ݏ)ఈమܩ (53) 0.2 = ݏ2  ଶݏ1  ݏ2.43  3.71 for	ߙଶ = 0.8 (54) 

The Popov plots of ܩఈభ(݆ݓ)and ܩఈమ(݆ݓ) are given Fig.5a 
and Fig.5b, respectively. From the Popov plots, it can be 
found that Equation (41) is satisfied for ܩఈభ(݆ݓ) if ݎ  0.17 
while for ܩఈమ(݆ݓ) if ݎ  0.06. However, since the aim is to 
compare the robust stability for the cases ߙଵ and ߙଶ, ݎ will be 
chosen as ݎ = 0.17 which satisfies both conditions. Thus, ݒ 
and ߛ values can be found as follows:  ݒఈభ = ቂെ0.3െ0.1ቃ ; ఈభߛ = 0.93ቅ 	for	ߙଵ = ఈమݒ (55) 0.2 = ቂെ0.46െ0.03ቃ ; ఈమߛ = 3.6ቅ 	for	ߙଶ = 0.8 (56) 

Then, if we let ܹߝ for both cases as ܹߝ = ቂ0.1 00 0.1ቃ (57) 

and solve the Riccati Equation given in Equation (49), the 
following ܲ matrices are obtained. 

ఈܲభ = ቂ0.046 െ0.010െ0.010 0.057ቃ 	for	ߙଵ = 0.2 (58) 

ఈܲమ = ቂ0.062 െ0.010െ0.010 0.041ቃ 	for	ߙଶ = 0.8 (59) 

Here, if we set ߜ = 0.1, Equation (46) becomes as follows: 
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ఈభܯ = ሼሾݔଵ ଶሿ்ݔ ∈ ܴଶ|(ݔଵଷ)ଶ  ଵଶݔ)0.1978  ఈమܯ ଶଶ)ሽ (60)ݔ = ሼሾݔଵ ଶሿ்ݔ ∈ ܴଶ|(ݔଵଷ)ଶ  ଵଶݔ)0.6764   ଶଶ)ሽ (61)ݔ
where the robustness measures of the SIT2-FLC for ߙଵ = 0.2 
and ߙଶ = 0.8 are obtained as ߚఈభ = 0.197 and ߚఈమ = 0.676, 
respectively. Moreover, the corresponding regions of 
attraction	(ߗ) can be determined via the Lyapunov function ܸ(ݔ) (given in Equation (47)) since the SIT2-FLC output has 
a closed form analytical structure. Thus, the ߠ  values are 
obtained with respect to Equations (60) and (61) of the 
SIT2-FLC systems for ߙଵ  and ߙଶ  as ߠఈభ = 0.103  and ߠఈమ = 0.063 , respectively. The corresponding regions of 
robust stability of the SIT2-FLC systems are given in Fig.6.  

It can be concluded that, the stability of both SIT2-FLC 
systems is guaranteed but in different robustness measures 
and stability regions. The SIT2-FLC for ߙଶ  is potentially 
more robust against nonlinearities/uncertainties since it has a 
bigger ߚఈమ  value in comparison to the one for the case ߙଵ (ߚఈమ   ఈభ). Also, as shown in Fig.6, the SIT2-FLC systemߚ
for ߙଶ has a wider region of s robust stability in comparison 
to the one for ߙଵ (it has wider safe operating region). The 
results coincide with the results presented in [9] since the 
SIT2-FLC for ߙଶ  generates a smooth control curve which 
provides robustness against uncertainties and nonlinearities.  
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Fig. 5.  Illustration of the Popov plots for (a) ܩఈభ(݆ݓ) (b) ܩఈమ(݆ݓ) 

V. CONCLUSIONS  
In this paper, the robust stability of a PD type SIT2-FLC 

system is examined. Since the SIT2-FLC output has a closed 
form formulation, the type-2 fuzzy mapping is analyzed in a 
two dimensional domain. Thus, it has been proven that it’s a 
symmetrical function (Theorem-1) and its output is sector 
bounded (Theorem-2). Then, the SIT2-FLC system is 
transformed into a perturbed Lur'e system to examine the 
stability of the fuzzy system. The stability of the fuzzy system 
is guaranteed with aids of the Popov-Lyapunov method 
(Theorem-3). Moreover, a robustness measure is presented to 
define the bound on allowable uncertainties/ nonlinearities of 

the system. If this bound is known, then the exact region of 
stability can be presented since the output of the SIT2-FLC 
has a closed form representation. It has been shown that the 
SIT2-FLC can robustly stabilize certain class of systems. 

Future work will focus on extending the robust stability 
analysis to generalized type-2 fuzzy logic control systems. 

α1=0.2

α2=0.8

 
Fig. 6.  The region of attractions for the IT2-FLC PD for ߙଵ and ߙଶ  
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