
 

 

 

  

Abstract—This paper proposes a spectral-spatial classification 

scheme for the classification of remotely sensed images, based on 

a new version of the recently proposed Genetic Sequential Image 

Segmentation (GeneSIS). GeneSIS segments the image in an 

iterative manner, whereby at each iteration a single object is 

extracted via a genetic algorithm-based object extraction 

method. In the previous version of GeneSIS, the candidate 

objects to be extracted were evaluated through the fuzzy content 

of their included pixels. In the present proposal, a 

watershed-driven fine segmentation map is initially obtained 

which serves as the basis for the upcoming GeneSIS 

segmentation. Our objective is to enhance the flexibility of the 

algorithm in extracting more flexible object shapes and reduce 

the execution time of the segmentation, while at the same time 

preserving all the inherent attributes of the GeneSIS procedure. 

Accordingly, the previously proposed fitness components are 

redefined in order to accommodate with the new structural 

components. In this work, the set of fuzzy membership maps 

required by GeneSIS are obtained via an unsupervised fuzzy 

clustering. The final classification result is obtained by 

combining the results from the unsupervised segmentation and 

the pixel-wise SVM classifier via majority voting. The validity of 

the proposed method is demonstrated on the land cover 

classification of a high-resolution hyperspectral image. 

Image Segmentation; Watershed transform; Genetic Algorithms; 

spectral-spatial Classification; Hyperspectral Images.  

I. INTRODUCTION 

he rich amount of information currently available from 

satellite images with high spectral-spatial resolution 

(HSSR) poses new challenges in the field of land cover 

classification from remotely sensed imagery. An attractive 

method, recently receiving considerable attention, is to 

incorporate spatial information to improve the classification 

results obtained by traditional pixel-based classifiers. One 

way to achieve this goal is to extract contextual information 

from fixed-window neighborhoods around pixels and 

incorporate it to their feature vector of spectral values. The 

drawback of this method is that it raises the issue of scale 

selection, due to the existence of structures of different sizes 
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within the image. A more effective alternative for integrating 

spatial information is to perform image segmentation. 

Segmentation is the partitioning of the image into disjoint 

regions so that each region is connected and homogeneous 

with respect to some homogeneity criterion of interest. 

Most of the existing image segmentation techniques can be 

distinguished into one of the following three categories [1]: 

clustering/feature thresholding, region growing and edge 

detection. Clustering techniques operate in the spectral space, 

searching for significant modes in the feature space. The 

created clusters are then mapped back to the spatial domain to 

form the segmentation map. Important issues to be addressed 

with cluster methods are the determination of the proper 

number of clusters and the consideration of the spatial 

association of pixels which is usually ignored. Region 

growing methods start usually from a pixel level and, using a 

homogeneity criterion, merge neighboring objects 

sequentially until the criterion exceeds a user-defined 

threshold. The main demerit of these methods lies on the 

proper selection of this threshold, which in most cases lacks 

physical meaning.  

Edge-based methods search for discontinuities in the image 

by examining the existence of local edges. The extracted 

edges finally enclose the created objects. The watershed 

transformation is the most commonly used method of this 

category and has been employed in various remote sensing 

applications [2]-[4]. A significant limitation of watershed is its 

sensitivity to local variations, which typically results in severe 

over-segmentation of the image. For this reason, watershed is 

often incorporated into more sophisticated methods as a 

preliminary segmentation step. For instance, in [5] the initially 

created watershed objects are subsequently merged through 

graph partioning techniques. Other methods try to overcome 

the oversegmentation problem either by using markers [3] or 

by applying other more advanced methods [4]. 

In this work, a fine segmentation map is initially obtained 

from watershed transformation that serves as the basis for the 

Genetic Sequential Image Segmentation (GeneSIS) [6], [7]. 

GeneSIS is an iterative segmentation algorithm, which has 

been applied to the object-based classification of remotely 

sensed images. The global segmentation problem is 

decomposed into a succession of simpler tasks, i.e. the 

extraction of a unique object at each iteration. GeneSIS 

exploits the searching capabilities of genetic algorithms (GAs) 

with the aim to locate spatially the proper objects to be 

extracted from the image. The watershed objects are regarded 

now as structural units, instead of pixels, and the generated 

segments from GeneSIS are a collection of connected 
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watersheds. The required labeling of the watershed objects is 

accomplished here by applying the fuzzy integral approach. A 

significant modification to the previous version of GeneSIS is 

that a watershed is regarded as internal of a candidate object, 

if its geographic centroid is included in the basic search frame 

of rectangular shape. Also, the marking selection scheme and 

the fitness function components are now reformulated so as to 

accord with the region-based representation.  

The proposed framework offers a number of assets as 

described in the following. First, compared to the pixel-based 

treatment, the region-based representation eliminates the 

noise corrupting single pixels. Further, it increases the 

observation scale thus providing a better estimation of the 

local properties of the data. Secondly, the consideration of 

watershed regions as the new structural elements along with 

their own boundaries, allows GeneSIS to extract more flexible 

shapes. Third, the region-based GeneSIS is more robust in 

terms of average performance, while on the other hand it 

achieves similar best accuracies. Finally, owing to the initial 

watershed map, the suggested scheme has considerably lower 

computational demands compared to the pixel-based 

GeneSIS. 

The rest of the paper is organized as follows. In Section II, 

we provide a general description of the proposed scheme, 

whereas Section III focuses on the GA part of GeneSIS, the 

object extraction algorithm (OEA). Experimental results on 

the classification of a hyperspectral image are presented in 

Section IV, and the paper concludes in Section V with some 

final remarks. 

II. GENERAL CONFIGURATION 

The architecture of the proposed scheme is depicted in Fig. 

1. Initially, the watershed algorithm is applied in order to 

create a preliminary segmentation map. Unsupervised 

clustering by fuzzy c-means (FCM) is used here to create the 

fuzzy membership maps (FMMs), where each pixel is 

assigned a fuzzy value to its cluster label. Any other fuzzy 

clustering method could be used equivalently. The fuzzy 

degrees of pixels contained in each watershed object are 

combined via the fuzzy integral fusion method to compute the 

fuzzy values of the watershed to the different clusters, as well 

as assign to it a specific cluster label. The cluster-labeled 

connected components of watershed objects along with their 

membership values operate as input to the GeneSIS 

segmentation approach. The segmentation result produced by 

GeneSIS is then combined via majority voting with the fuzzy 

output SVM (FO-SVM) to create the final classification map. 

A. Watershed Segmentation 

Watershed transform is a morphological approach widely 

used in image segmentation. The image, considered as a 

topographic surface, is flooded from its minima and dams are 

built in order to prevent merging of water from different 

sources. Dams represent the watershed lines, enclosing the 

catchment basins. Watershed transform is usually applied to a 

gradient image, so that catchment basins correspond to 

homogeneous regions. Among the different approaches 

investigated in [2] to obtain gradient images from 

hyperspectral data, we use the Robust Color Morphological 

Gradient (RCMG) method [8]. To reduce the 

oversegmentation resulting from watershed, two techniques 

were applied. First, before proceeding to the gradient 

estimation, a 3x3 median filter is applied on the image bands 

in order to smooth the surface, but at the same time preserve 

the significant edges. Secondly, the gradient thresholding 

method [9] is used, where pixel gradients with value lower 

than a given threshold are set to zero. With this step, small 

heterogeneity effects are removed while neighboring 

watersheds with low gradient values are merged. 

The watershed implementation presented in [10] has been 

used in this work. As a result of the segmentation, a set 

{ / 1,..., ( )}
i

W i= = ΩW W  of watershed objects is obtained, 

along with the set of watershed pixels representing the edges 

between regions ( ( )Ω ⋅  denotes the crisp cardinality operator). 

The assignment of the watershed pixels to the neighboring 

objects is carried out as described in [2]. For each 
i

W , the 

standard vector median is computed: 

 
1

arg min
i j i

i

VM j
x W x W

x x x
∈ ∈

  
= − 

  
∑ , (1) 

and every watershed pixel is assigned to its neighboring object 

with the “closest median”, i.e. the distance between the vector 

median of this region and the watershed pixel vector is 

minimal. 

B. Fuzzy Membership Maps via Clustering  

Clustering is used to partition a data set into a number of 

 

Fig. 1.   Flowchart of the proposed scheme. 
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clusters, so that members of the same cluster are spectrally 

similar to each other. Contrary to hard clustering, fuzzy 

clustering methods provide for each pattern a degree of 

belongingness to every cluster. Specifically, after clustering 

each pixel x ∈ I�receives a vector with the associated fuzzy 

membership degrees: 

 ( ) ( ) ( ) ( )1 ,..., ,...,
j c

x x x xµ µ µ µ =   , (2) 

where c is the number of clusters. Based on these values, each 

pixel is assigned to a cluster label, following the max 

argument principle: 

 
1,...,

( ) arg max{ ( )}
j

j c

x xµ
=

=L , (3) 

where ( )⋅L  is the cluster label assignment function and 

1( ) { ,..., ,..., }
j c

x L L L∈L . As a result of clustering, c fuzzy 

membership maps (FMMs) are created. These maps contain 

all the important information required at the following stages 

of our method. Any unsupervised fuzzy clustering method can 

be used. In this work, we employed the standard fuzzy 

c-means (FCM) algorithm, a popular technique of this 

category.  

C. Assignment of Fuzzy Degrees to Watershed Objects 

In the proposed classification scheme, we regard watershed 

objects as structural units, instead of pixels. So, before 

proceeding to the image segmentation by GeneSIS, we need to  

determine the fuzzy content of each watershed object at the 

various cluster labels. To accomplish this task, the decision 

fusion approach of fuzzy integral is employed, which is 

defined with respect to a fuzzy measure, usually a gλ -fuzzy 

measure. Fuzzy integral has been used in previous works to 

combine the results of multiple classifiers [11].  

Here, all pixels contained in a watershed object are 

regarded as different (equivalent) sources of fuzzy 

information. Then, the fuzzy degrees conveyed by pixels will 

be combined via decision aggregation to produce the 

membership values of watershed objects.  

Let us consider an arbitrary watershed object 

{ }/ 1,..., ( )i

i j i
W x j W= = Ω , where each pixel i

j
x retains a 

vector ( )i

j
xµ  of fuzzy degrees. To calculate the membership 

degree of 
i

W  to label { }1,...k c∈ , we proceed along the 

following steps: 

1)    The fuzzy densities j

k
g represent the degree of 

importance of ( )i

k j
xµ  toward the final evaluation. In our 

case, these densities are determined locally by 

considering a 3x3 neighborhood ( )i

j
N x  of each pixel. 

Specifically, j

k
g  is defined as the fuzzy coverage of label 

k in ( )i

jN x  of the examined pixel:  

 
( )

( )

( )
i
j

k

j

k k

x N x

x L

g xµ
∈

=

= ∑
L

 (4) 

These densities are then normalized so as 
( )

1 1

1
iW c

j

k

j k

g
Ω

= =

=∑ ∑ . 

2)    Calculate the unique root 1λ > − of the equation 

 ( )
( )

1

1 1
iW

j

k

j

gλ λ
Ω

=

+ = +∏ . (5) 

3)    Sort the elements of { }( )i

k j
xµ in descending 

order: 1 ( )( ),..., ( )
i

i i

k j k j W
x xµ µ Ω  with 1( )i

k j
xµ denoting the 

highest membership value. 

4)    Sort the densities correspondingly, i.e. 
( )1,..., ij Wj

k k
g g

Ω
. 

5)    Set 1(1) j

k
g g=  and calculate the rest fuzzy measures 

according to the following recursion: 

 ( ) ( 1) ( 1), 2 ( )
jl jl

k k i
g l g g l g g l l Wλ= + − + − ≤ ≤ Ω . (6) 

6)    Finally, the membership value of 
i

W to label k is 

computed as: 

 { }{ }
( )

1
( ) max min ( ), ( )

iW
i

k i k jl
l

W x g lµ µ
Ω

=
= . (7)  

D. Connected Component Labeling 

Based on the above values, each watershed object is 

assigned to a cluster label, its dominant label, following the 

max argument principle: 

 
1,...,

( ) arg max{ ( )}
j

j c

W Wµ
=

=L . (8) 

 Adjacent watershed objects of the same cluster label can 

now be connected and are considered as hyper objects. This is 

achieved by applying a connected-component (CC) labeling 

algorithm, which merges spatially connected watershed 

objects that belong to the same cluster into a single hyper 

object. As a result, we obtain a cluster-based segmentation 

map containing the set of CCs: { / 1,..., ( )}
j

C j= = ΩC C . 

Further, each CC shares the same cluster label with its 

watershed objects:  
1( ) { ,..., ,..., }

j j c
C L L L∈L . The set of CCs 

is used in GeneSIS segmentation to accommodate the 

following tasks: estimate the size of components appearing in 

the uncovered area of the image, and delineate the active areas 

of the population chromosomes to be extracted as objects.  

E. Marker Selection 

After the formation of cluster-based CCs, we proceed to the 

marker selection step. Contrary to [7], marking is now 

performed on watershed objects instead of pixels. The 

watersheds to be marked are selected according to their size 

and their attributed fuzzy degrees. As a first step, we choose 

the watersheds with area larger than a specified threshold 

min

CΩ , which represents approximately, the area of the smallest 

region of interest we want to recognize. 

 Next, for the previously selected watersheds we consider 

the difference ( ) ( ) ( )
dom comp

W W Wµ µ µ∆ = − , where ( )
dom

Wµ  

is the highest fuzzy degree in the dominant cluster label and 

( )
comp

Wµ denotes the second highest degree associated with 

the most competing label. Since the membership values given 

by FCM are tight to unity, µ∆  is an indication of the 

confidence of the examined watershed. Large watersheds with 

degree difference above a defined fuzziness threshold 
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( )
th

Wµ µ∆ > ∆  are selected as markers. The value of 

th
µ∆ depends on the uncertainty from the clustering result. 

Highly mixed images need lower values, while those 

partitioned confidently take a higher one. Concluding, the 

most reliable watersheds will be marked with the goal to retain 

their label after segmentation by GeneSIS, and hence, prevent 

under-segmentation. Spatial regions not including markers are 

regarded as ambiguous and their label might change after 

GeneSIS. In the sequel, a cluster-based CC containing a 

marked watershed will be denoted as ( )m

i
C . 

F. Segmentation by GeneSIS 

In this stage the GeneSIS algorithm is performed, adapted 

to operate on a region-based image representation obtained by 

watershed transform. Each object extracted by GeneSIS is 

now considered as an aggregation of connected watershed 

objects existing in the terrain. Our aim with this step is to 

reduce the oversegmentation of watershed partition as well as 

the one of the cluster-based segmentation maps. Specifically, 

the objective is to partition the image into larger, more 

homogeneous and well shaped regions. An outline of the 

proposed segmentation algorithm is shown in Fig. 2. In the 

following, we describe the different parts of GeneSIS.  

1)  Iterative Object Extraction: GeneSIS is a sequential 

procedure, where at each iteration t, a unique object 
t

S  is 

extracted. Due to the iterative nature of GeneSIS, the covered 

part of the image gradually increases after each iteration. 

Henceforth, the set of extracted segments up to iteration t will 

be denoted as ( )tS , with the initial condition (0) = ∅S . On 

the other hand, the uncovered part of the image is constantly 

decreasing. So we need to define the set of uncovered 

cluster-based CCs after iteration t, which is denoted 

as ( )RC t and is initialized to the initial CCs, (0)RC = C .  

   2)  Size estimation of uncovered area: Given ( 1)RC t −  

and prior to the object search at iteration t, we compute the 

mean ( )
avg

A t  and standard deviation ( )
std

A t  of the area of all 

spatial structures existing in the uncovered part of the image. 

These quantities give an approximate view of the distribution 

of the remaining structures’ area, thus providing an estimation 

of the spatial scale to be searched in the sequel. They will be 

used by the Object Extraction Algorithm (OEA), in order to 

adjust the region growing capabilities of the GA individuals 

and adapt the object search to the spatial characteristics of the 

currently uncovered area. In their calculation, we exclude 

insignificant CCs with area smaller than
min

CΩ . Finally, ( )
avg

A t  

and ( )
std

A t  are updated after a fixed number of iterations (e.g. 

20), in order to reduce computational demands. 

3)  Object extraction algorithm: The object extraction 

algorithm (OEA) is the fundamental part at each extraction 

iteration, being implemented by a genetic algorithm (GA). 

Each individual in the population represents a different object 

and the evolutionary process tries to find the best possible 

object, by minimizing a specially designed fitness function. At 

the end of the GA, the elite individual contains the extracted 

object
t

S  which is extracted with its own cluster label. A 

detailed description of OEA is provided in section III. 

4)  Adaptation of covered and uncovered areas: After the 

extraction of
t

S , the set of extracted segments is updated as: 

 ( ) ( 1)
t

t t S= − ∪S S . (9) 

At the same time, we need to update the remaining part of the 

image. So, the watershed components of 
t

S are removed from 

the set ( 1)RC t − and each ( 1)
j

C RC t∈ − is rearranged as 

follows: 

 ( )j j j t
C C C S← ∩∖ , (10) 

where { }\ | ,A B x x A x B= ∈ ∉ , in order to create the 

( )RC t . The iterative process terminates, when a specified 

percentage P of the whole image has been covered 

(e.g. 90%P = ).  

5)  Assignment of remaining parts: The remaining part is 

mainly composed of small regions of uncertain label, 

dispersed around the image. These regions are finally 

apportioned to the already extracted objects via M-HSEG 

[12], a marker-based region growing method. The already 

extracted objects are considered as markers, with label the one 

assigned to them after GeneSIS. Also, the marker set contains 

the initially marked watersheds that have not been extracted 

yet. During the iterative region growing, merges between 

markers of different labels are prevented. The merging 

process stops when all unmarked watersheds are absorbed. 

The decision upon which pair of objects should be merged 

each time is made using a dissimilarity criterion. Since our 

algorithm operates on the fuzzy space of membership values 

instead of the spectral space, we employ the fuzzy region 

dissimilarity measure proposed in [5].  

G. Spectral-Spatial Classification 

Support vector machines (SVM) is a valuable classifier 

from machine learning that has attracted recently considerable 

GeneSIS Algorithm  

 
1:  Input: The membership values of watersheds  

                 The cluster-based CCs 

                 The set of markers of different labels  

2:  Initialize the sets of segmented and uncovered regions: 

     (0) =∅S ,  (0)RC =C  

3:  Set 1t =  

4:  Repeat 

5:       Estimate the size of the remaining objects 

          { }( ), ( )
avg std

A t A t  

6:       Search for a new object 
t

S  via OEA: 

          ( )( 1), ( ), ( )
t avg std

S OEA RC t A t A t← −  

7:        Adjust the covered / uncovered areas ( )tS , ( )RC t  

8:        1t t← +  

9:   Until the %P of the image has been covered 

10:  Merge small remaining components via region growing 

 11: Output: The final segmentation map of the image 

Fig. 2.   Outline of GeneSIS procedure. 

 

1979



 

 

 

interest in the analysis of remote sensing images.  Further, it is 

well recognized that the availability of fuzzy degrees of pixels 

to the various classes provides a better description of the 

image context. To this end, we perform a pixel-based 

classification using the fuzzy output SVM approach [13]. 

Following the one-versus-all (OVA) decomposition strategy, 

we first construct an ensemble of M binary SVMs 

{ }1( ),..., ( ),..., ( )
j M

f x f x f x , where M is the number of classes 

and ( )
j

f x denotes the decision function of the jth classifier, 

trained independently to discriminate class j from the rest of 

the classes. Then, the method manipulates the SVM decision 

values, providing for each pixel a membership vector: 

 1( ) ( ),..., ( ),..., ( )
j M

D x d x d x d x =   . (11) 

After GeneSIS segmentation, the image is partitioned into a 

set of objects. Following the spectral-spatial rationale [6], 

objects are finally assigned to the various class labels by 

combining the segmentation map with the pixel-based SVM 

classification results, via majority voting. Thus, all watershed 

regions lying within this object are assigned to the most 

frequent class label. 

III. OBJECT EXTRACTION ALGORITHM 

As mentioned earlier, OEA is a GA-based routine, each 

time searching for the best possible object to be extracted 

from the uncovered area of the image. Over the next 

subsections, we describe the main issues of the GA, such as 

the individual’s encoding, the population initialization, the 

fitness function and the genetic operators used. 

A. Chromosome Encoding 

Each individual represents a candidate object for extraction 

and is associated with a so-called basic search frame (BSF). 

BSFs are represented here as rotated rectangles of varying size 

and orientation. An individual of the population is encoded as 

a sequence of five real-coded genes: 

 ( )( ) ( ) ( ) ( ) ( )

1 1 2 2, , , ,k k k k k

k
O x y x y ϑ= , (12) 

where ( )( ) ( )

1 1,
k k

x y and ( )( ) ( )

2 2,
k k

x y represent the upper-left and 

lower-right corners of an axis-aligned rectangle and 
( )

[ 90 ,90 ]
kϑ ∈ − ° °  is the rectangle’s orientation with respect to 

the vertical axis.  

In this version of GeneSIS, where watershed objects are 

regarded as structural units, it is not straightforward to define 

which objects should be contained in BSF. We choose to 

consider as internal, those objects whose geometric centroid is 

included within the borders delineated by BSF. In that respect, 

a BSF can be viewed as spatial loop placed somewhere over 

the image, which embraces a collection of adjacent watershed 

regions.  

B. Population Initialization 

Exploiting the information contained in ( 1)RC t − , the 

individuals of the initial population are placed at spatial 

regions covered by large CCs. Particularly, in order to 

create
k

O , we select randomly a component ( 1)
k

C RC t∈ −  

with a probability proportional to its area, and find its 

bounding box of arbitrary orientation ( )
k

BB C , where 

( )BB ⋅ denotes the bounding box operator. The bounds of 

( )
k

BB C are next expanded along all its directions by a random 

offset [1, ]δ τ∈ , where τ is relatively small integer (e.g. 

20τ = ), so as to create the
k

O . The above initialization 

assures that the evolutionary search will be focused mostly on 

large and uncovered areas. 

C. Active Region Determination 

When evaluating candidate solutions, we are particularly 

interested in obtaining an object the major part of which is 

homogeneous, i.e., it contains watersheds with high fuzzy 

degrees in the same cluster label. Nevertheless, owing to the 

genetic evolution, an object may be located spatially in such a 

way that some watersheds included in the BSF are already 

extracted at previous invocations of the OEA, while some 

others are marked with a different label. To cope with this 

situation, an object 
k

O   is evaluated in terms of the so called 

active area, denoted as ( )k
AR O . 

The determination of the active area is accomplished as 

follows. In the first step, we remove from 
k

O watersheds 

extracted from previous calls of OEA, since our main 

objective is to segment currently uncovered regions of the 

image. Let us define the overlapping region between 
k

O and 

the already extracted segments
t

S : 

 ( ) ( 1)k kOVE O O t= −∩S . (13) 

The remaining area
k

O′ , obtained by excluding ( )k
OVE O  

from 
k

O is determined by 

 ( )\
k k k

O O OVE O′ = . (14) 

Next, we determine the dominant cluster label of the 

individual. This is decided on the basis of the fuzzy coverage 

of 
k

O′ for the different cluster labels: 

 � ( )
'

( )

( ) ( )

k

j

j k j

W O
W L

O W Wµ
∈

=

Ω = Ω∑
L

. (15) 

� ( )j k
OΩ indicates the fuzzy degree to which watersheds of 

label j exist in 
k

O′ . Finally, the dominant label of 
k

O  is 

derived via the max argument rule:  

 ( ) � ( ){ }
1,...,

arg max jk k
j c

O O
=

= ΩL . (16) 

Generally, the sub-area 
k

O′ includes watersheds of the 

object’s cluster label, as well as watersheds assigned to 

different labels. The former are regarded as positive examples 

(PEs) whereas the latter ones are considered as negative 

examples (NEs). The homogeneity property of a region 

dictates that 
k

O′  should contain as many PEs as possible with 

strong fuzzy degrees, and a smaller portion of NEs, preferably 

with lower degrees to other labels. A special occasion of 

interest occurs when 
k

O′  includes sections of NEs with 

1980



 

 

 

marked watersheds inside. Let us define these sections as a set 

comprising the marked overlapping regions of 
k

O′ with the 

uncovered CCs of different labels: 

 ( ) ( )
( )( 1)

( )
'

1
( ) ( )j k

RC t
m

k k j

j
C O

OVM O O C

Ω −

=
≠

= ∩∪
L L

. (17) 

In the following, ( )k
OVM O is excluded from 

k
O′ . This is 

explained by noticing that, based on the marker selection 

scheme (Section II.E), marked image parts are considered as 

large and confident regions, as dictated by cluster-based 

analysis. Thus, it seems reasonable to allow them be absorbed 

by a different object at a subsequent invocation of OEA. 

Moreover, with this removal we avoid under-segmentation, 

since the object is prevented from expanding into regions of 

possibly different label. The active area of a candidate 

solution is now formulated as follows:    

 ( ) ( )( ) ( )
k k k k

AR O O OVE O OVM O= ∪∖ . (18) 

Finally, an important requirement of our method is that the 

active area should be a connected component. This constraint 

is imposed in order to avoid the extraction of spatially disjoint 

segments of the same label from a single call to the OEA. The 

connectedness condition is satisfied by applying on ( )
k

AR O  

the CC labeling algorithm. In case that the active area is not 

connected, we find the component with the largest area 
( )

max

k
ARC , and consider this component as the new active 

region, i.e. ( )

max( ) k

k
AR O ARC= .  

After the previous readjustments, ( )
k

AR O  is a subset of 

k
O  and its location may differ significantly from the 

corresponding rectangular area of BSF. For this reason, 

chromosome is repaired and limited to the bounding box of its 

active region, i.e.: 

 ( )( )rep

k k
O BB AR O= . (19) 

Henceforth, we will consider that chromosomes have been 

repaired and that their active region is connected. The active 

area represents the useful region of an individual; its fuzzy 

content is exclusively employed in the fitness function 

calculations, discussed next.  

D. Fitness Function 

The determination of fitness function is of particular 

importance for the GA and hence the OEA. The suggested 

fitness function design aims at fulfilling three goals 

simultaneously: the extracted objects should be large, 

homogeneous (that is, they should not contain mixed regions 

of different labels), and smoothly shaped. The first two 

objectives are attained by means of the coverage and 

consistency criteria, while for the third one we devise a 

suitable smoothness criterion. All fitness components are 

computed in a fuzzy manner by manipulating the fuzzy 

degrees of watersheds to the cluster labels.  

Given the dominant label of 
k

O , we define the fuzzy 

coverage of the PEs and NEs, respectively, covered by the 

active area of 
k

O : 

 � ( )
( )

( ) ( ) ( ),

( ) ( )
k

j k

p k j

W AR O

W L W O

O W Wµ
∈

= =

Ω = Ω∑
L L L

, (20) 

 � ( )
( )

( ) ( ) ( ),

( ) ( )
k

j k

n k j

W AR O

W L W O

O W Wµ
∈

= ≠

Ω = Ω∑
L L L

. (21) 

The coverage criterion promotes the extraction of large 

objects by maximizing the fuzzy coverage of PEs. The notion 

of a large object is strongly related to the size of existing 

components in the uncovered part of the image, and therefore 

differs along the various extractions of GeneSIS. In order to 

match the GA search to the currently available components 

size, we define a threshold value ( )
thr

A t  that is considered as 

an estimate of a large object’s area:  

 ( ) ( ) ( )
thr avg std

A t A t A t= + . (22) 

The coverage fitness [0,1]
COV

f ∈  is then defined by passing 

� ( )p k
OΩ through the following monotonically increasing 

sigmoid function: 

 
� ( )( )( )

1

1
p k avg

COV b O A t
f

e
− Ω −

=
+

. (23) 

Parameter b controls the slope of the sigmoid; it is defined so 

that for the threshold value ( )
thr

A t  we obtain a large coverage 

value d (for example, 0.99d = ). Notice that objects with   

� ( ) ( )p k avgO A tΩ = are assigned a fitness value 0.5
COV

f = , 

thereby being regarded as solutions of moderate quality. In 

addition, highly qualified solutions with 1.0
COV

f ≅ are 

obtained for objects whose active areas fulfill the condition 

� ( ) ( )p k thr
O A tΩ ≥ . As a result, GA search is properly adapted 

to the scale of the uncovered area of the image, while at the 

same time promotes the extraction of large objects, thus 

avoiding oversegmentation. 

Consistency serves as a measure of the region’s 

homogeneity, acting along an opposite direction to the 

coverage criterion. It prevents the continuous growing of an 

object and its expansion into highly mixed regions, thereby 

avoiding under-segmentation. Let � ( )p k
G O  denote the 

cumulative degrees of NEs to the object’s label: 

 � ( )
( )

( ) ( ) ( ),

( ) ( )
k

k j k

p k j

W AR O

O L W O

G O W Wµ
∈

= ≠

= Ω∑
L L L

. (24) 

This term represents the penetration of the dominant label in 

NEs and is an indication of their ambiguity. NEs with higher 

values of � pG  are more consistent than those with low values 

of � pG . Finally, the consistency fitness [0,1]
CONS

f ∈  is defined 

as follows: 

 

� � �

� �( ) �

� �( )

0,

, .

p np

p np
CONS

p p

G

Gf
otherwise

G

 Ω + ≤ Ω
 Ω + − Ω= 


Ω +

 (25) 

A zero consistency value is assigned to those objects that 

cover more NEs than PEs. The fitness value then increases 

linearly to 1 when the number of NEs diminishes. Thereby, 
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consistency encourages the formation of objects covering a 

large number of confident PEs and fewer NEs. 

The third fitness component quantifies the smoothness of 

the object and serves as a measure of textural homogeneity, 

since it evaluates the shape of the object. Objects with strongly 

irregular shape are penalized, to avoid the simultaneous 

extraction of spatially distant regions of the same label. 

Smoothness is defined as the ratio between the area of 

( )
k

AR O and the area of its arbitrary oriented bounding box: 

 ( ) ( )
( )

( )
k

SMO k

k

AR O
f O

BB

Ω
=

Ω
, (26) 

where ( )( )
k k

BB BB AR O= . The above quantity measures the 

matching degree of an object with the rectangular prototype 

shape. Objects with nearly rectangular shapes receive high 

SMO
f  values, while those with irregular shapes are penalized. 

The overall fitness function is obtained by combining the 

above three criteria: 

 
COV CONS SMO

f f f f= ⋅ ⋅ . (27) 

During the initial iterations where the image is mostly 

uncovered, the OEA extracts large and pure objects, which 

fulfill both coverage and consistency criteria to a high degree. 

As the image is progressively segmented, the OEA spatially 

achieves an optimal balance between coverage (region 

growing) and consistency (homogeneity), while maintaining 

the shape of the object into acceptable limits. 

E. Genetic Operators 

The well-known one-point crossover operator is applied 

here with a probability
c

p . In the mutation, each gene is 

chosen with a probability 
m

p and assigned to a random value 

from its domain. The mutation rate is defined as the inverse of 

the number of genes in the solution encoding (0.2 here). 

Tournament selection is used for selecting individuals to be 

recombined for the next generation, while elitism ensures that 

the fittest solution is retained during evolution. The above 

operators comprise the main mechanism of the search 

procedure. Starting from the initial population of rectangles 

and through crossover and mutation operators, new rectangles 

are created at each generation of the GA. Thus the search 

space is explored and via the survival of the fittest individuals 

the GA leads to a desirable solution. The algorithm terminates 

after a maximum number of iterations, or when the fitness 

value of the best individual does not increase after a fixed 

number of generations. 

At the end of each generation, a specially designed local 

tuning operator [7] is applied on the elite individual to 

improve its fitness. After the first generations, the population 

usually converges to a specific region, so this operator assists 

in finding quickly a better solution, thus boosting spatial 

search. 

IV. EXPERIMENTAL RESULTS 

The proposed methodology was tested on a hyperspectral 

image, acquired by the ROSIS-03 sensor over the University 

of Pavia, northern Italy. The image is 610 340× pixels with a 

spatial resolution of 1.3 m/pixel. The number of spectral 

bands in the original image is 115, with a spectral range from 

0.43 to 0.86 µm. The 12 noisiest channels have been removed 

and the remaining 103 were used in our experiments. A 

three-band true color composite and the reference data are 

shown in Fig. 3(a) and (b), respectively. For the number of 

training and testing samples per class, the reader can refer to 

[7]. 

Watershed segmentation is initially performed as described 

in section II.A and the resulting map is shown in Fig. 3(c). In 

this image each watershed is represented by its mean spectral 

value on an arbitrarily chosen band (Band 60). As expected, 

the image is highly oversegmented containing small, 

well-shaped and compact watershed regions, with the 

exception of some larger components resulting after gradient 

thresholding. This fine segmentation result forms the initial 

map of structural elements used as the basis for the GeneSIS 

operation. After the assignment of the watershed pixels to 

their neighboring objects, a segmentation map with 9,152 

initial watersheds is created.  

For the generation of FMMs, FCM clustering is performed 

with 9c =  clusters (equal to the number of classes). The FCM 

algorithm is applied on a reduced space of ten features 

obtained by applying the PCFA method [14]. The method 

selects ten distinguishing groups of adjacent bands: 1-4, 5-10, 

11-24, 25-35, 36-43, 44-68, 69-72, 73-75, 76-79, and 80-103. 

The spectral values are then computed by averaging over the 

bands pertaining to each group. After computing the 

membership degrees of watershed objects via fuzzy integral, 

we apply the CC labeling algorithm with four neighborhood 

connectivity. The resulting cluster-based segmentation map is 

shown in Fig. 3(d), where different colors correspond to 

different cluster labels. This map contains 2,053 objects, 

considerably fewer than watershed segmentation. 

Nevertheless, over-segmentation is still observed, since 

several ground truth components of meadows and bare soil are 

split into different cluster labels. 

In the marker selection stage, we set 
min 20
CΩ =  as the size 

of structures to be marked, in order to enable GeneSIS 

recognize the small components of trees and shadow classes. 

The global threshold of fuzziness 
th

µ∆ is set to the median 

of ( )Wµ∆ , specifically 0.35
th

µ∆ = . As a result, 4,218 

watersheds are selected for marking, less than half of the ones 

contained in the initial watershed segmentation map. 

In the following, we proceed to image segmentation by 

GeneSIS. Table I shows the GA parameters of OEA used in 

our experiments. Due to the stochastic nature of GeneSIS, we 

performed 30 independent runs with random initial seeds, to 

obtain a robust assessment of our methodology. GeneSIS 

terminates when the 90% of the image has been covered. The 

remaining components are merged to the previously extracted 

objects via region growing. One of the segmentation maps 

obtained by GeneSIS is displayed in Fig. 3(e), where 1,315 

segments were extracted. On average, GeneSIS generated 

1,304.15 objects, considerably smaller than the initial number 

of 9,152 connected components. In addition, it should be 

stressed that the extracted objects appear with varying shapes 
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and irregular boundaries. Particularly, their shapes are 

delineated from the boundaries of watershed objects included 

in the BSFs. This is a major difference to the previous version 

of GeneSIS where, depending on the parameter settings of the 

smoothness fitness, the delineated boundaries were affected 

more strongly by the rectangular shape of BSFs.  

Pixel-based classification is performed by fuzzy output 

SVM using the complete space of 103 spectral bands. The 

RBF kernel was considered while the optimal parameters were 

chosen by 5-fold cross validation: 8C = and 52γ −= . After 

hardening of fuzzy degrees, we obtain the supervised 

classification map shown in Fig. 3(f). As can be seen, most of 

the classes are correctly classified, with the exception of the 

large meadows region in the lower part of the image. Due to 

high spectral similarity, SVM confuses meadows, primarily 

with bare soil and the trees classes. Furthermore, in the 

absence of contextual information, the SVM map is highly 

fragmented. This map is next combined with the GeneSIS 

segmentation result via majority voting to obtain the final 

classification result. The classification map corresponding to 

the segmentation map of Fig. 3(e) is depicted in Fig. 3(g), 

exhibiting an overall classification accuracy of 95.35%. The 

result classifies accurately the image scene and resolves the 

mixing of the meadows area in the lower part of the image. 

Table II hosts the classification results of pixel-wise SVM, 

the pixel-based and region-based versions of GeneSIS, along 

with two other object-based approaches. Wat+MV stands for 

majority voting performed within each watershed object, 

individually [2]. Finally, minimum spanning forest (MSF) 

[15] is a region growing method, requiring a set of 

class-labeled markers. In order to obtain these markers, the 

             
                           (a)                                                          (b)                                                      (c)                                                        (d) 

 

                  
                         (e)                                                         (f)                                                         (g) 

Fig. 3. University of Pavia image. (a) Three-band color composite. (b) Reference sites. (c) Watershed segmentation map. (d) Unsupervised cluster-based 

segmentation map by FCM clustering. (e) Segmentation map after GeneSIS and merging of small components. (f) SVM pixelwise classification map. (g) 

Final classification map. 
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procedure described in section II.C-E was repeated, this time 

on the supervised fuzzy maps resulted from FO-SVM. The 

marking parameters in this case are set to 
min 20
CΩ = and 

0.3
th

µ∆ = , respectively. All the above approaches are 

evaluated by means of overall accuracy (OA), average 

accuracy (AA), kappa coefficient k, and class-specific 

accuracies. The average OA over the 30 different runs are 

presented for the two different GeneSIS versions, while the 

rest accuracies refer to the run exhibiting the maximum OA. 

GeneSIS was coded in C++, and all experiments were 

conducted on an Intel Core 2 Quad Q9650 at 3.0 GHz. 

The results show that all segmentation-based methods 

outperform in general the pixel-based SVM, since they 

combine the SVM evidence with spatial information acquired 

from segmentation. Only in the trees class, SVM is superior to 

the comparing methods, indicating thus a drawback of the 

object-based approaches in handling small sized classes. In 

regard to the two GeneSIS methods, it can be noticed that both 

attain similar maximum OA, while the region-based approach 

performs considerably better than the pixel-based one in terms 

of average performance. This indicates the enhanced 

robustness of the proposed scheme in providing, consistently, 

qualifying results. Moreover, the region-based representation 

of image data leads to a significant reduction (73%) of 

execution times. Particularly, pixel-based GeneSIS requires 

830.53 (s) while the region-based one needs 222.55 (s), on 

average.  On the other hand, both competing methods are 

inferior to GeneSIS according to all global accuracy 

measures. The MSF classifies successfully most of the classes, 

but fails to handle with the mixed and large classes of 

meadows and gravel. Contrarily, GeneSIS achieves high 

accuracies in all classes. 

V. CONCLUSIONS 

A novel version of the GeneSIS algorithm is presented in 

this paper, where the main segmentation is performed on an 

initial region-based map of the image acquired via watershed 

transform. The effectiveness of the proposed scheme is 

validated on the classification of a high-resolution 

hyperspectral image. Comparing to the pixel-based GeneSIS, 

the execution time is now reduced considerably by an amount 

of over 70%. At the same time, higher average accuracies are 

exhibited, indicating enhancement of the method’s 

robustness. Finally, more flexible and arbitrarily shaped 

objects are obtained, since their shapes are now formed by the 

boundaries of the watershed objects included in the BSFs. 
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TABLE I.         PARAMETERS USED IN THE OEA 

Parameter Value 

Maximum number of generations 1000 

Number of generations allowed without change 80 

Population size 20 

Tournament size 2 

Crossover probability 0.8 

Mutation probability 0.2 

 
TABLE II.    CLASSIFICATION ACCURACIES FOR THE UNIVERSITY OF 

PAVIA IMAGE 

 SVM Pixel-based 

GeneSIS 

Region-based 

GeneSIS   

Wat 

+ 

MV 

MSF 

OAavg - 90.95 92.06 - - 

OA 81 95.27 95.35 87.08 88.55 

AA 88.15 95.81 95.54 93.32 92.61 

k 75.74 93.67 93.76 83.34 85.14 

Asphalt 76.51 94.62 94.32 90.63 96.84 

Meadows 73.59 94.96 95.66 78.25 80.46 

Gravel 71.35 92.18 86.94 79.06 74.55 

Trees 98.70 88.87 89.32 97.97 92.89 

Metal 

sheets 
99.01 96.05 98.74 99.46 99.91 

Bare soil 91.80 98.99 98.43 97.24 98.23 

Bitumen 91.54 99.18 98.37 98.78 99.59 

Bricks 91.14 97.89 98.04 98.63 99.67 

Shadows 99.75 99.50 100 99.87 91.32 
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