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Abstract—This work presents the development of a 

simulation model based on a recurrent fuzzy system with 

structure and parameter identification by a differential 

evolution algorithm. The proposed model is formulated by state 

space equation, in which the state transition function is a 

recurrent fuzzy system with two feedback connections and 

adjustable delay operators and the output function is a linear 

function of the states. The identification process relies on two 

instances of the differential evolution algorithm in a 

hierarchical fashion. The outermost is considered for 

combinatorial structure optimization and the innermost for 

optimization of continuous parameters. The new model is 

evaluated in some benchmark problems and the results showed 

the model achieved good numerical performance. Moreover, the 

results demonstrated the ability of differential evolution 

algorithm to optimize both the parameters as well as the 

structure of the model. 

I. INTRODUCTION 

ECURRENT  fuzzy systems (RFS) [1] have been attracting 

great interest of researchers due to promising results in 

processing nonlinear dynamical systems [2]-[18]. They are 

characterized by feedback connections in their structure. 

Owing to their internal dynamic behavior, they deal with the 

reduction of the input dimension, yielding more compact 

models.  

Many recurrent fuzzy systems have been recently 

proposed. They differ mainly in the recurrent structure and in 

the parameter identification method employed. Regarding 

recurrent structure, some approaches consider feedback 

connections from the output [2], [6], [10] while others use 

feedback connections from internal state variables [1], [3]-[5], 

[7]-[9], [11]-[18]. Some approaches that account for feedback 
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connections from internal variables also explore features of 

local recurrence by feeding the output of internal elements 

locally back to itself [3], [7], [13]-[16], [18]. 

Regarding the parameter identification task, the main 

methods are based on evolutionary or gradient-based 

optimization, the latter being the most common approach 

[1]-[3], [5], [7], [9]-[10], [15]. Although their wide use, the 

gradient computations for recurrent structures of the neural 

learning methods are complex in derivation, easily trapped at 

local minima and highly dependent on the model structure as 

well.  

To avoid gradient issues in recurrent fuzzy systems 

development, some authors propose evolutionary and swarm 

algorithms since they are derivative-free, stochastic and 

population-based optimization methods. Some examples are 

genetic algorithms [4], [5], [8], [12]; particle swarm optimization 

[11]; ant colony optimization [17]; and differential evolution 

[13]. In the last years, differential evolution (DE) [19], an 

evolutionary algorithm for continuous search spaces, has 

been attracting increasing interest for its simplicity as well as 

its ability to find the global optimum in different types of 

complex optimization problems [20]-[21], including system 

identification [13], [22]-[24]. In this particular case, DE seems to 

be a good choice since it can be used for learning models with 

different types of structures. 

This work presents a simulation model based on a recurrent 

fuzzy system with simple structure and good performance. The 

model structure has two feedback connections and adjustable 

delay operators, as shown in Fig. 1. To provide memory to the 

model, the state feedback connection feeds the model internal 

variables back to its input, while the output feedback 

connection feeds the estimated model output back to the 

model input. Additionally, the adjustable delay operators are 

used to improve the model ability to cope better with dynamic 

systems with time delay. Furthermore, it is also supplied a 

method to identify the best blend of the structure and the 

parameters of a model using two instances of a differential 

evolution algorithm in a hierarchical fashion. 

The contributions of this work are threefold. First, the model 

is designed to cope with simulation problems as in [1], [9], [12] 

while most of RFS found in the literature can cope only with 

prediction problems. Second, the model proposed has a simple 

recurrent structure that is different from others RFS. The last 

contribution is to employ the DE algorithm to identify the 

structure of the model, besides the usual approach of 

optimizing its parameters [13], [22]-[24].  

The paper is organized as follows. The next section 

describes the model proposed. Section III introduces the 
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differential evolution algorithm. Section IV presents the 

model’s identification approach. The experiments and results 

are covered in Section V. Ultimately, the conclusions are 

discussed in Section VI.  

II. RECURRENT FUZZY SYSTEMS 

Recurrent Fuzzy Systems (RFS) are extensions of traditional 

fuzzy systems with some kind of recurrence in their structures, 

allowing the approximation of unknown order dynamic 

processes [1]. In this work, the structure of the model 

proposed has two feedback (state and output values) 

connections and adjustable delay operators, as shown in Fig. 

1. Discrete in time non-linear dynamic systems can be 

represented by state space equations as: 
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in which  1
1
tx  and  tu  are the state and input vectors, 

respectively;  f  and  g  are the state transition and output 

functions;  tŷ  is the output value of the system; and 
u

  and 

ŷ
  are the adjustable delay operators of the input and 

feedback signals. In special, 

      1,...,t
11

 ntt xxx  (2) 

is the state vector made up by delayed copies of the first state 

variable, and the output function 

    ttg
i

n

i i
xx   10

  (3) 

represents a polynomial function in which 
i

  is the coefficient 

of the state variable  t
i
x , and 

0
  is the independent term. In 

Fig. 1, respectively, uq
 , 1q  and yq

ˆ
 are the delay 

operators of the input, state and output signals. 

 

Figure 1.  The structure of the proposed recurrent  fuzzy system. 

The differential evolution-based recurrent fuzzy system 

(DE-RFS) proposed in this paper is a zero-order TSK fuzzy 

system using membership functions [12] with regular and 

strong partitions of the variables spaces, such that the fuzzy 

partition is parameterized only by the location of triangles 

centers. The recurrent fuzzy rules are written as: 
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in which 
i

X , 
j

U  and 
k

Q  are the fuzzy sets of the state, input 

and output variables, respectively; and 
n

  is the parameter 

which defines the conclusion of the n-th rule. 

The fuzzy sets 
i

X  and 
j

U  are multidimensional fuzzy sets 

and are defined as the Cartesian product of the fuzzy sets of 

their vectors’ components. Therefore, their membership 

functions are the tensor product of their components 

membership vectors [12]. By using the product t-norm, the 

activation value of the n-th rule is calculated as: 

          
yQuUX

tytutw ˆ
ˆt   μμxμ  (5) 

in which    t
X
xμ ,   

uU
tu μ  and   

yQ
ty ˆ

ˆ μ  are the 

vectors of the membership functions of the fuzzy sets of the 

state, input and output variables, respectively and   is the 

Kronecker tensor product. So, the output of the SFR proposed 

is: 

   θw tx 1t  (6) 

The size of the rule base is determined by the number of 

fuzzy sets used by the fuzzy partitions of the variables in the 

antecedent. As all state variables represent the same 

information, they can use the same partitioning scheme. 

Therefore, only the input variables are partitioned in a specific 

way and the size M of the rule base is calculated as: 





uni

iuy

xn

x
pppM

..1
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in which 
x

n  and 
u

n are the amounts of states and input 

variables; 
x

p  is the number of fuzzy sets defined for the state 

variables domain; 
y

p ˆ  is the number of fuzzy sets for the 

feedback variable domain; and 
iu

p  is the number of fuzzy sets 

of the i-th input variable. 

 

III. DIFFERENTIAL EVOLUTION 

The differential evolution optimization is a simple, efficient 

and robust technique able to deal with non-differentiable, 

non-convex, nonlinear and multimodal objective functions. Its 

main feature is the use of difference vectors to create new 

candidate solutions in the search for the best solution. There 

are several differential evolution variants and this paper 

adopts the canonical strategy DE/rand/1/bin, the most often 

one [13], [20]-[21], [23]-[24]. 
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The population of the DE DNPR V  is comprised by NP 

real encoded vectors D

i
Rv  randomly initialized in a 

continuous space, such that 

DjNPivvv
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,,

min

,
  (8) 

in which min

, ji
v  and max

, ji
v  are respectively the lower and upper 

limits of each variable. 

Three evolutionary operators – mutation, crossover and 

selection – are used to evolve the initial population towards 

the best solution, in which the mutation and crossover 

operators are used to generate new experimental vectors. The 

mutation operator is defined as: 
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in which c is the generation; c

i
z  is the new vector; c

r1
v  is the 

base vector; F is the scale factor of the difference between the 

differential vectors c

r 2
v  and c

r 3
v ; and  NDrrr ,1

321
  are 

all indexes randomly selected.  

In turn, the binomial crossover operator is defined as: 
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in which the indexes c, i e j are related respectively to the 

generation, the vectors and their components; 
c

ji ,
s , 

c

ji ,
z  and 

c

ji ,
v  are respectively the trial vector component, the vector 

component after mutation and the base vector component; CR 

is the crossover constant;  1,0rnd
j
  and  ND,1j

rndn
 . 

The selection mechanism is responsible for choosing the 

best vector between the base vector and its trial alternative for 

the next generation. It is made by comparing their fitness 

values using the objective function  J  in such a way that:  
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The objective function  J  used in this paper is the root 

mean square error (RMSE) between the real output and its 

estimation by the model output, computed as: 

     


N

t
tyty

N
J

1

2
ˆ

1
 (12) 

These three operators are iteratively applied to the vectors 

of the population until some stop criterion is met. Generally, a 

maximum number of generations/evaluations is used. 

IV. THE IDENTIFICATION APPROACH 

The proposed approach simultaneously identifies the 

structure and the parameters of the model using two instances 

of the differential evolution algorithm in a hierarchical fashion. 

The outermost algorithm (DE1) deals with the structure 

optimization while the innermost one (DE2) copes with the 

parameters optimization. For each structure evaluated, a new 

parameter set is optimized in order to find the best blend 

structure-parameters. The proposed approach is depicted 

using flowcharts (Fig. 2, Fig. 3 and Fig. 4). The Fig. 2 and Fig. 3 

represent DE1 while Fig. 4 represents DE2. The Fig. 3 portrays 

the objective function of DE1. 

The structure identification process defines the model 

order, the number of fuzzy sets in the domain of each variable 

considered in the antecedent of the rules and the values of the 

delay operators. In such a case, the following design vector is 

defined: 

 
yuyuxx

pppn ˆˆ ,,,,, v  (13) 

in which each component 
i

v  is an integer number which may 

take only a small finite number of discrete values defined a 

priori. Therefore, the structure identification is addressed as a 

combinatorial optimization problem. 

 

Figure 2.  Simultaneous structure and parameters identification 

approach. 

Since differential evolution encodes all its vectors internally 

as floating-point numbers regardless the type of the design 

variables, the continuous values of the vectors are rounded 

towards the nearest allowed integers only in the objective 

function in such a way that no change is made in the 

differential evolution algorithm. This strategy is a very simple 

one and presented good results. 

The structures evaluation process employs two verification 

phases. The first one ensures that only valid structures will 

have their parameters optimized. In this case, invalid structures 
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are penalized with a very high fitness values. The other 

verification ensures that only new structures are evaluated 

into every generation to avoid unnecessary reevaluation of 

structures that had already been discovered. 

 

Figure 3.  Structures Evaluation Process. 

The parameter identification is simpler than the structure 

identification and must adjust the free parameters associated 

with the rule conclusion. In this case, another design vector is 

defined: 

 v  (14) 

Therefore, the parameter identification issue is addressed as 

a continuous optimization problem. 

 

Figure 4.  Parameters Optimization Process. 

V. EXPERIMENTS AND RESULTS 

This section illustrates the performance of the proposed 

model in three benchmark examples. The first two examples are 

nonlinear dynamic systems and the last one is a chaotic time 

series. 

A. Simulation Examples 

1) Example #1 

The system to be identified in this example is described by 

the following equation: 

 

)2(2)1(21

)(1)2()1()2()1()(
)1(






tyty

tutytutytyty
ty  (15) 

The training dataset was computed from an input generated 

as follows: 400 samples of an independent and identically 

distributed uniform sequence over the interval  1,1 and 400 

samples of a sinusoidal signal )45/sin(05.1)( ttu  . The 

validation dataset was generated considering 1000 samples of 

an APRBS sequence on the interval  1,1 . Ultimately, the 

testing dataset was generated considering 1000 samples of the 

following signal: 
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2) Example #2 

In this example, the system to be identified is portrayed by 

the following equation, which has longer input delays than 

Example #1: 

       

   32.0201.0                

11025.072.01
2 



tutu

tutytyty
 (17) 

The training, validation and testing datasets for this example 

were generated using the same control inputs described in the 

previous example. 

3) Example #3 

This example deals with the identification of the Henon 

chaotic discrete-time series, described by the following 

delay-difference equation: 

      113.04.11 2  tytyty  (18) 

Three thousand samples are generated by the initial state 

      4.0,4.00,1 yy  in which the first 1000 samples are used 

for training, the following 1000 samples for testing and the 

remaining 1000 samples are used for validation. 
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B. Experimental Setup 

After some preliminary experiments, the control parameters 

of both differential evolution algorithms DE1 and DE2 were 

defined as: 

 DE1:  NP=12; CR=0.3; F=random(0.3, 0.9) ;   

 MAX_GEN=50  

 DE2:  NP=20; CR=0.8; F=random(0.3, 0.9) ;   

 MAX_GEN=1500  

The identification approach was run 50 times for each 

problem with different random number generation seeds due to 

the stochastic nature of the differential evolution. 

The design vector v  used by DE1 is defined in such a way 

that  3,1
1
v  accounts for the number of states variables;  

 9,2,,
432
vvv  account for the number of fuzzy sets in the 

domain of state, input and feedback output variables, 

respectively;  5,0
5
v  accounts for the lag of input variable; 

and  5,1
6
v  accounts for the lag of feedback output variable. 

The design vector v  used by DE1 is defined in such a way 

that its components  1,0
i
v . 

The identification process starts with the standardization of 

the variables used in the interval  1,1 . The minimum and 

maximum outputs of the plant are then stored to convert the 

model output into the actual system scale. The results and 

discussions of the experiments are described in the next 

subsection. 

C. Results and Discussion 

The plot of the DE-RFS output against the actual systems 

output, as described in the section V-A, are shown 

respectively in Fig. 5, Fig. 6 and Fig. 7. It can be observed that 

the DE-RFS can track adequately the actual systems. 

Table 1 compares the results obtained by the proposed 

method (DE-RFS) to those ones recently reported in the 

literature. The performances of the presented model are 

described in terms of RMSE averages and standard deviations 

after 50 runs with different random number generation seeds. 

The proposed method is better than those ones presented in 

the Table 1, at the same time, only in the Example #2. Regarding 

Examples #1 and #3, the proposed method is comparable to the 

others, except the methods presented in [13] and [7], 

respectively, which achieved better performance than this 

proposed method. 

As well as the RFS proposed in this paper, the RFS 

presented in [9] and [12] are both based on state-space 

equations and their structures do not rely on the actual system 

output. On the other hand, all others RFS in the Table 1 

consider the actual system output in their structures. Likewise, 

only [12] and [13] use an approach based on evolutionary 

optimization algorithms while all others are based on neural 

learning. In [12] the authors use a simple genetic algorithm to 

optimize the parameters of rule conclusions while in [13] the 

authors use a differential evolution algorithm to adjust fuzzy 

weights and biases of a recurrent fuzzy neural network, 

expressed as triangle fuzzy numbers. 

TABLE I.  COMPARATIVE ANALYSIS ON T EST DATA 

Model Example #1 Example #2 Example #3 

 Params RMSE Params RMSE Params RMSE 

DE-RFS 

(std.dev.) 
92 

0.0261 

(0.0021) 
26 

0.0080 

(0.0009) 
128 

0.0121 

(0.0013) 

RSEFNN–L

F [15] 
34 0.0383 30 0.0279 94 0.0031 

LRFNN–SV

R [14] 
29 0.0296 29 0.0306 31 0.0155 

TRFN–S [5] 33 0.0346 33 0.0313 36 0.0206 

IRSFNN 

[18] 
42 0.0310 26 0.0220 40 0.0140 

RFNN [3] 112 0.0114 - - 60 0.0469 

RIFNN [16] - - 36 0.0288 54 0.0510 

RCNFS [7] - - 27 0.0221 - 0.0035 

RFNN–DEO 

[13] 
96 0.0064 - - - - 

CReNN [9] 51 0.2247 - - - - 

RFS–TSK 

[12] 
47 0.0600 - - - - 

 

However, unlike this proposed approach, which uses the 

differential evolution as a tool to identify both the structure 

and the parameters at the same time, the methods presented in 

[12] and [13] employ evolutionary optimization algorithms as a 

tool to identify only the parameters. Moreover, all methods in 

Table 1 but [12] use Gaussian membership functions, whose 

parameters are also optimized, yielding fuzzy sets without 

linguistic meaning. 
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Figure 5.  Model average performance on Example #1. 
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Figure 6.  Model average performance on Example #2. 
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Figure 7.  Model average performance on Example #3. 

VI. CONCLUSION 

This paper has presented an approach for the identification 

and simulation of dynamic systems using a differential 

evolution-based recurrent fuzzy system named DE-RFS. The 

structure of the DE-RFS embodies two feedback connections 

and adjustable delay operators, providing it the ability to 

process dynamic systems. The model identification is 

accomplished in a hierarchical fashion where two different 

instances of the differential evolution algorithm are 

considered. One of them is used to identify their structure and 

the other is used to identify their parameters.  

The results obtained in the experiments showed the 

potential of the DE-RFS to cope with simulation of dynamic 

systems. Furthermore, it was demonstrated the ability of the 

differential evolution algorithm to deal not only with the 

continuous optimization of the parameters but also with the 

combinatorial optimization of the structure.  
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