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Abstract—Although normal fuzzy sliding mode controllers
can reduce the chattering problem in building structure control,
there are some problems such as they need the equivalent
control and the upper bounds of the uncertainties. In this paper,
we use fuzzy logic to approximate the sliding surface for the
sliding mode control. The stability of the proposed controller
is established. A six-story building prototype equipped with an
active mass damper is used to demonstrate the effectiveness of
the proposed controller towards the wind-induced vibration.

I. INTRODUCTION

In order to protect the buildings from the earthquake and
wind-induced vibrations, a passive or active control could
be added to the building structure. Structural vibration can
be generally controlled by using smart materials in the
buildings [9] or by adding controlling devices like dampers
or actuators to the building [8]. Different control devices and
algorithms were proposed and implemented in the last few
decades [18]. Many active control devices were designed for
structural control applications. Active Mass Damper (AMD)
is a popular actuator, which utilizes a moving mass of about
2% of the total building mass without a spring and dashpot.
In this paper, we use AMD for the active vibration control.

The objective of structural control is to reduce the vibra-
tion of a building due to earthquakes or large winds through
an external control force. Many attempts have been made
to introduce advanced controllers for the active vibration
control of building structures. One of the main challenges
in the structural control is to design a robust control with
respect to the uncertainties in the building structure. Some
model-free controllers, such as Sliding Mode Control (SMC)
[20], [3], neural network control [10], and fuzzy control [7]
were employed for vibration attenuation. While SMC is one
of the most popular robust controllers, because it is more
simple than the other controllers and the behavior of SMC is
similar to the vibration motion. A modal space SMC method
is proposed in [2], where only the dominant frequency mode
is considered in the design. Another SMC based on the modal
analysis is presented in [3], which considers the first six
modes. A decentralized system with SMC is presented in
[14], where the reaching laws were derived, with and without
considering actuator saturations.

Due to the imperfection in the high-frequency discontin-
uous switching, the direct implementation of the SMC will
result in chattering effect, which may cause damage to the
mechanical components like the actuators [22]. The tracking
error of SMC converges to zero if its gain is bigger than the
upper bound of the unknown nonlinear parts. The chattering
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mainly occurs due to the two facts: 1) SMC changes its
sign very quickly near the sliding surface; 2) The gain of
SMC is very big. There are many methods to reduce the
chattering. Boundary layer method avoids chattering near
the sliding surface. However, the control inside the boundary
layer is not so efficient [16]. Higher order SMC preserves
the features of the first order SMC and further improves its
chattering reduction and convergence speed [13]. However,
this SMC becomes complex and it requires the system
knowledge about its uncertainty bounds. Many structural
vibration control via SMC also needs the equivalent control
[2], [4]. But it is difficult in the case of structural control
because we do not have the complete building parameters.
In [6], a low-pass filter is used to estimate the equivalent
control. However, the filter parameters are difficult to tune
and adds delay to the closed-loop system. SMC with gain
adaptation have not yet been discussed in structural vibration
control. In this paper, we use fuzzy logic technique, and do
not need the equivalent control to avoid chattering.

Neural networks and fuzzy logic are the most popular
intelligent control techniques used to modify SMC [22]. In
[20], a neural network compensation with SMC is applied for
the active control of seismically excited building structures,
where the slope of the sliding surface is moved within a
stable region. In [12], a radial basis function (RBF) neural
network is used to obtain a chattering free SMC, while a
genetic algorithm is applied during the training process. As
SMC provides a stable and fast controller and the fuzzy
logic provides the ability to handle a nonlinear system,
many research works are carried out in designing SMC
with fuzzy logic, called FSMC [11], [24]. The chattering
problem is avoided in most of these FSMC systems. A
genetic algorithm based FSMC is presented in [23], where
the genetic algorithm is used to find the optimal rules and
membership functions. References [3], [6], [1], [21] discuss
the design of chattering free SMCs for structural vibration
control.

In this paper, an AMD is used for attenuating the wind-
induced vibrations in tall buildings. In order to avoid the
chattering phenomenon with respect to the unknown building
uncertainty bounds, we modify the sliding surface by using a
fuzzy system. The modification successfully overcomes the
problems of the other fuzzy SMC, such as the necessity of the
equivalent control and the knowledge of the upper bounds
of the uncertainties and moreover the stability is assured.
An active vibration control system for a six-story building
structure equipped with an AMD is constructed for the
experimental study. The experimental results are compared
with the other controller results and the effectiveness of the
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proposed algorithms is demonstrated.

II. STRUCTURAL CONTROL OF WIND-INDUCED

VIBRATION

A building structure can be modeled by using three
components [5]: mass component , damping component ,
and stiffness component . Among these three components
the stiffness component  can be modeled either as linear
(elastic) or nonlinear (inelastic). When an external force
 is applied to the structure, it produces changes in its
displacement (), velocity ̇(), and acceleration ̈(). Each
floor is regarded as a single-degree-of-freedom structure,
which can be modeled by

̈+ ̇+  =  (1)

A n-floor building structure excited by an external force

(e.g. wind force) can be expressed as

̈() + ̇() +  = − (2)

where  =
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and  ∈ <× are the mass and damping matrices,
 ∈ <×1 is the external force vector acting on the
structure, such as the earthquake or wind forces, and  is
the structure stiffness. In (1),  is linear with respect to 

 = () (3)
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∈

<× In the case of real building structures, the relationship
between the lateral force  and  is nonlinear. Then the
stiffness component is inelastic. This happens when the
structure is excited by a very strong force, which deforms
the structure beyond its limit of linear elastic behavior.
Then, the nonlinear force  in (2) can be represented using
Bouc-Wen model [25] as

 = ( ̇) = ̃ + (1− ̃)̃ (4)

where ̃  and ̃ are positive numbers and  is the
nonlinear restoring force that satisfies

̇ =
̃̇− ̃|̇|||−1 + ̃̇||

̃
(5)
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Fig. 1. (a) Wind excitation (b) Frequency spectrum of excitations.
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Fig. 2. Building structure equipped with AMD.

where ̃ ̃ and ̃ are positive numbers and  is an odd
number.

The wind force acts on a building in the form of an
external pressure, see Figure 1 (a). The frequency range of
wind force is usually lesser than that of the earthquake forces,
see Figure 1 (b). For that reason the high-rise buildings are
more effected by these wind forces. If the wind-induced
vibration exceeds more than 015m  s2, humans may feel
uncomfortable and the fragile items in the building may
be damaged [17]. The main objective of structural control
against the high wind forces is to reduce the relative move-
ment of the building into a comfortable level.

In order to attenuate the vibrations caused by the external
wind force, an AMD is installed in the structure, see Figure
2. The force exerted by the AMD on the structure is

 = (̈ + ̈) = −  (6)

where  is the mass of the damper, ̈ is the acceleration
of r-th floor on which the damper is installed, ̈ is the
acceleration of the damper,  is the control signal to the
damper generated by a control algorithm, and

 = ̇ + sign [̇]

where  and ̇ are the damping coefficient and velocity of
the damper respectively,  is the acceleration due to gravity,
and  is the friction coefficient between the damper and the
floor on which it is attached.

The closed-loop system with AMD is

̈() + ̇() +  +  = Γ (7)

where  ∈ <×1 is the control signal applied to the damper,
Γ ∈ <× is the location matrix of the dampers

Γ =

½
1  =  = 

0  6=  6= 
∀  ∈ {1  }  ⊆ {1  }
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where  are the floors on which the dampers are installed.
In the case of a two-story building, if the damper is placed
on the second floor,  = {2}, Γ22 = 1 If the damper is
placed on both the first and second floor, then  = {1 2},
Γ2×2 = 2×2.

Obviously, the building structures are stable when there is
no external force,  = 0 In this case, the active control
is not needed, hence  = 0 The ideal active control is
Γ =  However, it is impossible because  is not always
measurable and  À . Depending on the size of the
building, the power requirements of these actuators vary from
kilowatts to several megawatts. The objective of the active
control is to maintain the vibration as small as possible and
to keep the energy requirement as minimum as possible, for
example to avoid the actuator saturation.

The structure model (7) can be rewritten in state-space
form as

̇1 = 2

̇2 = () + eΓ (8)

where 1 =  2 = ̇ () = −−1 [2 +  + ] eΓ = −1Γ The output can be defined as  = , where
 is a known matrix.

One of the most important approach for dealing the model
uncertainty is the robust control. Equation (8) can be written
as

̇ =  +0() +∆ +eΓ (9)

where 0 is the nominal structure dynamics, ∆ is the

uncertainty part,  =

∙
0 

0 0

¸
∈ <2×2  = [0 ] 

 =
£
1  


2

¤
. We assume that the uncertainty, ∆ =

 ()− 0 () is bounded as

k∆k ≤ ̄ (10)

If the parameters of () is completely unknown, then we
assume that () is also bounded.

k()k ≤ ̄ (11)

This assumption is practically reasonable, because in the
absence of external forces the building structure is stable and
also the big input excitation forces are bounded, kk ≤ ̄.

A. Sliding Mode Control with Fuzzy Sliding Surface

In recent years, increasing attention has been given to the
systems with discontinuous control actions. By intelligent
selection of control actions, the state trajectories may be
changed correspondingly to give the desired properties to
the processes in the system under control. The control design
problem in such systems with discontinuous control actions
(sliding mode control) can be reduced to the convergence
problem to a special surface in the corresponding phase space
(sliding surface).

A general class of discontinuous structural control is
defined by the following relationships

 = −sign() =

⎧⎨⎩ − if   0
0 if  = 0
 if   0

   0 (12)

where  is the sliding surface and sign() =
[sign (1)      sign (2)]

 . The sliding surface can be
a function of the regulation error  =  −  where 

is the desired state. If we use  =  then the objective
of the SMC is to drive the regulation error to zero in
the presence of disturbance. In active vibration control
of building structures, the references are defined as
 =

£
 ̇

¤
= 0 then  =

£
  ̇

¤ ∈ <2×1 and
̇ = ̇

Consider the positive definite quadratic form

1 =   =   0 (13)

Finding the time derivative of the function (13) on the
trajectory of system (9), we get

·
 1 = 

¡
 + 

¢
 + 2 + 2eΓ (14)

Since,  is a stable matrix, there exits  =   0, such
that  +  = − Using (11), (12), and eΓ  0

·
 1 ≤ − kk2 + 2̄ kk kk+ 2eΓsign() (15)

Using the property  sign() = kk we can write

·
 1 ≤ − kk2 + 2̄ kk kk− 2 kk

°°°eΓ°°° kk
= − kk2 + 2 kk kk

³
̄ − 

°°°eΓ°°°´
≤ 2 kk kk

³
̄ − 

°°°eΓ°°°´
(16)

Obviously, if the gain of the sliding mode control satisfies
the following condition

 ≥ ̄°°°eΓ°°°
then

·
 1 ≤ 0 From [15] we know that the  =  will

converge to zero.
Since, ̄ in (11) is unknown, we have to select a very big

 in (12). This may amplify the chattering effect, where the
control signal switches in a high-frequency within a tight
neighborhood of the sliding surface. In structural control,
this is also caused by the unmodelled parasitic dynamics
present in the system. This high frequency switching can
damage mechanical systems like the actuators. Although,
the huge dampers with big time constants in the structural
vibration control can be regarded as a second order low-pass
filter and do not respond to high frequency commands, the
chattering control signal may damage the motor mechanism
of the AMD.

Many strategies were proposed to reduce the chattering
phenomenon. The boundary layer method approximates the
sign function in (12) using a saturation function.

 = −sat() =

⎧⎨⎩ − if   


 if  ≥  ≥ −

 if   −
   0 (17)
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where  is a positive constant and 2 is the thickness of the
boundary layer. In general, the bigger the boundary layer
thickness, the smoother the control signal, and the bigger the
residual set to which  will converge. The boundary layer
method smooths the control signal with a loss of control
accuracy.

In this paper, we use a fuzzy system to smooth the sliding
surface  We use the following three fuzzy rules

R1: IF  is “Positive"  THEN  is “Negative” − 

R2: IF  is “Zero"  THEN  is “Zero” 

R3: IF  is “Negative"  THEN  is “Positive” 

The membership function of the input linguistic variable
 is defined as  the membership function of the output
linguistic variable  is defined as   We use triangle
functions as the membership functions, see Figure 3.

By using product inference, center-average, and singleton
fuzzifier, the output of the fuzzy logic system can be ex-
pressed as

 = 
1 () + 2 () + 3 ()

 () +  () +  ()
(18)

where    , and  are membership functions of
“Positive”, “Zero”, and “Negative” of the input  and 

 = 1 · · · 3 are the points at which  = 1 From Figure 3
(b) 1 = −1 2 = 0 3 = 1 then (18) becomes

 =
 ()−  ()

 () +  () +  ()
(19)

We can see that, when     () = 1  () = 0
 () = 0 then  = −; and when   −  () = 0
 () = 0  () = 1 then  =  Finally, the sliding
mode control with fuzzy sliding surface is

 =

( − sign() if kk  


 ()− ()

 ()+ ()+ ()
if kk ≤ 

   0

(20)
The fuzzy switching is shown in Figure 4.

The stability of the fuzzy sliding mode control (20) is
proved by using the same Lyapunov function (13). We
substitute the fuzzy sliding mode control (20) into (14),
which is the time derivative of the function (13). We consider
two cases

1) When kk    = −sign(). It is the same as (16),

if  ≥ ̄

kΓk 
·
 1 ≤ 0 hence  decreases.

u

s

δ+

δ−

Fig. 4. FSMC switching.
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Fig. 5. Concept of real sliding surface.

2) When kk ≤   = 
 ()− ()

 ()+ ()+ ()
. Then 

is bounded in the residential set 
From 1) and 2), we know that  is bounded and the total

time during which kk   is finite. Let  denotes the time
interval during which kk   (a) If only finite times that 
stay outside the circle of radius  (and then reenter),  will
eventually stay inside this circle. (b) If  leave the circle
infinite times, since the total time  leave the circle is finite,

∞X
=1

 ∞ lim
→∞

 = 0 (21)

So  is bounded via an invariant set argument. Let ()
denotes the largest tracking error during the  interval. Then
(21) and bounded () imply that

lim
→∞

[−() + ] = 0

So () will converge to  From these discussions one can
say that the implementation of (20) can only assures a “real
sliding surface” [?], which guarantees the state trajectories
will slide within a domain (), see Figure 5.

III. EXPERIMENTAL RESULTS

To illustrate the theory analysis results of this paper, a
six-story building prototype is constructed which is mounted
on a shaking table, see Figure 6. The building structure
is constructed of aluminum. The shaking table is actuated
using a hydraulic control system (FEEDBACK EHS 160),
which is used to generate the excitation signals. The AMD
is a linear servo actuator (STB1104, Copley Controls Corp.),
which is mounted on the sixth floor. The moving mass of
the damper weights 3% of the total building mass. The linear
servo mechanism is driven by a digital servo drive (Accelnet
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Fig. 6. Experimental setup.

Micro Panel, Copley Controls Corp). ServoToGo II I/O board
is used for the data acquisition purpose.

The control programs are operated in Windows XP with
Matlab 7.2/Simulink. All the control actions are employed
at a sampling frequency of 10 kHz. The control signal
generated by the control algorithm is fed as voltage input
to the amplifier. The amplifier converts its voltage to a
corresponding current output. The AMD operation is realized
by current control loop. The force constant of the AMD is
542N A.

The structure displacement under the wind-induced vi-
bration can be referred in three ways: a) absolute or total
displacement (), b) ground displacement (), and c)
relative displacement () between the floor mass and the
ground. The relationship between these three displacements
is

() = () + () (22)

In the case of wind excitation,  = 0 The proposed
controller needs the structure position and velocity data.
Two accelerometers (Summit Instruments 13203B) are used
to measure the ground and the top floor accelerations.
The ground acceleration is then subtracted from the top
floor acceleration to get the relative floor movement. The
relative velocity and position data are then estimated using
the numerical integrator proposed in [19].

The proposed SMC with fuzzy sliding surface (FSMC) is
compared with a classic PID controller and normal SMC.
All of these controllers are designed to work within the
normal operation range of the AMD. The PID control has
the following form

 = −−̇−

Z 

0

 ()  (23)

where  = 425  = 50  = 55, are the proportional,
integral, and derivative gains. The SMC has a fixed switching
gain of  = 08. The FSMC parameters are ̄ = 50, =0 =
08,  = 002, and  = 0001. These parameters are selected
in such a way that a satisfactory chattering and vibration
attenuation is achieved.

The control performance is evaluated in the sense of
reducing relative displacement of each floor. The wind
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Fig. 7. Wind excitation signal.
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Fig. 8. Uncontrolled and controlled displacements of the top �oor using
PID controller.

force signal used to excite the building prototype is shown in
Figure 7. Figures 8–10 show the time responses of the sixth
floor displacement for both the controlled and uncontrolled
cases. The control algorithm output is shown in Figure 11.

We can see that the response time of the PID controller is
slower than the normal SMC. The PID controller produces
peak control signals. For normal SMC, increasing  beyond
08 results unwanted vibration in certain points due to the
chattering. To avoid this, the gain is kept as 08. Among these
three controllers, FSMC produces the best result. For FSMC,
the adaptive algorithm significantly reduces the switching
gain when the vibration decreases. Therefore, the control
energy is adjusted to a better value such that the AMD power
requirement is also reduced. The control signal becomes
continues during the interval [0 25] and [22 235], because
kk ≤ .

IV. CONCLUSION

The selection of SMC switching gain is crucial in the
controller design. In this paper, adaptive and fuzzy control
techniques are combined to overcome the chattering problem
of SMC. The SMC gain is updated online. The stability
of the proposed controller is established using Lyapunov-
like theory. The technical advance of this paper is that a
systematic tuning method of SMC gain and sliding surface
is proposed based on the stability analysis. The above new
approaches are successfully applied to a six-story building
prototype.
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