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Abstract—Embedding non-vectorial data into a vector space
is very common in machine learning, aiming to perform tasks
such as classification, regression or clustering. Fuzzy datasets
or datasets whose observations are fuzzy sets, are examples
of non-vectorial data and, several fuzzy pattern recognition
algorithms analyze them in the space formed by the set of
fuzzy sets. However, the analysis of fuzzy data in such space
has the limitation of not being a vector space. To overcome such
limitation, we propose the embedding of fuzzy data into a proper
Hilbert space of functions called the Reproducing Kernel Hilbert
Space (RKHS). This embedding is possible by using a positive
definite kernel function on fuzzy sets. We present a formulation
of a real-valued kernels on fuzzy sets, in particular, we define
the intersection kernel and the cross product kernel on fuzzy
sets giving some examples of them using T-norm operators. Also,
we analyze the nonsingleton TSK fuzzy kernel and, finally, we
give some examples of kernels on fuzzy sets that can be easily
constructed from the previous ones.

Index Terms—Kernel on fuzzy sets, Reproducing Kernel
Hilbert Space, positive definite kernel

I. INTRODUCTION

Several machine learning or pattern recognition applica-
tions contain datasets whose observations are fuzzy sets, i.e.,
datasets of the form {Xi}Ni=1, where each Xi is a fuzzy set
[1], [2]. Those datasets are a result of modeling impreciseness
and vagueness in observations of real problems with fuzzy
sets. For example, because of the uncertainty added by noise,
or impreciseness due to measurement instruments, data from
biological and astronomical problems can be modeled by fuzzy
sets. Also, datasets with features given in the form of linguistic
terms, words and intervals can be modeled by fuzzy sets [3]–
[9].

In Machine Learning (ML), datasets are used to automati-
cally construct models and algorithms that give some useful
information to the user, for instance, to make future predictions
from the actual data, to perform feature selection and other im-
portant tasks such as: clustering, regression, inference, density
estimation [10], [11].

A commonly used method in ML is to perform an embed-
ding of data into a proper Hilbert space of functions or Repro-
ducing Kernel Hilbert Space (RKHS) [12]–[15]. To make this
embedding possible, it is necessary to have a real-valued pos-
itive definite function called the reproducing kernel1. Methods

1The word kernel comes from the theory of integral operators and it should
not be confused with the concept of kernel of a fuzzy set.

working in this way are called kernel methods [13], [14], for
instance, the Support Vector Machine [16], Support Vector
Data Description [17], Kernel PCA [13], Gaussian Process
[18].

Kernel methods are attractive for data analysis because: 1)
their domain of definition has not additionally requirements,
allowing the analysis of non-vectorial data, such as graphs,
sets, strings; 2) in a RKHS, the closeness of two functions
implies closeness in their values; 3) to construct a RKHS it
is only necessary to have a real-valued positive definite kernel
k : E×E → R; 4) computations in the RKHS are performed
by knowing that kernel evaluations are equal to inner product
of functions in the RKHS: k(x, y) = 〈k(x, .), k(y, .)〉H, where
x ∈ E 7→ k(x, .) ∈ H is the embedding of the data into
the RHKS H, and k(x, .), k(y, .) ∈ H are the representers of
x, y ∈ E in the RKHS; 5) k(x, y) is a similarity measure
between the objects x, y ∈ E and, because the mapping
x ∈ E 7→ k(x, .) ∈ H is nonlinear, simple functions in the
RKHS are useful to analyze complex input data; 6) kernel
methods are modular, i.e., algorithms working in the RKHS are
independent of the kernel that generates such space, meaning
that, we can choose one among many kernels without changing
the algorithm; 7) Many classical algorithms can be kernelized
through the kernel trick [13].

Fig. 1. Supervised classification of fuzzy data using support vector machines.
A1,A2, . . . ,A5 are fuzzy sets [19]

In this paper, we give the theoretical basis to construct
positive definite kernel on fuzzy sets, that is, we consider the
set E as the set of all the fuzzy sets. This will allow us to use
all the tools of kernel methods in datasets whose observations
are given by fuzzy sets. As an example, Figure 1 shows a
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nonlinear classifier obtained from a support vector machine
using a dataset whose observations are fuzzy sets, using a
positive definite kernel on fuzzy sets [19].

The literature reports some works using jointly fuzzy theory
techniques and positive definite kernels to solve machine learn-
ing problems, particularly, in clustering [20]–[22], classifica-
tion problems with outliers or noises [23], feature extraction
[24] and discriminant analysis [25], without implying positive
definite kernels on fuzzy sets, i.e., all the kernels are real
valued functions defined on RD × RD (R is the set of real
numbers and D is a positive integer) and fuzzy techniques
and kernels are used in some steps of the algorithms.

A relationship between some fuzzy concepts and positive
definite kernels, as for example, Takagi-Sugeno-Kang fuzzy
systems, under some criteria, can be viewed as kernel eval-
uations [26]–[33]; some fuzzy basis functions can be used
to construct positive definite kernels [34] and some positive
definite kernels are fuzzy equivalence relations [35]–[37].

To the best of our knowledge, the first attempt to fill this gap
is the work [19] giving a formulation to construct positive def-
inite kernels on fuzzy sets and performing some experiments
with those kernels using fuzzy and interval datasets.

To the best of our knowledge, there is no general formula-
tion to define kernels on fuzzy sets. All previous works only
consider kernels on RD × RD relating fuzzy concepts in the
design of the kernel or as a step of some algorithm. This work
has the following contributions:
• We give a general formulation of kernels on fuzzy sets,

in particular, we define the intersection kernel and the
cross product kernel on fuzzy sets. Also, we provide
some examples of such kernels using different T-norm
operators.

• We show that the kernel presented in [19] satisfy our
definition of kernel on fuzzy sets and we prove that such
kernel is a fuzzy equivalence relation and a fuzzy logic
formula for fuzzy rules.

• We give several examples of new positive definite kernels
on fuzzy sets; we present the Fuzzy Polynomial Ker-
nel, the Fuzzy Gaussian Kernel and the Fuzzy Rational
Quadratic Kernel and also, we present some condition-
ally positive kernels on fuzzy sets, such as: the Fuzzy
Multiquadric Kernel and the Fuzzy Inverse Multiquadric
Kernel.

II. THEORETICAL BACKGROUND

A. Reproducing Kernel Hilbert Spaces

A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert
space of functions with the nice property that the closeness of
two functions, in the sense that the norm of their difference
is small, implies closeness of their values. Such Hilbert
spaces are widely used in machine learning for data analysis.
Algorithms such as support vector machines [38], support
vector data description [17] and kernel PCA [13] work with
the embedding of the input data into some RKHS generated
by a reproducing kernel.

In the sequel, E denotes a non empty set, H is the real
RKHS of real valued functions on E. Notation k(., y) means
the mapping x → k(x, y) with fixed y where k is a function
on E × E.

Definition II.1 (Reproducing kernel). A function2

k : E × E → R
(x, y) 7→ k(x, t) (1)

is called a reproducing kernel of the Hilbert space H if and
only if:

1) ∀x ∈ E, k(., x) ∈ H
2) ∀x ∈ E, ∀f ∈ H 〈f, k(., x)〉H = f(x)

Condition (2) is called the reproducing property. From the
definition above follows that:

∀(x, y) ∈ E × E, k(x, y) = 〈k(., x), k(., y)〉H (2)

Definition II.2 (Real RKHS). A Hilbert Space of real valued
functions on E, denoted by H, with reproducing kernel is
called a real Reproducing Kernel Hilbert Space or real RKHS.

A RKHS can be characterized as a Hilbert space of real
valued functions on E where all the evaluation functionals:

ex : H → R (3)
f 7→ ex(f) = f(x) (4)

are continuous on H. By Riez representation theorem [39] and
the reproducing property (see Definition II.1) it follows that
∀x ∈ E, ∀f ∈ H:

ex(f) = f(x) = 〈f, k(., x)〉H ≤ ‖f‖H‖k‖H

As a result, in RKHS, a sequence converging in the norm
also converges pointwise.

The following result shows the equivalence between repro-
ducing kernels and positive functions [15].

Lemma 1. Any reproducing kernel k : E × E → R is a
symmetric positive definite function, that is, it satisfies:

N∑
i=1

N∑
j=1

cicjk(xi, xj) ≥ 0 (5)

∀N ∈ N, ∀ci, cj ∈ R and k(x, y) = k(y, x), ∀x, y ∈ E. The
converse is true.

That is, positive definite kernels are reproducing kernels of
some RKHS. The space spanned by k(x, .) generates a RKHS
or a Hilbert space with reproducing kernel k.

2We will consider only real valued kernels, because are the functions of
more practical interest.
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If k is a reproducing kernel, then
N∑
i=1

N∑
j=1

cicjk(xi, xj) =
N∑
i=1

N∑
j=1

cicj〈k(., xi), k(., xj)〉H

= 〈
N∑
i=1

cik(., xi),
N∑
j=1

cjk(., xj)〉H

= ‖
N∑
i=1

cik(., xi)‖2H

= ≥ 0

That is, the elements of the RKHS are real-valued functions
on E of the form f(.) =

∑N
i=1 cik(., xi).

Another important result from probability theory is that if
k is positive definite, then there is a family of zero-mean
Gaussian random variables with k as their covariance function
[12].

Examples of reproducing kernels or positive definite kernels
on RD×RD widely used in machine learning community are:
• Linear kernel k(x, y) = 〈x, y〉
• Polynomial kernel k(x, y) = (〈x, y〉+ 1)D

• Gaussian kernel k(x, y) = exp(−‖x− y‖2/σ2)

More sophisticated examples are kernels on probability
measures [40], kernels on measures [41], kernels on strings
[42], and other kernels for non-vectorial data, such graphs,
sets and logic terms [43].

As a comment, the space of square integrable functions L2

is a Hilbert space and is isometric to the space of sequences
`2 but is not a RKHS because it is a space of a equivalence
class of functions rather than a function space. Then, L2 does
not have a reproducing kernel, note that the delta function has
a reproducing property but does not belong to this space.

Reference [15] gives more details about the theory of
RKHS and references [13], [14] give more details about kernel
methods in machine learning.

Next, to introduce the concept of kernels on fuzzy sets
we will review the concepts of fuzzy set, semi-ring of sets,
measure and T-norm operator.

B. Fuzzy Set

Let Ω be a nonempty set. A fuzzy set on Ω, is a set X ⊆ Ω
with membership function

µX : Ω → [0, 1] (6)
x 7→ µX(x). (7)

Definition II.3 (α-cut of a fuzzy set). The α-cut of a fuzzy
set X ⊂ Ω is the set

Xα = {x ∈ Ω|µX(x) ≥ α, α ∈ [0, 1]}.

Definition II.4 (Support of a fuzzy set). The support of a
fuzzy set is the set

X>0 = {x ∈ Ω|µX(x) > 0}.

A complete review of the theory of fuzzy sets and applica-
tions can be found in [44].

C. T-Norm

A triangular norm or T-norm is the function T : [0, 1]2 →
[0, 1], such that, for all x, y, z ∈ [0, 1] satisfies:

T1 commutativity: T (x, y) = T (y, x);
T2 associativity: T (x, T (y, z)) = T (T (x, y), z);
T3 monotonicity: y ≤ z ⇒ T (x, y) ≤ T (x, z);
T4 boundary condition T (x, 1) = x.
Using n ∈ N, n ≥ 2 and associativity, a multiple-valued

extension Tn : [0, 1]n → [0, 1] of a T-norm T is given by
T2 = T and

Tn(x1, x2, . . . , xn) = T (x1, Tn−1(x2, x3, . . . , xn)). (8)

We will use T to denote T or Tn.

D. Semi-ring of Sets

A semi-ring of sets, S on Ω, is a subset of the power set
P(Ω), that is, a set of sets satisfying:

1 φ ∈ S, φ denotes the empty set;
2 A,B ∈ S, =⇒ A ∩B ∈ S;
3 for all A,A1 ∈ S and A1 ⊆ A, there exists a

sequence of pairwise disjoint sets A2, A3, . . . AN ,
such

A =
N⋃
i=1

Ai.

Condition 3 is called finite decomposition of A.

E. Measure

Definition II.5 (Measure). Let S be a semi-ring and let ρ :
S → [0,∞] be a pre-measure, i.e., ρ satisfy:

1 ρ(φ) = 0;
2 for a finite decomposition of A ∈ S , ρ(A) =∑N

i=1 ρ(Ai);
by Carathodory’s extension theorem, ρ is a measure on σ(S),
where σ(S) is the smallest σ-algebra containing S [45].

From now on, capital letters A,B,C will denote sets and
capital letters X,Y, Z will denote fuzzy sets. Notation F(S ⊂
Ω) stands for the set of all fuzzy sets over Ω whose support
belongs to S, i.e.,

F(S ⊂ Ω) = {X ⊂ Ω|X>0 ∈ S}.

III. KERNELS ON FUZZY SETS

We define kernel functions on fuzzy sets as the mapping

k : F(S ⊂ Ω)×F(S ⊂ Ω) → R
( X , Y ) 7→ k(X,Y ), (9)

where S is a semi-ring of sets on Ω and F(S ⊂ Ω) is the set
of all fuzzy sets over Ω whose support belongs to S. This is
a kernel for non-vector input.

Because each fuzzy set X belongs to F(S ⊂ Ω), then the
support X>0 of X admits finite decomposition, that is,

X>0 =
⋃
i∈I

Ai, Ai ∈ S
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where A = {A1, A2, . . . , AN} are pairwise disjoint sets and
I stand for an arbitrary index set.

In the following, we will derive some kernels on fuzzy sets,
based on the intersection of fuzzy sets and the cross product
between their elements.

A. Intersection kernel on Fuzzy Sets

The intersection of two fuzzy sets X,Y ∈ F(S ⊂ Ω) is the
fuzzy set X ∩ Y ∈ F(S ⊂ Ω) with membership function

µX∩Y : Ω → [0, 1] (10)
x 7→ µX∩Y = T (µX(x), µY (x)) (11)

where T is a T-norm operator. Using this fact, we define the
intersection kernel on fuzzy sets as follows:

Definition III.1 (Intersection Kernel on Fuzzy Sets). Let X,Y
be two fuzzy sets in F(S ⊂ Ω), the intersection kernel on
fuzzy sets is the function

k : F(S ⊂ Ω)×F(S ⊂ Ω) → R
( X , Y ) 7→ k(X,Y ) = g(X ∩ Y ),

where g is the mapping

g : F(S ⊂ Ω) → [0,∞]

X 7→ g(X)

The mapping g plays an important role assigning real values
to the intersection fuzzy set X ∩ Y . We can think about this
function as a similarity measure between two fuzzy sets and
its design will be highly dependent of the problem and the
data.

For instance, our first choice for g uses the fact that the
support of X ∩ Y , has finite decomposition, that is,

(X ∩ Y )>0 =
⋃
i∈I

Ai, Ai ∈ S,

of pairwise disjoint sets {A1, A2, . . . , AN}. We can measure
its support using the measure ρ : S → [0,∞] as follows:

ρ((X ∩ Y )>0) = ρ(
⋃
i∈I

Ai) =
∑
i∈I

ρ(Ai),

The idea to include fuzziness is to weight each ρ(Ai) by
a value given by the contribution of the membership function
on all the elements of the set Ai.

Next, we give a definition of a intersection kernel on fuzzy
sets using the concept of measure and membership function.

Definition III.2 (Intersection Kernel on Fuzzy Sets with
measure ρ). Let

⋃
i∈I Ai, Ai ∈ S, a finite decomposition of

the support of the intersection fuzzy set X ∩ Y ∈ F(S ⊂ Ω)
as defined before. Let g be the function

g : F(S ⊂ Ω) → [0,∞]

X ∩ Y 7→ g(X ∩ Y ) =
∑
i∈I

µX∩Y (Ai)ρ(Ai)

where
µX∩Y (Ai) =

∑
x∈Ai

µX∩Y (x)

and ρ is a measure according to Definition (II.5). We define
the Intersection Kernel on Fuzzy Sets with measure ρ as:

k(X,Y ) = g(X ∩ Y )

=
∑
i∈I

µX∩Y (Ai)ρ(Ai) (12)

Using the T-norm operator, the intersection kernel on fuzzy
sets with measure ρ given by (12) can be written as:

k(X,Y ) =
∑
i∈I

µX∩Y (Ai)ρ(Ai)

=
∑
i∈I

∑
x∈Ai

µX∩Y (x)ρ(Ai)

=
∑
i∈I

∑
x∈Ai

T (µX(x), µY (x))ρ(Ai)

Table I shows several kernels examples for different T-norm
operators. Function Z in Table I is defined as

Z(µX(x), µY (x)) =

µX(x), µy(x) = 1
µY (x), µX(x) = 1

0, otherwise

Intersection kernels on fuzzy sets with measure ρ

kmin(X,Y )
∑

i∈I

∑
x∈Ai

min(µX(x), µY (x))ρ(Ai)

kP (X,Y )
∑

i∈I

∑
x∈Ai

µX(x)µY (x)ρ(Ai)

kmax(X,Y )
∑

i∈I

∑
x∈Ai

max(µX(x) + µY (x)− 1, 0)ρ(Ai)

kZ(X,Y )
∑

i∈I

∑
x∈Ai

Z(µX(x), µY (x))ρ(Ai)

TABLE I
KERNELS ON FUZZY SETS.

More examples can be obtained by setting specific mea-
sures, for example, the probability measure P.

The next step is to determine which intersection kernels on
fuzzy sets with measure ρ are positive definite, that is, which
intersection kernels are reproducing kernels of some RKHS.

Lemma 2. kmin(X,Y ) is positive definite

Proof: We first, define a function 1[0,a] as:

1[0,a] : [0, 1] → {0, 1}

t 7→ 1[0,a](t) =

{
1, t ∈ [0, a], a ∈ [0, 1]

0, otherwise

then function min : [0, 1] × [0, 1] → [0, 1] can be written as,
∀a, b ∈ [0, 1]

min(a, b) =

∫
[0,1]

1[0,a](t)1[0,b](t)dλ(t)

=
〈
1[0,a](.),1[0,b](.)

〉
H

where H = L2([0, 1], λ), i.e., the space of square integrable
functions on [0, 1] with respect to the Lebesgue measure λ. By
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Lemma (1) and Equation (2), it follows that min is positive
definite. That is, for a fixed x ∈ Ω,

N∑
i=1

N∑
j=1

cicj min(µXi
(x), µXj

(x)) ≥ 0,

∀N ∈ N, ∀ci, cj ∈ R, ∀Xi, Xj ∈ F(S ⊂ Ω).

Next, we show that kmin is positive definite, that is:

N∑
i=1

N∑
j=1

cicj
∑
l∈I

∑
x∈Al

min(µXi(x), µXj (x))ρ(Al) ≥ 0,

∀N ∈ N, ∀ci, cj ∈ R, ∀Xi, Xj ∈ F(S ⊂ Ω),∀x ∈ Ω, and I
stands for an arbitrary index set.

Note that

N∑
i=1

N∑
j=1

cicj
∑
l∈I

∑
x∈Al

min(µXi
(x), µXj

(x))ρ(Al)

=
∑
l∈I

∑
x∈Al

(
N∑
i=1

N∑
j=1

cicj min(µXi
(x), µXj

(x)))ρ(Al)

≥ 0

Lemma 3. kP (X,Y ) is positive definite.

Proof: Note that for a fixed x ∈ Ω,

N∑
i=1

N∑
j=1

cicjµXi(x)µXj (x) =

(
N∑
i=1

ciµXi(x)

)2

≥ 0

Next, we show that kP is positive definite, that is

N∑
i=1

N∑
j=1

cicj
∑
l∈I

∑
x∈Al

µXi(x)µXj (x)ρ(Al) ≥ 0,

∀N ∈ N, ∀ci, cj ∈ R, ∀Xi, Xj ∈ F(S ⊂ Ω),∀x ∈ Ω, and L
stands for an arbitrary index set. Note that:

N∑
i=1

N∑
j=1

cicj
∑
l∈I

∑
x∈Al

µXi
(x)µXj

(x)ρ(Al)

=
∑
l∈I

∑
x∈Al

(
N∑
i=1

N∑
j=1

cicjµXi
(x), µXj

(x))ρ(Al)

≥ 0

It is worth to note that, if the σ-algebra is a Borel algebra
of subsets of RD, then the intersection kernel with measure ρ
can be written as

k(X,Y ) =

∫
RD

T (µX(x), µY (x))dρ(x)

as for example kmin and kP can be written as

kmin(X,Y ) =

∫
RD

min(µX(x), µY (x))dρ(x) (13)

kP =

∫
RD

µX(x)µY (x)dρ(x) (14)

(15)

B. Cross product kernel between fuzzy sets

Definition III.3. Let k : Ω × Ω → R be a positive definite
kernel. The cross product kernel between fuzzy sets X,Y ∈
F(S ⊂ Ω) is the real valued function k× defined on F(S ⊂
Ω)×F(S ⊂ Ω) as

k×(X,Y ) =
∑
x∈X

∑
y∈Y

k(x, y)µX(x)µY (y) (16)

Lemma 4. kernel k× is positive definite

Proof: By Definition (III.3)

k×(X,Y ) =
∑
x∈X

∑
y∈Y

k(x, y)µX(x)µY (y)

= 〈
∑
x∈X

k(., x)µX(x),
∑
y∈Y

k(., y)µY (y)〉

IV. NONSINGLETON TSK FUZZY KERNEL

Another type of intersection kernel is the nonsingleton TSK
fuzzy kernel presented in [19]. We will see that this kernel
satisfy our definition of intersection kernel (Definition (III.1))
and we will review their properties and study the link with
fuzzy equivalence relations.

Definition IV.1 (Nonsingleton TSK Fuzzy Kernel). Let X∩Y
be a fuzzy set given by Definition (III.1) and let g be the
function:

g : F(S ⊂ Ω) → [0,∞]

X ∩ Y 7→ g(X ∩ Y ) = sup
x∈Ω

µX∩Y (x),

then the Nonsingleton TSK Fuzzy Kernel is given by :

ktks(X,Y ) = sup
x∈Ω

µX∩Y (x) (17)

Using T-norm operators, this kernel can be written as:

ktks(X,Y ) = sup
x∈Ω

µX∩Y (x)

= sup
x∈Ω

T (µX(x), µY (x))

Note that the definition of the nonsingleton TSK Fuzzy
kernel satisfy the definition of intersection kernel on fuzzy
sets (Definition III.1) for the particular setting of g(X ∩Y ) =
supx∈Ω µX∩Y (x).

Lemma 5. The Nonsingleton TSK Fuzzy Kernel is positive
definite, that is:

N∑
i=1

N∑
j=1

cicjktks(Xi, Xj) ≥ 0,
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∀N ∈ N, ∀ci, cj ∈ R, ∀Xi, Xj ∈ F(S ⊂ Ω).

Proof: Denote ktks by k for clear notation. Let I an
arbitrary index set. By commutativity property of T-norms,
k is symmetric. Note that:∑
i,j∈I

cicjk(Xi, Xj) =
∑
i∈I

c2i k(Xi, Xi)+2
∑

i>j,i,j∈I
cicjk(Xi, Xj)

and supx∈Ω T (µXi(x), µXi(x)) = 1, ∀i ∈ I then,∑
i,j∈I

cicjk(Xi, Xj) =
∑
i∈I

c2i + 2
∑

i>j,i,j∈I
cicjk(Xi, Xj)

Using that (
∑
i∈I ci)

2 =
∑
i∈I c

2
i +2

∑
i>j,i,j∈I cicj ≥ 0 and

by the fact that k(Xi, Xj) ∈ [0, 1], we have
a) If k(Xi, Xj) = 0,∀i, j ∈ I : i > j, then∑

i,j∈I
cicjk(Xi, Xj) =

∑
i∈I

c2i ≥ 0

b) If k(Xi, Xj) = 1,∀i, j ∈ I : i > j, then∑
i,j∈I

cicjk(Xi, Xj) =
∑
i∈I

c2i + 2
∑

i,j∈I,i6=j,i>j

cicj

= (
∑
i∈I

ci)
2 ≥ 0

Some examples of this kernel are given in [19]
We now review two results from [35] (Corollary 6) and [36]

(Theorem 9). The first one shows that every positive definite
kernel mapping to the unit interval with constant one in the
diagonal is a fuzzy equivalence relation with respect to a given
T-norm. The second one shows that such kernels can be viewed
as a fuzzy logic formula used to represent fuzzy rule bases.
Then we show that the Nonsingleton TSK Fuzzy Kernel satisfy
such results.

Definition IV.2 (Fuzzy Equivalence Relation). A function E :
X × X → [0, 1] is called a fuzzy equivalence relation with
respect to the T-norm T if

1) ∀x ∈ X , E(x, x) = 1;
2) ∀x, y ∈ X , E(x, y) = E(y, x);
3) ∀x, y, z ∈ X , T (E(x, y), E(y, z)) ≤ E(x, z).

The value E(x, y) can be interpreted as “x is equal to y.
Condition 3 is called T-transitivity and can be regarded as the
statement “If x and y are similar, and y and z are similar
then x and z are also similar.” [35].

Lemma 6 (kernels are at least Tcos transitive [35]). Let the
nonempty set X . Let k : X × X → [0, 1] a positive definite
kernel such that ∀x ∈ X : k(x, x) = 1; then ∀x, y, z ∈ X ,
kernel k satisfy Tcos-transitivity:

Tcos(k(x, y), k(y, z)) ≤ k(x, z) (18)

where

Tcos(a, b) = max(ab−
√

1− a2
√

1− b2, 0), (19)

is a Archimedean T-norm and it is the greatest T-norm with
this property [35].

Lemma 7 (kernels as fuzzy logic formula for fuzzy rules [36]).
Let the nonempty set X . Let k : X × X → [0, 1] a positive
definite kernel such that ∀x ∈ X : k(x, x) = 1; then ∀x, y, z ∈
X , there is a family of membership functions µi∈I : X →
[0, 1], where I is a nonempty index set such that

∀x, y ∈ X : k(x, y) = inf
i∈I

←→
TM (µi(x), µi(y)) (20)

where
←→
TM = min(

−→
T (x, y),

−→
T (y, x)) is its induced bi-

implication operator and
−→
T (x, y) = sup{t ∈ [0, 1]|T (x, t) ≤

y} is a implication function generated from a T-norm T [36].

Lemma 8. The Nonsingleton TSK Fuzzy Kernel is Tcos
transitive (Lemma (6)) and admits the representation given
by Lemma (7).

Proof: By construction, the Nonsingleton TSK Fuzzy
Kernel is a positive definite kernel such that ∀X ∈ F(S ⊂
Ω) : ktsk(X,X) = 1 and also ktsk has values in the interval
[0, 1]. By Lemma (6) ktsk is Tcos transitive and by Lemma
(7), ktsk admits representation given by Lemma (7).

V. MORE KERNELS ON FUZZY SETS

It is easy to construct new kernels on fuzzy sets from the
previously defined kernels. For example, if k1(., .) and k2(., .)
are positive definite kernels on fuzzy sets, by closure properties
of kernels [14], also are positive definite kernels on fuzzy sets:

1) k1(X,Y ) + k2(X,Y );
2) αk1(X,Y ), α ∈ R+;
3) k1(X,Y )k2(X,Y );
4) f(X)f(Y ), f : F(S ⊂ Ω)→ R;
5) k1(f(X), f(Y )), f : F(S ⊂ Ω)→ F(S ⊂ Ω);
6) exp(k1(X,Y ));
7) p(k1(X,Y )), p is a polynomial with positive coeffi-

cients.
More kernels on fuzzy sets could be obtained using the

nonlinear mapping

φ : F(S ⊂ Ω) → H
X 7→ φ(X),

and using the fact that k(X,Y ) = 〈φ(X), φ(Y )〉H and

D(X,Y )
def
= ‖φ(X)− φ(Y )‖2H
= k(X,Y )− 2k(X,Y ) + k(Y, Y ),

we have the following positive definite kernels on fuzzy sets.
• Fuzzy Polynomial kernel α ≥ 0, β ∈ N

kpol(X,Y ) = (〈φ(X), φ(Y )〉H + α)β

= (k(X,Y ) + α)β .

• Fuzzy Gaussian kernel γ > 0

kgauss(X,Y ) = exp(−γ‖φ(X)− φ(Y )‖2H)

= exp(−γD(X,Y )).
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• Fuzzy Rational Quadratic kernel α, β > 0

kratio(X,Y ) = (1 +
‖φ(X)− φ(Y )‖2H

αβ2
)−α

= (1 +
D(X,Y )

αβ2
)−α.

A. Conditionally Positive Definite Kernels on Fuzzy Sets

We can construct another class of fuzzy kernels using the
concept of conditionally positive definite kernels, which are
kernels satisfying Lemma 1 but, additionally it is required
that

∑N
i=1 ci = 0. Examples of Conditionally Positive Definite

Fuzzy Kernels with this property are:
• Fuzzy Multiquadric kernel

kmulti(X,Y ) = −
√
‖φ(X)− φ(Y )‖2H + α2

= −
√
D(X,Y ) + α2.

• Fuzzy Inverse Multiquadric kernel

kinvmult(X,Y ) = (
√
‖φ(X)− φ(Y )‖2H + α2)−1

= (
√
D(X,Y ) + α2)−1.

It is easy to construct positive definite kernels from CPD ker-
nels by doing exp(tkmulti(X,Y )) and exp(tkinvmult(X,Y ))
for t > 0, because a kernel k is conditionally positive definite
if and only if exp(tk) is positive definite for all t > 0 [13]. See
Proposition 2.22 of [13] for more details on how to construct
positive definite kernels from conditionally positive definite
kernels.

VI. COMMENTS ON PRACTICAL APPLICATIONS

All the proposed kernels on fuzzy sets have potential appli-
cations in fuzzy data, that is, data sets of the form {Xi}Ni=1,
where each Xi is fuzzy set. Kernels on fuzzy sets can be
modularly used in several machine learning formulations such
as: support vector machines, support vector data description,
support vector regression, kernel PCA, Gaussian process, and
so on, which only require a positive definite Gram matrix
induced by some positive definite kernel, allowing to perform
machine learning on fuzzy data with the tools of kernel
methods.

If a set of clusters: s1, . . . , si, . . . , sN are given as a dataset,
where each cluster si contains a set of points {xj}Mi

j=1 with
some degree of membership, for example, points far away
the mean of cluster si have lower membership than points
near the mean of such cluster, then, it is possible to use the
Cross product kernel between fuzzy sets, by representing each
cluster si as a fuzzy set. Also. the same reasoning can be
used to perform machine learning on big data by means of
data squashing [46].

As a next step of our research, we are going to perform
experiments with the proposed kernels on several machine
learning problems. Besides the applications mentioned in the
introductory part of this paper, we are particularly interested in
apply those kernels in datasets whose observations are clusters,

prototypes or groups of samples, an example of those datasets
is the Sloan Sky Survey Data Set3.

Another important applications to be explored are in the
areas of big data and large scale machine learning. Because
hardware and software requirements, large datasets are difficult
to analyze, possible solutions are to construct a summary of
data or transform large datasets into a smaller ones (data
squashing [46]), where all the information of the features are
preserved but the size of the dataset is decreased with the hope
that the analysis of the smaller dataset gives approximately the
same information that the large dataset. Modeling groups of
samples as fuzzy sets jointly with the kernels on fuzzy sets
in supervised classification problems is an interesting topic to
be investigated. Another important topic to be investigated is
the performance of another formulations for kernels on fuzzy
sets such as the multiple kernel learning approach [47] and
non positive kernels [48] on fuzzy sets.

VII. CONCLUSIONS AND FURTHER RESEARCH

It is possible to work with kernel methods for datasets
whose observations are fuzzy sets. The set of all fuzzy sets is
a example of non-vectorial data, we can embed this data into a
vectorial space as the RKHS, using a positive definite kernel
defined on the set of all the fuzzy sets. Using some basic
concepts of set theory such as semi-ring of sets, we presented
a novel formulation for kernels on fuzzy sets. As instances of
our general definition, we gave a definition of the intersection
kernel on fuzzy sets and the cross product kernel on fuzzy sets.
Also we gave some examples of positive definite functions for
those kernels. Moreover, we showed that the kernel on fuzzy
sets presented in [19] is a fuzzy equivalence relation, admits
some special representation as fuzzy logic formula for fuzzy
rules and is a special case of the intersection kernel on fuzzy
sets. Furthermore, we gave some examples of positive definite
kernels on fuzzy sets and conditionally positive definite kernels
on fuzzy sets.

ACKNOWLEDGMENT

The authors are thankful with FAPESP grant # 2011/50761-
2, CNPq, CAPES, NAP eScience - PRP - USP for their
financial support.

3http://www.sdss.org/

445



x—

REFERENCES
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