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Abstract—By merging the linguistic quantifier and Borda
function, we propose a kind of new method to construct the state
variable weight vectors with reward and the variable weight state
vector, establish the variable weight synthesis decision making
model which grasp the meaning of the linguistic value, and
investigate several group decision making models derived by some
typical linguistic quantifiers and the OWA operators. Finally, we
use one numerical example to illustrate our model reasonable,
make the comparison between OWA operator and variable
weighted averaging operator, and point out that the quantified
guided OWA operator is a pessimistic intendancy decision model,
and quantifier guided VWA operator is a optimistic intendancy
decision model.

I. INTRODUCTION

Group decision making(GDM) is an important topic in
decision making field[1, 2, 3, 4, 5, 9, 18]. In group decision
making, the key issue is how to aggregate the individual
opinions. Based on the complexity of the real world and the
difference of the expert’s experience, knowledge and informa-
tion resource, each expert would have different understanding
for the decision making problem. Hence, these evaluations
proposed by different experts may be different or even have
a large difference. Obviously, it is difficult to give a complete
consistence for every expert. The more utilizable strategy is
to consider “most experts’ opinions” or “more than 80% of
experts’ opinions”. Thus, the linguistic words “most” and
“more than 80%” transit some meaningful fuzzy information.
How to reflect the semantics of the linguistic quantifiers is
a crucial issue while we establish the mathematical model of
group decision making. Aimed at that all experts have the same
level, Kacprzyk[10, 11] proposed a method of synthesizing
the experts’ evaluations by viewing linguistic quantifier as
a fuzzy set. This method has been applied many times by
assuming that all experts present their evaluations by utilizing
fuzzy preference relations. Herrera et al.[6, 7, 8] aggregated
the experts’ evaluations with linguistic quantifier guided OWA
operator and the semantics of the linguistic value is reflected by
the weights of the OWA operator obtained from the linguistic
quantifier.

Considering that different experts have different evalua-
tions, we usually allocate the weight to every expert and
obtained a weighted average expression. It is called as the
traditional weighted average operator or weighted average
synthesis. Here, the expert’s weight is constant in the decision

process, we call it as the constant weight and the weighted
average expression as the constant weighted average synthesis.
Wang[17] pointed out that the constant weighted decision
making model presented any limitations and used an example
to illustrate that the constant weighted average synthesis is not
appropriate.

Example 1: Suppose the decision to approve an engi-
neering project is dependent on two factors: 𝑓1=“feasibility”
and 𝑓2=“necessity”. If the two factors are equality important,
then we should assign equal weights to each factor, i.e.
𝑊 = (𝑤1, 𝑤2) = (0.5, 0.5). Hence, the weighted average
synthesis expression is 𝑀(𝑥1, 𝑥2) = 0.5𝑥1 + 0.5𝑥2.

Consider two cases: (1) the project is entirely feasible,
but its necessity is quite low; and (2) the project may be
highly necessity, but it is not feasible. Normally we do not
approve the project in either case because the “merit” of the
combined effect is quite low. Numerically, let 𝑋 = (0.1, 0.9)
and 𝑋 ′ = (0.5, 0.5), then we would expect 𝑀(𝑋) << 𝑀(𝑋 ′)
in more cases. However, using the constant weighted synthesis
expression, we have 𝑀(𝑋) = 𝑀(𝑋 ′) = 0.5, this result
contradicts common expectations.

Namely, these weights should be adjusted automatically
according to the varying of the experts’ evaluations. For
example, in Olympic games of gymnastics and diving, the
athlete’s final score is the summing of the remaining referees’
marks after canceling the two highest scores and the two
lowest scores. It is the same as varying the weights of the
referees who give the two highest or two lowest scores to
zeros, and only synthesizing the scores of the most referees.
Just like linguistic quantifier guided OWA operator, we can
view the linguistic quantifier as a fuzzy set and utilize the
membership function of the linguistic quantifier to adjust the
experts’ weight. The adjusted expert weights can reflect the
semantics of the linguistic quantifier. The above method is
a good idea for establishing fuzzy group decision model.
Obviously, the key step of this method is how to finish
the weight adjustment. Li et al.[13] proposed a method for
adjusting weights utilizing analytic method. Li and Yen[12]
viewed decision making as a synthesis process under the
frame of factor space, and regard every attribute value as a
state of the factor space. All attribute values form a vector
which is called a state configuration level of the factor space.
Then, under the frame of factor space, each attribute weight
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should be affected by the state configuration level and varied
with the changing of the state configuration level. The law of
the weights varying is characterized by variable weight state
vector. Therefore, we can finish the weights transferring via
constructing appropriate variable weight state vector. Variable
weight synthesis approach is widely used in the fields of
multiple attribute decision making, fuzzy inference, and so on.
For example, Zhang and Li[25] applied the variable weighted
synthesis in fuzzy inference and constructed some implication
operators. In this paper, we use Borda function and linguistic
quantifier, propose a kind of new method to construct the state
variable weight vectors with reward and the variable weight
state vector, establish the variable weight synthesis decision
making model and investigate several group decision making
models derived by some typical linguistic quantifiers and the
OWA operators. Finally, we use one numerical example to
illustrate our model reasonable, make the comparison between
OWA operator and variable weighted averaging operator.

The organization of our work is as follows. In section 2,
some basic notions are reviewed. In section 3, we constructed
a kind of new variable weight state vector with reward and
established a variable weight group decision making model
guided by linguistic quantifier. In section 4, we used a numer-
ical example to illustrate our proposed method reasonable. The
conclusion is given in the last section.

II. PRELIMINARIES

Throughout this paper, we use 𝑋 = (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) to
denote the state value vector and satisfy 𝑥1 ≥ 𝑥2 ≥ ⋅ ⋅ ⋅ ≥ 𝑥𝑛,
𝑊 = (𝑤1, 𝑤2,⋅ ⋅ ⋅ , 𝑤𝑛) stands for the constant
weight vector. R and R𝑛 are the set of all real
numbers and 𝑛−dimension real numbers, respectively,
𝐵(𝑋) = 𝐵(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) expresses balance function,
and 𝑊𝐵(𝑋) = (𝑤1(𝑋), 𝑤2(𝑋), ⋅ ⋅ ⋅ , 𝑤𝑛(𝑋)) =
(𝑤1(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛), 𝑤2(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛),
⋅ ⋅ ⋅ , 𝑤𝑛(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛)) stands for the variable weight
vector generated by the balance function 𝐵(𝑋) and the
constant weight vector 𝑊 .

Definition 1[12]: A mapping 𝑊 = (𝑤1, 𝑤2, ⋅ ⋅ ⋅ , 𝑤𝑛) from
[0, 1]𝑛 to [0, 1]𝑛,

𝑤𝑗 : [0, 1]
𝑛 → [0, 1]

(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) �→ 𝑤𝑗(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛)
𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛

is a variable weight vector with reward, if 𝑊 satisfies the
following properties:

(w.1)
∑𝑛

𝑗=1
𝑤𝑗(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) = 1;

(w.2) The function 𝑤𝑗(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) is continuous with
respect to every variable 𝑥𝑖, 𝑖, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛;

(w.3) The function 𝑤𝑗(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) is monotonically
increasing with respect to the variable 𝑥𝑗 , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛.

Thus, 𝑊 (𝑋) = (𝑤1(𝑋), 𝑤2(𝑋), ⋅ ⋅ ⋅ , 𝑤𝑛(𝑋)) =
(𝑤1(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛), 𝑤2(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛),
⋅ ⋅ ⋅ , 𝑤𝑛(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛)) is called the variable weight
vector with reward.

Definition 2: A mapping 𝑀𝑛 : from [0, 1]𝑛 to [0, 1],

(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) �→𝑀𝑛(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛)
=

𝑛∑

𝑖=1

𝑤𝑖(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛)𝑥𝑖

is called the variable weight average. For simplicity, we denote
it as VWA.

Definition 3[12]: A mapping 𝑆 = (𝑆1, 𝑆2, ⋅ ⋅ ⋅ , 𝑆𝑛) from
[0, 1]𝑛 to [0, 1]𝑛,

𝑆𝑗 : [0, 1]
𝑛 → [0, 1]

(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) �→ 𝑆𝑗(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛)
𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛

is a state variable weight vector with penalty, if 𝑆 satisfies the
following properties:

(s.1) Every 𝑆𝑗(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) is continuous with respect
to every variable 𝑥𝑖, 𝑖, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛;

(s.2) 𝑥𝑖 ≥ 𝑥𝑗 ⇒ 𝑆𝑖(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) ≤ 𝑆𝑗(𝑥1,𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛);
(s.3) The mapping 𝑊 : [0, 1]𝑛 → [0, 1]𝑛 given by

𝑊 (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) = 𝑊 ⋅ 𝑆(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛)
𝑛∑

𝑗=1

𝑤𝑗𝑆𝑗(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛)
(1)

is a variable weight vector with penalty, where 𝑊 =
(𝑤1, 𝑤2, ⋅ ⋅ ⋅ , 𝑤𝑛) is a constant weight vector, and 𝑊 ⋅
𝑆(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) = (𝑤1𝑆1(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛),
𝑤2𝑆2(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛), ⋅ ⋅ ⋅ , 𝑤𝑛𝑆𝑛(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛)).

The mapping 𝑆 is a state variable weight vector with
reward if it satisfies (s.1) and the following two properties:

(s.2’) 𝑥𝑖 ≥ 𝑥𝑗
⇒ 𝑆𝑖(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) ≥ 𝑆𝑗(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛);

(s.3’) The mapping 𝑊 : [0, 1]𝑛 → [0, 1]𝑛 given by

𝑊 (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) = 𝑊 ⋅ 𝑆(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛)
𝑛∑

𝑗=1

𝑤𝑗𝑆𝑗(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛)
(2)

is a variable weight vector with reward, where 𝑊 =
(𝑤1, 𝑤2, ⋅ ⋅ ⋅ , 𝑤𝑛) is a constant weight vector, and 𝑊 ⋅
𝑆(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) = (𝑤1𝑆1(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛),
𝑤2𝑆2(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛), ⋅ ⋅ ⋅ , 𝑤𝑛𝑆𝑛(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛)).

Theorem 1: Let 𝑆(𝑋) = (𝑆1(𝑋), 𝑆2(𝑋), ⋅ ⋅ ⋅ , 𝑆𝑛(𝑋))
be the variable weight state vector with reward and 𝑊 =
(𝑤1, 𝑤2, ⋅ ⋅ ⋅ , 𝑤𝑛) be the constant weight vector. If 𝑊 (𝑋) =
(𝑤1(𝑋), 𝑤2(𝑋), ⋅ ⋅ ⋅ , 𝑤𝑛(𝑋)) is the variable weight vector
obtained from Eq. (1), and 𝑥𝑖 > 𝑥𝑗 , then 𝑤𝑖(𝑋)/𝑤𝑖 ≥
𝑤𝑗(𝑋)/𝑤𝑗 .

Theorem 2: Assume that 𝑋 = (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) is a state
vector and 𝑊 = (𝑤1, 𝑤2, ⋅ ⋅ ⋅ , 𝑤𝑛) is a constant weight
vector. Let 𝑆(𝑋) = (𝑆1(𝑋), 𝑆2(𝑋), ⋅ ⋅ ⋅ , 𝑆𝑛(𝑋)) be the
variable weight state vector with reward and 𝑊 (𝑋) =
(𝑤1(𝑋), 𝑤2(𝑋), ⋅ ⋅ ⋅ , 𝑤𝑛(𝑋)) be a variable weight vector ob-
tained from Eq. (1). If 𝑥1 ≥ 𝑥2 ≥ ⋅ ⋅ ⋅ ≥ 𝑥𝑛, then

1417



𝑤𝑖(𝑋)/𝑤𝑖 ≥ 1 if and only if
𝑛∑

𝑗=1

𝑤𝑗(𝑆𝑖(𝑋) − 𝑆𝑗(𝑋)) ≤
𝑖−1∑

𝑗=1

𝑤𝑗(𝑆𝑗(𝑋)− 𝑆𝑖(𝑋)).

Proof: Known by the definition of the variable weight state
vector with reward, we have,

𝑤𝑖(𝑋)

𝑤𝑖
≥ 1 ⇔ 𝑆𝑖(𝑋) ≥

𝑛∑

𝑗=1

𝑤𝑗𝑆𝑗(𝑋)

⇔
𝑛∑

𝑗=1

𝑤𝑗𝑆𝑖(𝑋) ≥
𝑛∑

𝑗=1

𝑤𝑗𝑆𝑗(𝑋)

⇔
𝑛∑

𝑗=1

𝑤𝑗(𝑆𝑖(𝑋)− 𝑆𝑗(𝑋))

≤
𝑛∑

𝑗=1

𝑤𝑗(𝑆𝑗(𝑋)− 𝑆𝑖(𝑋))

Since Yager[20] introduced OWA operator, some re-
searchers have successfully applied it in decision making
and support systems. For example, Yager[22] investigated the
families of OWA operators, Xu[19] investigated some methods
for determining OWA weights.

Definition 4[20]: An ordered weighted averaging(OWA)
operator of 𝑛−dimension is a mapping 𝑓 : [0, 1]𝑛 → [0, 1]
that has an associated 𝑛−vector 𝑊 = (𝑤1, 𝑤2, ⋅ ⋅ ⋅ , 𝑤𝑛) such

that 𝑤𝑖 ∈ [0, 1] and
𝑛∑

𝑖=1

𝑤𝑖 = 1, where 𝑓(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) =

𝑛∑

𝑖=1

𝑤𝑖𝑦𝑖, and 𝑦𝑖 is the 𝑖th largest of the 𝑥𝑗 , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛.

Remark: Just like in OWA operator, the weight associated
to each attribute value is changed discontinuously, thus we can
omit the condition of w.2) and only reserve the conditions of
w.1) and w.3) in definition 1 in real decision making.

In order to extend the two valued logic to linguistic fuzzy
logic, Zadeh[24] introduced the concept of linguistic quantifier
and distinguished them with absolute quantifiers such as “much
more than 2”, and relative or proportional quantifiers such as
“most”, “about half”. Some researchers[15, 16, 23] introduced
the linguistic value and linguistic information in group decision
making. Absolute quantifier is a fuzzy set 𝑄 of [0, +∞) ,
for any 𝑟 ∈ [0, ∞), the membership degree 𝑄(𝑟) expresses
the degree to which 𝑟 satisfies the concept conveyed by the
linguistic quantifier 𝑄. Relative quantifier is a fuzzy set 𝑄 of
the unit interval [0, 1], for any 𝑟 ∈ [0, 1], the membership
degree 𝑄(𝑟) indicates the degree to which 𝑟 matches the
semantic of the linguistic quantifier 𝑄. Relative quantifier 𝑄
satisfies the condition such as 𝑄(0) = 0 and there exists
𝑟0 ∈ [0, 1], 𝑄(𝑟0) = 1.

Furthermore, in order to obtain the OWA weight vectors,
Yager[21] introduced the regular increasing monotone(RIM)
quantifier.

Definition 5[21]: A fuzzy subset 𝑄 of [0, 1] is called
regular increasing monotone(RIM) quantifier if the fuzzy set
𝑄 satisfies 𝑄(0) = 0, 𝑄(1) = 1, and 𝑄(𝑥) ≥ 𝑄(𝑦) if 𝑥 > 𝑦.

Let 𝑄 be a RIM quantifier, then the OWA weight vector
can be obtained by Rager[18] as follows.

𝑤𝑖 = 𝑄(
𝑖

𝑛
)−𝑄(

𝑖− 1

𝑛
), 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 (3)

It is interesting that Liu and Lou[14] investigated the
equivalence of some approaches to the OWA operator and RIM
quantifier determination.

III. FUZZY GROUP DECISION MAKING MODEL BASED ON
LINGUISTIC QUANTIFIER AND VARIABLE WEIGHT

A. QG-VWA group decision making model

For a group decision making problem, let 𝐴 be an alter-
native to be evaluated, 𝑒1, 𝑒2, ⋅ ⋅ ⋅ , 𝑒𝑛 be the experts partic-
ipating in the decision making, 𝑤1, 𝑤2, ⋅ ⋅ ⋅ , 𝑤𝑛 be weights
of the experts, and 𝑥𝑖 be the evaluation given by experts
𝑒𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛. Decision maker should synthesize the
individual judgment value into a group’s evaluation by ap-
plying an appropriate decision making model. Considering the
complication of the real world, decision maker usually gives
some feasible conditions to satisfy with the alternative in the
synthesizing process such as “most experts”, “80% of the
expert’s opinions”, and so on. Apparently, the terms “most”
and “about 80%” transfer some vague information. How to
grasp the semantics of the terms is a key issue to be solved
for this kind of group decision making[1]. In the following,
we establish a fuzzy group decision making model based on
linguistic quantifier and variable weight theory. Via the weights
transferring among the experts, this decision model can grasp
the semantics of the linguistic term fully.

At first, we reorder the expert’s evaluations 𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛
in descending order and get a new vector 𝑌 = (𝑦1, 𝑦2, ⋅ ⋅ ⋅ , 𝑦𝑛),
where 𝑦𝑖 is the 𝑖−th largest element of 𝑥𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛.
Later, by applying the Borda function which is usually used in
group decision making[19], we define an order value for every
element 𝑦𝑖 as 𝑏𝑖 = 𝑛+1−𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛. If experts give the
same evaluation, without loss of generality, assume that they
are the elements 𝑦𝑘, 𝑦𝑘+1, ⋅ ⋅ ⋅ , 𝑦𝑘+1−𝑚 of vector 𝑌 , then we

let 𝑏𝑖 =
1

𝑚

𝑘+𝑚−1∑

𝑖=𝑘

(𝑛 − 𝑖 + 1), 𝑖 = 𝑘, 𝑘 + 1, ⋅ ⋅ ⋅ , 𝑘 + 𝑚 − 1.

Suppose we wish to consider 𝑄 experts’ evaluations in the
synthesis process, where 𝑄 is a RIM linguistic quantifier, and

its membership function is 𝑄(𝑥). Let 𝑧𝑗 = 1 − 𝑄(1 − 𝑘𝑘𝑗
𝑛

),
where 𝑘𝑗 is the index value of 𝑥𝑗 after reordering the experts’
judgment value vector 𝑋 = (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) with descendent

order, then 𝑧𝑗 = 1−𝑄(1−𝑘𝑘𝑗
𝑛

). We call 𝑍𝑄𝑋 = (𝑧1, 𝑧2, ⋅ ⋅ ⋅ , 𝑧𝑛)
quantifier guided order index vector of 𝑋 . Finally, we construct
a vector 𝑠(𝑋) = (𝑠1(𝑋), 𝑠2(𝑋), ⋅ ⋅ ⋅ , 𝑠𝑛(𝑋)), where variable
weight state 𝑠𝑖(𝑋) = 𝑧𝛼𝑖 , 𝛼 > 0, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛. Particularly,
we order 𝑜𝛼 = 0. Then, we have the following conclusion.

Theorem 3: Let 𝑋 = (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) and 𝑄 be a RIM
linguistic quantifier, 𝑍𝑋 = (𝑧1, 𝑧2, ⋅ ⋅ ⋅ , 𝑧𝑛) is a 𝑄 guided order
index vector of 𝑋 , then 𝑠𝑄(𝑋) = (𝑧𝛼1 , 𝑧

𝛼
2 , ⋅ ⋅ ⋅ , 𝑧𝛼𝑛 ), 𝛼 > 0 is

a variable weight state vector with reward.

Proof: We need only to prove that if 𝑥𝑖 > 𝑥𝑗 then 𝑠𝑖(𝑋) ≥
𝑠𝑗(𝑋). And since 𝑠𝑖(𝑋) = 𝑧𝛼𝑖 , 𝑠𝑗(𝑋) = 𝑧𝛼𝑗 , thus, we need
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only to prove 𝑧𝑖 ≥ 𝑧𝑗 . Therefore, known by the condition 𝑥𝑖 >

𝑥𝑗 , we have 𝑏𝑖 > 𝑏𝑗 , hence we have 𝑄(1− 𝑏𝑖
𝑛
) ≤ 𝑄(1− 𝑏𝑗

𝑛
),

so we have 𝑧𝑖 ≥ 𝑧𝑗 .

We complete the proof of Theorem 3.

For group decision making, with the expert’s evaluation
vector 𝑋 and variable weight state vector 𝑆(𝑋), we can obtain
variable weights 𝑤𝑄𝑖 (𝑋), 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 corresponding to the
experts by Eq.1. Furthermore we can establish the following
group decision making model based on variable weight

𝑀𝑛(𝑋) =
𝑛∑

𝑖=1

𝑤𝑄𝑖 (𝑋)𝑥𝑖 . (4)

We call formula Eq. 2 as Quantifier Guided Variable
Weight Average(QG-VWA).

B. Comparison between QG-VWA and QG-OWA

In the following, we analyze the variable weights obtained
from the variable weight state vector with reward which are
constructed by several typical linguistic quantifiers. Simulta-
neously, the results of QG-VWA and QG-OWA are compared.

(1) Linguistic quantifiers “all” and “there exists”

For convenience, we denote the quantifiers “all” and “there
exists” by 𝑄∗ and 𝑄∗, respectively, they are represented by the
fuzzy subsets in the following .

𝑄∗(𝑥) =
{

1, 𝑥 = 1
0, 𝑥 ∕= 1

𝑄∗(𝑥) =
{

0, 𝑥 = 0
1, 𝑥 ∕= 0

For 𝑄∗, we have 𝑏𝑖
𝑛 ∕= 0 for any 𝑖, then 𝑧𝑖 = 1. Hence

𝑠𝑖(𝑋) = 1, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛. Known by Eq. (1), we have
𝑤𝑄∗
𝑖 (𝑋) = 𝑤𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛. It indicates that the QG-VWA

in this situation is degenerated to the popular weighted average.
For QG-OWA operator, we have 𝑄∗G-OWA(𝑋) = min

𝑖
𝑥𝑖.

The above results show that QG-OWA operator is a more
pessimistic decision model, and QG-VWA is a more optimistic
decision model.

(2) Linguistic quantifier 𝑄𝛽“at least 100×𝛽%, 𝛽 ∈ [0, 1]”

The quantifier “at least 100 × 𝛽%” is represented by the
fuzzy subset in the following.

𝑄𝛽(𝑥) =

{
1, 𝑥 ≥ 𝛽
0, 𝑥 < 𝛽

If 1 − 𝑏𝑖
𝑛
≥ 𝛽, namely, 𝑖 ≥ 1 + 𝑛𝛽, then 𝑧𝑖 = 0.

Otherwise, if 1 − 𝑏𝑖
𝑛

< 𝛽 or 𝑖 < 1 + 𝑛𝛽, then 𝑧𝑖 = 1.
It indicates that the weights are distributed again among the
experts whose evaluations are the 1st, 2nd, ⋅ ⋅ ⋅, [1 + 𝑛𝛽]-th.
Known by Theorem 1, the larger the expert’s evaluation, the
greater the varying ratio of the expert’s weight. Furthermore,
we give some analysis on the influence of 𝛽 on the variable
weights. If 𝛽 is near with 1 enough, then, for any 𝑖, we

have 𝑧𝑖 = 1. Hence, we have that the QG-VWA reduces to
the popular weighted average. It’s the same with the QG-
VWA derived from quantifier 𝑄∗. On the other hand, from
the viewpoint of semantics, while 𝛽 closes with 1 enough, the
semantics of 𝑄𝛽 is similar with the meaning of “all”, namely,
the semantics of 𝑄∗. From the two different viewpoints, we get
the same result. Similarly, if 𝛽 closes with 0 enough, let 𝑖0 be
an integer, such that 𝑥𝑖0 = max

𝑖
𝑥𝑖. Then 𝑧𝑖0 = 1 and 𝑧𝑖 = 0

for any 𝑖 ∕= 𝑖0. It implies that the 𝑄𝛽G-VWA is max operator
when 𝛽 → 0. Namely, lim𝛽→0𝑄𝛽G-VWA(𝑋) = max

𝑖
𝑥𝑖. On

the other hand, from the viewpoint of semantics of linguistic,
while 𝛽 → 0, the semantic of 𝑄𝛽 is similar with the meaning
of “there exists”, namely, the semantic of 𝑄∗. The two results
are the same as. The above results give some illustrations of
the rationality of the decision model (4).

For OWA operator derived from 𝑄𝛽 , if 𝑛𝛽 ≤ 𝑗 < 1 +
𝑛𝛽, then we have 𝑤𝑗 = 1, else 𝑤𝑗 = 0. It indicates that
𝑄𝛽G-OWA(𝑋) = 𝑥𝑗 , where 𝑛𝛽 ≤ 𝑗 < 1 + 𝑛𝛽. Hence, this
operator describes the semantic of “at least 100×𝛽, 𝛽 ∈ [0, 1]
percent of” by only one expert’s evaluation. From this view
of point, we can also see that QG-OWA operator is a more
pessimistic decision model, and QG-VWA is a more optimistic
decision model.

IV. NUMERICAL EXAMPLE

Suppose we need to select an alternative from four alterna-
tives 𝐴,𝐵,𝐶,𝐷. Five experts, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, take part in the
decision making. The experts’ judgments are listed in Table 1
as follow.

TABLE I. THE FIVE EXPERT’S JUDGEMENTS

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5
𝐴 0.85 0.76 0.8 0.85 0.9
𝐵 0.78 0.83 0.82 0.9 0.85
𝐶 0.9 0.85 0.78 0.83 0.74
𝐷 0.85 0.82 0.73 0.88 0.82

Assume that the weights of the five experts are
0.3, 0.15, 0.2, 0.2, 0.15, respectively, and we aggregate the
evaluations of the experts with the strategy of considering “the
most of the evaluations”. The fuzzy set “most” is defined as[7]:

𝑄(𝑥) =

{
0, 0 ≤ 𝑥 ≤ 0.3
2(𝑥− 0.3), 0.3 < 𝑥 ≤ 0.8
1, 0.8 < 𝑥 ≤ 1

In the following, we introduce the method of obtaining the
decision value by the decision model presented in this paper.
We only give process of obtaining the evaluation of 𝐴, the
others are similar.

Firstly, the expert’s judgment value vector is 𝑋 =
(0.85, 0.76, 0.80, 0.85, 0.90). With the descending result of 𝑋 ,
we have 𝑏1 = 3.5, 𝑏2 = 1, 𝑏3 = 2, 𝑏4 = 3.5, 𝑏5 = 5. Hence,
we obtain the quantifier guided order index vector of 𝑋 as
𝑍𝑄𝑋 = (1, 0, 0.4, 1, 1). Assume that the parameter 𝛼 = 0.5 in
the variable weight state vector, then we construct the follow-
ing variable weight state vector 𝑠(𝑋) = (𝑧0.51 , 𝑧0.52 , ⋅ ⋅ ⋅ , 𝑧0.55 ).
By variable weight Eq.(1), we get the variable weight vector
𝑤𝐴(𝑋) = (0.3864, 0, 0.1629, 0.2576, 0.1932).
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Similarly, we have

𝑤𝐵(𝑋) = (0, 0.2197, 0.2071, 0.2368, 0.2456),

𝑤𝐶(𝑋) = (0.3972, 0.1986, 0.1675, 0.2368, 0),

𝑤𝐷(𝑋) = (0.4096, 0.1586, 0, 0.2731, 0.1586).

Finally, by decision making model of QG-VWA, we have
VM𝐴 = 0.8515,VM𝐵 = 0.7741,VM𝐶 = 0.8534,VM𝐷 =
0.8487. Therefore, the final ranking is 𝐶 ≻ 𝐴 ≻ 𝐷 ≻ 𝐵,
where “≻” denotes “better than or dominate”.

If we adopt the constant weighted averaging operator, then
we have M𝐴 = 0.8340,M𝐵 = 0.8300,M𝐶 = 0.8305,M𝐷 =
0.8230. The final ranking of the alternatives is 𝐴 ≻ 𝐶 ≻ 𝐵 ≻
𝐷.

If we adopt the QG-OWA, then the corresponding
weight vector is 𝑊𝑂𝑊𝐴 = (0, 0.2, 0.4, 0.4, 0). Further-
more, we get four synthetical evaluations of the four alter-
natives, OWAM𝐴 = 0.83,OWAM𝐵 = 0.83,OWAM𝐶 =
0.814,OWAM𝐷 = 0.826, and the final ranking of the alterna-
tives is 𝐴 ≻ 𝐵 ≻ 𝐷 ≻ 𝐶.

Thus, we obtain three different ranking results by applying
three decision making models. When the constant weighted
averaging operator is adopted, the linguistic quantifier doesn’t
give any effect in the synthesizing process. It presents the
rank of 𝐴 ≻ 𝐶 ≻ 𝐵 ≻ 𝐷. However, if we consider the
effect of the linguistic quantifier and adopt the QG-VWA,
since this is a more optimistic decision model, the experts
who give larger judgments will make greater influence on the
decision, then the ranking is changed as 𝐶 ≻ 𝐴 ≻ 𝐷 ≻ 𝐵.
For example, the ranking result of 𝐴 ≻ 𝐶 by using constant
weighed averaging operator is changed as 𝐶 ≻ 𝐴. This is
because “most” experts’ judgment values of 𝐶 are larger
than the corresponding experts’ judgment values of 𝐴. On
the contrary, if we adopt QG-OWA operator, since it is a
pessimistic decision model, the maximum element is rejected
off the synthesis.This leads to different result with the two
previous results. For instance, the result of 𝐶 ≻ 𝐷 is changed
as 𝐷 ≻ 𝐶. It is because we only consider three judgment
values 0.85, 0.78, 0.83, given by 𝑒2, 𝑒3 and 𝑒4 respectively,
when we investigate alternative 𝐶, and utilize the judgment
values 0.85, 0.82, 0.82, given by experts 𝑒1, 𝑒2, 𝑒5 respectively,
when we investigate alternative 𝐷.

V. CONCLUSIONS

Since variable weight synthesis considers both the factor
weights and the configuration of factor states, it shows more
scientific than the constant weighted synthesis in many real
problems. In practice, it makes that the variable weight syn-
thesis model can better meet different decision requirements
to adopt different strategies of weight varying according to
different real problems. In this paper, we merge linguistic
quantifier and Borda function, propose a kind of new method
to construct the state variable weight vectors with reward and
the variable weight state vector, establish the variable weight
synthesis decision making model and investigate several group
decision making models derived by some typical linguistic
quantifiers and the OWA operators. Finally, we use one nu-
merical example to illustrate our model reasonable, make the

comparison between OWA operator and variable weighted
averaging operator.

Of course, balance function is an important concept in
the theory of variable weight decision making. It can help
us to scientifically grasp the action mechanism of the balance
function for applying the variable weight synthesis. In this
paper, we develop the research from analyzing the mechanism
of the state variable weight vector to the mechanism of the
balance function. We not only discuss the balance on the
configuration of the state values, but also analyze the affection
on the decision attitude of the decision maker including the
weights transferring and the synthesis decision value. These
results can help us to propose some principles for selecting
balance function in decision making procedure.
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