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Abstract—Takagi-Sugeno fuzzy models are exact rep-
resentations of nonlinear systems in a compact re-
gion. Guaranteed-cost linear matrix inequalities pro-
duce controllers which minimize a shape-independent
bound on a quadratic cost; however, the controller has
a fixed structure (possibly suboptimal), say a Parallel
Distributed Compensator (PDC), and does not allow
input saturation. By posing the problem as a Model
Predictive Control one, the ideas of terminal set, ter-
minal controller and feasible set can be used in order
to improve the performance of usual guaranteed-cost
controllers for Takagi-Sugeno systems via Quadratic
Programming. A Polya-based approach has been in-
troduced in order to (conservatively) transform the
invariant set problem into a polytopic one, as well as
computing the controller feasibility region. The optimal
controller is computed iteratively.

Index Terms—Discrete Takagi-Sugeno Fuzzy Mod-
els, Invariant sets, Contractive sets and Robust Stabil-
ity.

I. Introduction

Takagi-Sugeno (TS) fuzzy models are exact representa-
tions of nonlinear systems in a compact region (modelling
region, Ω) if well-known systematic sector-nonlinearity
methodologies [1] are used.
Techniques based on Linear Matrix Inequalities (LMI)

have allowed to obtain a wide range of fuzzy controllers
following different specifications (stability, decay, H∞, ...).
Many of them result in closed-loop expressed as multi-
dimensional fuzzy summations. In particular, guaranteed-
cost ones [2] are those which generalize to TS models, with
some conservativeness, the usual optimization of infinite-
cost quadratic indices in linear quadratic regulator (LQR)
control.
However, as fuzzy models are usually valid only locally

in the compact region Ω, performance guarantees are
usually stated only on level sets of the obtained Lyapunov
functions included in the modelling region [3]. So, implic-
itly, the actual fuzzy control problem should incorporate
state constraints arising from the local modelling setup.
Such constraints are usually enforced via Lyapunov level
sets but the actual valid initial condition region might be
quite larger than that arising from the level sets [4]. Also,
in realistic applications, there is always control saturation

which is not easy to handle in LMI framework: most
conditions actually require the control action to avoid
saturation in the outermost Lyapunov level set or, if that
is not the case [5], either cannot prove improvement with
respect to non-saturating laws or require iteration/Bilinear
Matrix Inequalities (BMI) [6].

In a linear case, state and input constraints are han-
dled with on-line finite-horizon optimization in model
predictive control [7] (MPC). Stability and infinite-horizon
optimality of receding-horizon predictive laws is ensured
for all initial states in a so-called feasible set if a so-called
terminal controller can be found which does not hit any
constraint in future time for all initial states in a terminal
set. These are well known concepts in the linear MPC
framework [7] which, however, are much harder to deal
with in nonlinear systems.

The objective of this paper is adapting the above
considerations to TS fuzzy systems. As there are some
causes of conservatism (in particular shape-independence
and fuzzy summation issues [8]), subsets of the actual
invariant and feasible sets are computed for a PDC ter-
minal controller. Also, as future optimal trajectories are
unknown, an iterative procedure is reported in order to
converge to the optimal one for the original nonlinear
system (actually suboptimal because convergence is sought
only in the finite-horizon segment). The result, albeit sub-
optimal (because the terminal controller is conservative
because of shape-independence and Polya-like fuzzy sum-
mation issues), improves over the terminal controller both
in achieved cost and in the enlarged feasible zone.

The structure of the paper is as follows: next section
discusses preliminary notation and the concrete problem
statement above outlined. Section III discusses the pro-
posed setup for adapting MPC to fuzzy systems, first
considering the terminal cost, and later the terminal set,
feasible set, plus an iterative algorithm to compute the op-
timal transient system trajectories (Section III-D). Section
IV proposes an example in which the main concepts are
illustrated. A conclusion section closes the paper.
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II. Preliminaries and Problem statement

Consider a nonlinear discrete-time system to be con-
trolled, given by a model:

xk+1 = fx(xk) + fu(xk)uk (1)

such that fx(0) = 0. This system can be expressed locally
in a compact region of interest Ω containing the origin as
a TS [9] fuzzy system with r rules or local models in the
form:

xk+1 =
r∑

i=1

μi(xk)(Aixk +Biuk) (2)

where xk ∈ R
n represent the states, uk ∈ R

m the control
actions and μi represent membership functions such that:

r∑
i=1

μi(xk) = 1, μi(xk) ≥ 0 ∀x i : 1 . . . r (3)

If a fuzzy PDC state-feedback controller were used,

uk = −
r∑

i=1

μiKixk (4)

the closed loop has the form:

xk+1 =

r∑
i=1

r∑
j=1

μiμj((Ai −BiKj)xk) (5)

Note that the dependence of the membership functions
on xk has been omitted for brevity.

Let us also consider in our problem formulation some
input and state constraints. When these constraints are
linear they can be defined by the appropriated matrices R
and S, and vectors r, s such that:

X = {x ∈ R
n | Lx+ l ≤ 0} (6)

U = {u ∈ R
m | Su+ s ≤ 0} (7)

A. Problem statement

In literature, guaranteed cost control is used to synthe-
size PDC controllers in the form (4) without taking into
account the state and input constraints.

The objective of this paper is using such controllers
as terminal controllers in predictive-control-like strategies
for fuzzy TS systems in order to (partly) overcome the
conservativeness arising from:

• the worst-case (membership independent) approach,
• the limited choice of Lyapunov functions and
• ensuring the satisfaction of the above defined con-

straints in the largest possible initial condition region.

In summary, even if terminal controllers are conservative,
results (guaranteed cost bounds) will improve due to the
addition of a finite-horizon segment with less conservative
assumptions.

III. Fuzzy Model Predictive Control

MPC can be defined as a Constrained online optimiza-
tion based on a model prediction. The essential parts of a
MPC are:

• A model that will be able to describe the behavior of
the future states.

• An objective function that represents the performance
of the controlled system.

• An optimizer, that minimizes the objective function
subject to the proper constraints.

• The receding horizon strategy, that implies that the
optimizer has to solve the problem at each step.

The model that will be used on the MPC formulation is
the following TS one:

xk+1 =

r∑
i=1

μi(x̃k)(Aixk +Biuk) (8)

Note that the main difference between (2) and (8) is that
the membership functions depend on a new variable x̃k.
This variable is an estimation of the optimal states at
time k, at the prior iteration in an algorithm to be later
introduced. The introduction of that variable simplifies the
problem significantly, because the non-linear dependence
of the TS model can be evaluated at the beginning and
then it will not be introduced into the optimization prob-
lem. The obvious drawback of that simplification is that
many times x̃k may be quite different from the predicted
optimal xk, so this motivates the mentioned iterative
approach.

A. The objective function

Ideally, the proposed objective function would be a
quadratic performance function of the states and the
inputs such as:

J∞ =
∞∑
k=0

(
xT
k Hxk + uT

k Fuk

)
(9)

However, the main drawback of the function (9) is that
it is not numerically tractable (except in the well-known
linear time-invariant case) because of the infinite-horizon
objective. In order to avoid this problem, a finite horizon
function is usually introduced in MPC:

JN = xT
NPxN +

N−1∑
k=0

(
xT
k Hxk + uT

k Fuk

)
(10)

For performance and stability reasons, it will be interesting
that our proposed finite horizon performance function JN
bounds the optimal infinite-horizon one J∞ (J∞ ≤ JN )
while making the gap between both functions as small as
possible.
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To do so, analogous considerations as those in [10] for
continuous systems have been done for the discrete TS
case in this paper. This way, a matrix P must be found
which bounds the term of the infinite horizon JN→∞

JN→∞ =

∞∑
k=N

(
xT
k Hxk + uT

k Fuk

)
(11)

such that
JN→∞ ≤ xT

NPxN (12)

This bounding can be achieved by constraining the per-
stage weighting with the condition (13)

xT
k+1Pxk+1 − xT

k Pxk < −(xT
kHxk + uT

k Fuk) (13)

Indeed, if (13) holds, summing from k = N to k = ∞
and assuming the resulting controller will be stabilising so
x∞ = 0, the cost index (11) can be bounded by xT

NPxN

∞∑
k=N

(xT
k Hxk + uT

k Fuk) < xT
NPxN (14)

Using the Schur complement, following well-known ar-
gumentations [11], a controller for which (13) holds can be
found if there exist matrices Mi, X > 0 such that

Γij =

⎛
⎜⎜⎝

X XAT
i −MT

j BT
i X MT

j

AiX −BiMj X 0 0
X 0 H−1 0
Mj 0 0 F−1

⎞
⎟⎟⎠

(15)
r∑

i=1

r∑
j=1

μiμjΓij > 0 (16)

where P = X−1 and the controller is defined as a PDC
(4) with

Ki = MiX
−1 (17)

The worst-case bound of the cost function (11) is mini-
mized if the eigenvalues of X are maximized, that is

min−λ

subject to (16) and X > λ.
Note that (16) is a fuzzy summation which can be,

conservatively, expressed as an LMI following any of the
relaxations in [12], [13], [14].

B. Terminal Set

Many times, the PDC controller (17) can not be applied
in the whole state space definition X defined in (6), because
some inputs defined with this PDC controller will not
verify the input constraints defined in (7). Also, maybe
even if they do in a particular instant, the future optimal
trajectory may exit Ω or even without exiting, it might
violate the input bounds.
Then it is mandatory to obtain a set from with this

controller can be applied and the system will be stable
and optimal, and future states must also belong to that set.
Following predictive-control argumentations, the invariant

set of this controller has to be computed. It can be done
following the algorithm presented in [15]. This algorithm
is based on [16], adapted to TS Fuzzy models applying the
Polya theorem and is also presented here as Algorithm 1.

Algorithm 1 Calculation of the closed-loop N -step in-
variant set KN (Ω,T)

1) Make i = 0 and K0(Ω,T) = T

2) While i < N :

a) Ki+1(Ω,T) = Q (Ki(Ω,T)) ∩Ω
b) If Ki+1(Ω,T) = Ki(Ω,T), end algorithm and

KN (Ω,T) = K∞(Ω,T) = Ki(Ω,T).
c) i=i+1

where T is a target set; Ω is a generic set in the states
space; and Ki(Ω,T) denotes the subset of Ω that steers
the system to T in at most i steps.
The algorithm needs to compute iteratively the one-step

set Q(Ω) = {x ∈ Ω|xk+1 ∈ Ω}. This set, in a general case,
is a complicated one arising from the non-linear dynamics
embedded in the TS models.
In order to avoid this problem, an approximation of Q

can be done using the Polya expanded TS model

xk+1 =

(
r∑

i=1

μi(x)

)d−2 r∑
i=1

r∑
j=1

μi(x)μj(x)Gijxk (18)

where Gij = Ai−BiKj. Note that this model is equivalent
to (5) as

∑r
i=1 μi(x) = 1.

The Polya-expanded model in (18) is a d degree vector
polynomial of μi and a suitable matrix G̃i can be found
such that

xk+1 =
∑
i∈I

+
d

niμi(x)G̃ixk (19)

where each μi represents one of the possible monomials∏
μj of degree d; I

+
d is the set of all the different monomials

of degree d; and ni is the number of times that this
monomial appears in (18). For further details, the reader
is referred to [15].

With this notation, the one-step set can be expressed as

Q(Ω) = {x ∈ R
n|
∑
i∈I

+
d

niμi(x)G̃ix ∈ Ω} (20)

Due to μi and ni being positive, a sufficient condition for
a point x to belong to (20), can be given by ensuring that

Q(Ω) ⊃ Q̃d(Ω) = {x ∈ R
n|G̃ix ∈ Ω} (21)

Note that Q̃d(Ω) is a polytopic subset of the one-step
set. Furthermore, it can be proved that as d increases,
Q̃d(Ω) asymptotically approaches to the maximal shape-
independent subset of Q(Ω) [4]. Now, this set can be used
in Algorithm 1 in order to obtain an inner approximation
of the Invariant Set which can be used as the terminal set
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in the MPC problem. We define this set as Z = K∞(Ω,Ω)
which is a polytope. Hence, it can be represented as

Z = {x ∈ R
n|Zx ≤ z} (22)

for a suitable choice of matrix Z and vector z.

C. Optimization Problem

Once the terminal cost P and the terminal set Z are
obtained, given a known initial state x0 and a first guess
of the future optimal trajectory x̃ = (x̃1, . . . , x̃N−1),
the following Quadratic Programming (QP) optimization
problem PN (x0, x̃) can be stated:

PN (x0, x̃) : find u0,. . . , uN−1 which minimize

JOPT
N (x) =xT

NPxN +

N−1∑
k=0

(
xT
k Hxk + uT

k Fuk

)
(23)

subject to:

uk ∈ U for k = 0, . . . , N − 1

xk+1 =
r∑

i=1

μi(x̃k)(Aixk +Biuk) ∈ X (24)

for k = 0, . . . , N

xN ∈ Z ⊂ X

At this point it is useful to remark that x̃k for k =
1 . . .N − 1 have to be already known in order to avoid
the nonlinearities of the model’s memberships and express
this problem as a QP. In the next section, an iterative
procedure will be presented to obtain this state estimates.
Let us show that, indeed, the problem is a standard QP

one. First, note that the matrices below are known at the
time of the computation

A(x̃k) =
r∑

i=1

μi(x̃k)Ai, B(x̃k) =
r∑

i=1

μi(x̃k)Bi (25)

With these matrices the prediction model can be ex-
pressed as:

x = Θxk + Γu (26)

where x = (xT
1 . . . xT

N )T , u = (uT
0 . . . uT

N−1)
T , Θ is defined

in (27) and Γ in (28) on top of next page.

Θ =

⎛
⎜⎜⎜⎝

A(x̃0)
A(x̃1)A(x̃0)

...
A(x̃N−1) . . . A(x̃0)

⎞
⎟⎟⎟⎠ (27)

As Θ and Γ are easily computable matrices, follow-
ing standard MPC procedures (see [7] for details), the
optimization problem can be expressed as the following
quadratic program on the vector of future controls u:

PN (x0, x̃) :minimize
1

2
uTHu+ xT

0 Fu (29)

subject to:

Φu ≤ Δ− Λx0 (30)

where

Φ =

(
LΓ
S

)
, Δ =

(
l
s

)
, Λ =

(
LΘ
0

)
(31)

L = diag(L, . . . , L, Z), l = diag(l, . . . , l, z) (32)

S = diag(S, . . . , S), s = diag(s, . . . , s) (33)

H = ΓT [diag(H, . . . ,H, P )]Γ + diag(F, . . . , F ) (34)

F = ΘT [diag(H, . . . ,H, P )]Γ (35)

D. Iterative computation of the state trajectory estimate

As previously stated, in the proposed optimization prob-
lem an state estimate x̃k is needed in intermediate steps.
For a good prediction of the trajectories, it is needed that
this estimate is as close as possible to the real future
optimal state, x̃k ≈ xOPT

k . However, as these future
trajectories are unknown until the actual control action
is computed, an iterative setup is needed in order to
compute the optimal control action as well as the optimal
trajectory.
To this end, Algorithm 2 below is presented. It has

been implemented with end conditions considering some
(application dependent) limitations on the available time
εt for the computation and desired precision in the solution
εx.

Algorithm 2 Iterative computation of the state estimate

1) Obtain initial estimate x̃ from previous sampling
step.

2) Solve the program PN (x0, x̃) obtaining uk

3) x̃∗
0 = x0, x̃

∗
k+1 =

∑
i=1 μi(x̃

∗
k)(Aix̃

∗
k + Biuk) for k =

0 . . .N − 2
4) If |x̃∗ − x̃| > εx|x̃| and t− t0 < εt go to step 2 with

x̃ := x̃∗

E. Feasible region

At this point, it is important to know the set of states
where the proposed problem PN (x0, x̃) has a solution,
given an horizon N . Otherwise, Algorithm 2 may be
infeasible. This feasible set, can be computed as the set
of states that can reach the terminal set in N steps while
holding the imposed constraints in inputs and states. Of
course, the larger the horizon, the larger the resulting set
would be.
A possible way to compute this feasible set is applying

Algorithm 1 with horizon N and T = Z, where Z is the
terminal set previously computed in Section III-B. Now, as
the input is not determined by a given“optimal”controller
(only the existance of a valid input is needed), the one-step
set is redefined as

Q(Ω) =

{
x ∈ R

n|∃u ∈ U,
r∑

i=1

μi(x̃k)(Aix+Biu) ∈ Ω

}

(36)
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Γ =

⎛
⎜⎜⎜⎝

B(x̃0) 0 . . . 0
A(x̃1)B(x̃0) B(x̃1) . . . 0

...
...

. . .
...

(
∏N−1

i=1 A(x̃i))B(x̃0) (
∏N−1

i=2 A(x̃i))B(x̃1) . . . B(x̃N−1)

⎞
⎟⎟⎟⎠ (28)

As the values of x̃ are uncertain, an inner approximation
of this set is here proposed, which is shape-independent,
i.e., valid for any possible value of μi:

Q̃(Ω) = {x ∈ R
n|∃u ∈ U, Aix+Biu ∈ Ω, ∀i = 1 . . . r}

(37)
and the standard algorithm is applied with the above set
for a number of steps equal to the finite-horizon N .

F. Receding Horizon Optimization and Stability

The optimal controller obtained by solving problem
(29) is implemented, as usual in MPC, in a receding-
horizon strategy in which only the first action u0 is applied
and, then, a new state is measured and everything is
recomputed.
Given the fact that the terminal cost verifies (13),

using the results in [7], assuming Algorithm 2 has con-
verged to the optimal trajectory, then stability of the
receding horizon implementation can be ensured; also,
some contractive-set constraints [17] can be additionally
enforced to ensure stability even if Algorithm 2 has not
converged (details omitted for brevity).

IV. Example

This example will illustrate the proposed MPC method-
ology for a TS system

xk+1 =

r∑
i=1

μi(xk)(Aixk +Biuk) (38)

with the local models and membership functions defined
as (39)-(41)

A1 =

( −0.9 0.3
0 0.4

)
A2 =

(
0.8 0.6
−0.5 0.2

)
(39)

B1 =

(
0.4
1.1

)
B2 =

(
0.9
0.3

)
(40)

μ1 =
10− x1(k)

20
μ2 = 1− μ1 (41)

The system will be constrained in the input and states
as given by

−1 ≤ uk ≤ 1 − 10 ≤ xk ≤ 10 (42)

where state restrictions are understood as component-
wise.
First, a terminal state weighting P and terminal PDC

controller uk =
∑r

i=1 μiKixk are computed as discussed

�� �� �� �� �� � � � � � �
���

��

��

��

��

�

�

�

�

�

��

�
�

� �

Fig. 1. Terminal Set (red), Feasible Set (grey), and state trajectory

in section III-A with weighting matrices H and F being
chosen as:

H =

(
1 0
0 1

)
, F = 1 (43)

The obtained PDC controller gains Ki are

K1 = (−0.3519 0.3136) , K2 = (0.3898 0.5664) (44)

and the resulting terminal weighting P matrix is:

P =

(
8.5967 −0.1159
−0.1159 5.5136

)
(45)

Next, the terminal set is obtained following Algorithm 1
with constraints (46) and a Polya complexity index d = 50
in the computation of the inner approximation of the one-
step set (21), with the state constraints arising from the
use of the terminal controller, i.e.:

−10 ≤ xk ≤ 10
−1 ≤ K1xk ≤ 1 − 1 ≤ K2xk ≤ 1

(46)

The obtained terminal set is illustrated in Figure 1.
At this point all the required elements for stating the

QP fuzzy predictive control problem are already available.
However, it is also interesting to obtain the set of states
for which the optimization problem will we feasible, i.e.
the feasible set, as described in Section III-E. Choosing
an horizon of N = 6 the shape-independent feasible set
presented in grey in Figure 1 is found.
Finally, in order to evaluate the MPC controller per-

formance, the closed-loop trajectory from an arbitrarily
chosen point x0 = (−1 8)T is also shown in Figure 1.
Algorithm 2 needs 2 iterations to find an state estimate of
relative precision of εx = 0.1%.
Additionaly, time responses of the states and the control

action are shown in figures 2 and 3 respectively, showing
a fast convergence to the equilibrium point.
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Fig. 2. States time response.
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Fig. 3. Control action time response.

Comparative analysis and discussion:

The use of the MPC approach allows improving over the
performance index from the shape-independent LMI PDC
controller in two ways:
First, by allowing a larger feasible zone, in which input

constraints may be hit for several time steps. The standard
literature controller would only be valid in its invariant set
(and, actually, published fuzzy guaranteed-cost literature
would only consider a Lyapunov level set inside it).
Second, even inside the terminal set, a few steps of

actual optimization will beat in most cases the worst-case
cost with a fixed PDC controller structure. For instance,
in this example, the state ψ = (−2, 0) inside the terminal
set yields a computed cost of 0.1411 with the terminal
controller (note that the cost bound proved with the
LMIs is ψTPψ = 34.387 as it is a shape-independent
worst-case estimation –almost 250 times higher than the
actual cost–), whereas the actual cost index computed
with the predictive iterative controller reduces it to 0.0916
(i.e, a 35% reduction). Random trials with states in the
terminal set result in a reduction between 0% and 93%
over the LMI-based PDC controller. Note also that the
larger the prediction horizon the less relevant the role of
the terminal cost and terminal controller is, as usual in
dynamic-programming based optimal control setups.

V. conclusions

This paper presents an application of predictive-control
ideas to fuzzy control. The MPC algorithm follows an
standard structure in which a fuzzy PDC terminal con-
troller and terminal state weighting are calculated by
LMIs. An algorithm for obtaining an inner approximation

of the terminal set for this controller with a Polya-based
approach is also introduced. As future memberships are
unknown, an iterative quadratic programming procedure
is proposed. Stability guarantees are also discussed.
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