
 

Abstract— Generalized solutions to complex problems often 
suffer from being overly complicated.  The main contribution 
of this paper is to describe an architecture that allows for 
greater problem generalization without the traditional 
corresponding increase in complexity.  The architecture 
extends traditional fuzzy logic and is called Fuzzy Contexts or 
Fuzzy Logic Type-C.  Fuzzy logic permits partial membership 
and values can belong to multiple fuzzy sets.  By breaking down 
a problem space into smaller contexts and allowing algorithms 
themselves to have relaxed memberships in those contexts, a 
Type-C solution can support multiple solutions to complex 
problems.  This paper describes how problem spaces may be 
decomposed into smaller, more easily solvable components and 
fuzzified together under a Type-C hierarchy.  Test results with 
a simulated robotic navigation system demonstrates how a 
Type-C implementation is able to improve upon a generalized 
fuzzy controller. 

I. INTRODUCTION 

An algorithm is “any well-defined computational 
procedure that takes some value or set of values as input and 
produces some value or set of values as output” [1].  In the 
decades since the introduction of the first digital computer, 
many kinds of algorithms were developed in order to solve 
specific classes of problems.  For instance, when faced with 
a list of names, a developer may decide it necessary to sort 
them using a sorting algorithm such as a quicksort. 

Quicksort is very useful for sorting problems [1] but 
would likely be a very poor application for a scheduling 
problem [2].  Hence, other algorithms are needed as 
problems and requirements change.  Imagine a domain of 
problems in which some solutions are best served using a 
sorting algorithm and others using a scheduling algorithm as 
shown in fig 1. 

 
Fig. 1, Different Problems within a Problem Space 

It is not uncommon in a larger domain to see different 
problem spaces overlap. 
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Even within a given problem space, circumstances can 
arise which introduce “situational discontinuity”.  Situational 
discontinuity occurs when the problem space, for example, a 
road, contains occurrences which change the resulting 
problem significantly, such as hitting a patch of ice.  
Because the subsequent behavior must be so different, it is 
effectively the same having a different problem space 
altogether.  Living creatures are naturally well-equipped to 
adapt to Situational Discontinuity Problems (SDPs).  A 
duck, for example, swims in the water and walks on land and 
flies through the air.  Humans sweat when hot and shiver 
when cold and so on. 

In the artificial world, handling SDPs becomes a matter of 
using different algorithms or generalizing a single approach.  
In data mining, for example, there are many algorithms used 
to find interesting information from huge, often disparate 
data sets [3].  An experienced data miner needs to be 
familiar with Decision Trees, Neural Networks, Linear 
Regression and a whole host of other algorithms, each of 
which has advantages depending upon the underlying 
patterns in the data [4].  Something as simple as a fuzzy 
thermostat may have some rules for temperature, other for 
humidity and still others for time of day in order to handle 
many different demands for climate control. 

Intuitively, it seems obvious that different classes of 
problems require different approaches, but the problem with 
SDPs is that they tend to be ambiguous, hence it can be 
difficult to determine when an SDP has occurred and what to 
do about it.  A fuzzy controller trying to navigate a maze 
must already deal with a number of navigation problems 
without also having to negotiate obstacles such as ice and 
potholes that it may or may not encounter. Ideally there 
would be a generalized contextual approach capable of 
handling all the underlying SDPs encountered; one that was 
efficient, easy to understand and implement.  Psuedocode for 
such an approach might look something like the following: 

 
result TYPE-C_EVALUATE (contexts, tuple) 
inputs: contexts, a set of fuzzy contexts in which each 
context represents a problem scenario, such as ice, 
potholes, smooth, etc. 

: tuple, set of values representing measurements or state 
of process 
output: crisp result 
 
Step 1: Test each context to see if it is valid for this state 
Step 2: For each valid context: 
  Determine the corresponding weighting of this context 
  Determine the membership value for this context 
  Run the corresponding context algorithm against tuple 
Step 3: Combine algorithm results, weight and membership 
values to get result.  Return result 

Fig. 2, Pseudocode for a Generalized Contextual Approach 
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This approach is useful to avoid the complexity problems 
of generalized algorithms [5].  This paper presents a novel 
implementation of this approach called Fuzzy Logic Type-C 
and is organized as follows: Section II presents the problem 
statement, limitations and prior work in a number of Fuzzy 
techniques.  Section III introduces the Fuzzy Context and 
how it can be applied to solve the SDPs in a complex 
problem space and describes the architecture of a Type-C 
application.  Section IV presents test results demonstrating 
the advantages of a Type-C based implementation.  Section 
V presents conclusions and future work. 

II. PROBLEM STATEMENT AND PRIOR WORK 

Describing the behaviors of complex systems present 
many challenges for the software architect and developer.  
Foremost among them is the ability to model behaviors that 
are by their very nature imprecise [6].  In the “crisp” world, 
this is a particularly difficult task since even a small number 
of inputs requires a complex equation in order to create a 
smooth, continuous result.  In particular, crisp solutions have 
difficulty properly describing behavior at boundaries [7].  
Consider what the graph of a thermostat temperature might 
look like using crisp definitions of COOL, WARM and HOT 
as seen in fig 3. 

Cool
Warm

Hot

0 10 20 30 40 50  
Fig. 3, Crisp Definitions for a Thermostat Control 

 
Discontinuity at the boundaries must be smoothed in order 

for the function to prevent hyper-oscillation around those 
values.  Fuzzy logic, also known as Type-1 Fuzzy Logic, 
introduced by Lofti Zadeh [6]-[8] addresses these problems 
by approximate, rather than precise, descriptions for terms 
and allows for polyvalent membership definitions.  In the 
crisp definition above, 19.999 degrees is COOL while 20 
degrees is WARM.  In a fuzzy definition, 19.999 degrees is, 
to an extent, COOL, and also, to an extent, WARM.  As 
compared to a crisp controller, a fuzzy controller allows for 
greater linguistic precision in describing a complex system 
behavior while at the same time relaxing precision around 
the boundary points and elsewhere.  This is done through the 
use of a membership function µ whose output, instead of the 
traditional FALSE (0) and TRUE (1) allows for output of 0, 
1 and all values in between.  Thus, for a domain D 

 μሺxሻ ՜ ሾ0, 1ሿ, ݔ א  (1)     ܦ
 
A fuzzy membership function defines a fuzzy set fs, which 

can be described using a linguistic term such as WARM.  A 
fuzzy set fs is then a set of ordered pairs 
 ௦݂ ؠ ሼݔۃ, ݔ|ۄሻݔሺߤ א  ሽ    (2)ܦ

 

A fuzzy set can take any convex shape, with each fuzzy 
set depending upon its membership function.  Triangles are 
one common shape.  The prior crisp definition for the 
thermostat temperature becomes a union of fuzzy sets as 
shown in fig 4. 

Cool Warm Hot

  
Fig. 4. Fuzzy Sets as Triangles 

 
Each fuzzy set contributes partially to the final result 

depending upon the resulting µ(x).  From the example 
above, 19.99 degrees centigrade might be classified as 60% 
COOL and 40% WARM since the sets overlap. 

Fuzzy algorithms are very good at approximating complex 
polynomials and provide stronger mechanisms for handling 
noise and uncertainty along with variations among “expert” 
definitions than their crisp cousins. 

However, fuzzy logic also has limitations that pose new 
problems.  Whereas the crisp algorithm has difficulty with 
the discontinuity at a boundary, likewise a fuzzy algorithm 
has trouble handling an SDP such as when an obstacle 
presents itself. 

In the thermostat problem, a crisp solution could be 
improved by adding additional temperature tiers [7].  
Likewise an SPD could be improved by the addition of 
fuzzy rules.  However, adding tiers makes the temperature 
algorithm significantly more complex; likewise the addition 
of fuzzy rules adds significant additional complexity to a 
fuzzy solution [5].  Just as Fuzzy Logic was necessary to 
solve the crisp boundary discontinuity problem, so there is a 
need for an approach to solve situational discontinuities 
within SDPs. 

The underlying problem within fuzzy systems, and more 
generally, all approaches, is that certain problem domains 
are more solvable using certain approaches than others.  
Within each of these specific problem areas often lies even 
more specific issues which require ever more specialized 
techniques. 

For instance [9, 10] demonstrates how a Fuzzy Type-1 
controller was superior navigating around corners but 
inferior to a Fuzzy Type-2 controller navigating smoother 
surfaces.  Even within a particular problem domain, one 
configuration of a Fuzzy Inference System (FIS) will be 
superior for handling a simple maze while another FIS is 
more appropriate elsewhere for obstacles. 

A number of methods were introduced to extend fuzzy 
systems while also trying to limit the corresponding increase 
in complexity.  Prior work in this area involves the use of 
Fuzzy Type-2 [9]-[12] and Nonstationary Fuzzy [13] sets 
and Polymorphic Fuzzy Signatures [5], [14].   

Fuzzy Type-2 introduces uncertainty into the fuzzy sets 
themselves, in effect relaxing the boundaries of the 
membership function µ2, so in contrast to Equation 1: 

ଶߤ  ൌ ሼሺሺݔ, μሻ, ,ݔଶሺߤ ݔ|ሻሻߤ א ,ܦ ߤ א ሾ0,1ሿሽ (3) 
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Note also that output of µ2 is also member of the set [0, 

1].  Whereas a Type-1 fuzzy set is a 2-dimensional object, 
Type-2 fuzzy sets are surfaces as demonstrated in fig 5. 

 Fig. 5 Type-2 Fuzzy Sets 
 
A Type-2 fuzzy interference system is useful in dealing 

with problems such extensive noise or smoothing out erratic 
behaviors that plague Type 1 controllers. 

Nonstationary Fuzzy Sets (NFS) introduces the notion of 
variability of fuzzy sets over some dimension such as time, 
location, or even noise.  The NFS nfs  is described as 

 ݊ ௦݂ ൌ   ,௦ሺ݀ߤ אௗא௫݀/ݔ/ሻݔ    (4) 
 
Where d is some value along a dimension of the problem 
domain D and x is a tuple or point within the set of possible 
inputs X.  Nonstationary Fuzzy Sets allow for a dynamic 
fuzzy membership function (and sets) able to accommodate 
significant changes to the problem space.  A perturbation 
function adjusts the underlying membership functions as 
needs change.  The NFS is then able to generate a variable 
FIS to handle changes in the problem space which otherwise 
might cause difficulties to a static Type-1 or Type-2 FIS. 

Finally, Polymorphic Fuzzy Signatures (PFS) describe a 
multidimensional fuzzy tree of fuzzy sets where each leaf 
contains a specific fuzzy membership function.  
Fuzzification occurs by traversing the branches whose meta-
fuzzy signature indicates membership and combining the 
applicable membership functions at the leaves using 
traditional fuzzy functions such as max and min.  The 
polymorphic fuzzy signature is described as: 

:௦ߤ  ܺ ՜ ሾܿሿୀଵ ൫ؠ ∏ ܿୀଵ ൯    (5) 

where ci = ൝ൣܿ൧ୀଵ ; ሺ݇ ݄ܿ݊ܽݎܾ ݂݅  1ሻሾ0,1ሿ ; ݂݅ ݈݂݁ܽ  

 
Polymorphic fuzzy signatures allow one to break down an 

SDP into smaller, easier to describe, components.  Each 
component is then associated with a particular FIS and 
signature.  Each FIS output is fuzzified, with the resulting 
defuzzification using a traditional methods. 

 

Fig. 6 Polymorphic Fuzzy Signature Tree 

III. FUZZY CONTEXTS 

Fuzzy Contexts, or Fuzzy Type-C extends the concepts of 
the Fuzzy Logic, PFS and NFS into a rich framework 
supporting the use of multiple, distinct approaches to solve 
varied problems. 

Traditional approaches take an existing algorithm and try 
to generalize over a larger problem domain.  Typically this is 
accomplished by adding complexity to the algorithm.  For 
instance, a neural network adds neurons while a fuzzy 
controller adds fuzzy rules, both at a cost of complexity to 
an algorithm with correspondingly diminishing returns [5].  
For example a simple fuzzy controller designed to solve a 
navigation problem can perform quite well with a small 
number of rules.  Adding new rules gives the controller more 
capability, but each new rule expands the solution on a 
smaller and smaller scale.  Conversely each new rule greatly 
increases the system’s complexity [14].  Even within a 
problem space suited for a particular approach, an algorithm 
can still fall victim to problems of complexity and 
diminishing returns as illustrated by fig 7. 

 
Fig. 7 Adding Fuzzy Rules Results in Diminishing Returns 

 
Furthermore, there are times when multiple approaches 

may be equally worthy at certain stages of a process.  
Consider the example of a scheduler - one with a small 
number of possible configurations may be best served with a 
global ranking system; while a larger number of 
configurations may require some sort of local search 
technique [15].  The effectiveness of these different 
approaches can overlap, creating an intersection of 
subdomains as demonstrated in fig 8. 

Fig. 8, Overlap of Techniques for a Scheduler 
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In this situation, either approach is acceptable.  More 
importantly, the union of the two spaces gives the combined 
algorithms a larger surface area with less overall complexity 
than trying to extend either approach separately.  The 
problem lies in determining the situation, or “context” in 
which to apply one algorithm or the other.  For another 
example of how a context applies, albeit in a different way, 
consider an inventory control problem at a department store.  
Seasonal contexts dictate which items are most import to 
maintain inventory and how much.  As before with the 
scheduler, an inventory control system needs to account for 
the season, or context, in order to be most efficient, this time 
at maintaining inventory levels. 

Living things incorporate contexts quite well, we are 
naturally in tune with our external situation; but applying 
contexts to artificial processes requires a mechanism to both 
identify a given context as well as the best algorithmic 
behavior to apply, along with behavior at transition points 
where the “best” algorithm is ambiguous.  Fuzzy logic 
provides a useful foundation for exploiting this imprecision 
and creating and using contexts [8].  With Fuzzy Type-C, 
diverse problem spaces can be combined without sacrificing 
the simplicity and power of individual problem solving 
techniques. Consider a problem space P over a domain D.  It 
consists of a collection of states s, which is a tuple of si 
values, each si value belonging to D. 

 ܲ ؠ ሼݏ ൌ ,ଵݏ  . . , ,ݏ  ሽ   (6)ܦ߳ݏ
 
An algorithm a, such as a Type-2 FIS operates on P 

taking as input an sp and generates a result rp. 
 ܽ ؠ ݂ሺݏሻ, ݂൫ݏ൯ ൌ      (7)ݎ
 
A fuzzy “signature” is a collection of problem states, upon 

which the algorithm works efficiently, hence: 
 ௦݂ ൌ ∑ ܽ௦ୀଵ , ݏ א ܲ, ݏ א  (8)   ܦ
 
The “context” is the combination of the algorithm, the 

signature and all the associated states along with a 
membership function µc.  µc determines membership within 
a given context of any particular state si. 

ܥ  ൌ ሼ ௦݂, ܽ , ∑ ݏ , ,ߤ ݏ א ܲ, ሻݏሺߤ א ሾ0, 1ሿሽ (9) 
 

The Type-C FIS contains all the contexts associated with 
P. ܥ ൌ ∑ ୀଵܥ      (10) 

 
Fig 9 demonstrates how this approach might handle a 

complex problem domain. 

 
Fig. 9 Solving a Problem Space Using Multiple Approaches 

 
Hence, Fuzzy Type-C encapsulates multiple problem 

solving approaches by associating a “signature” of an 
environment with a distinct Type-1, Type-2 FIS or other 
algorithm and all the potential states the algorithm was 
designed to address. 

Because the new contexts can be added as a problem 
space expands, a Type-C FIS allows an expansion of a 
problem space into a larger domain without having to overly 
generalize. 

The Type-C architecture consists of the following major 
components: 

1. A set of inputs as a tuple 
2. A series of contexts.  Each context consists of: 

a. Fuzzy signature 
b. Membership function 
c. Algorithm that receives the input tuple and 

returns a result. 
3. Results fuzzifier 
4. Optional optimizer/contextualizer for dynamic 

optimization and automated learning.  It determines if 
the error rate is acceptable, otherwise will strive to 
optimized an existing context or generate a new 
context. 

5. Defuzzifier that takes fuzzified output and generates 
a crisp result. 

 
The architecture is illustrated by fig 10. 
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Fig. 10 Fuzzy Context Architecture 

 
The Contexts Fuzzifier component uses a technique similar 

to that of fuzzy classification to determine membership of a 
context.  Unlike in crisp sets where a data point is either in or 
not in a set, fuzzy classifications allow a point to have 
membership in multiple sets as shown in fig 11. 

Fuzzy clusters are very useful in creating “transition” sets 
from one problem space to another within a domain.  Likewise 
fuzzy clusters can determine membership of a given tuple with 
a context.  Cluster, and context, creation and membership is 
determined using techniques such as discussed in [16]. 

 
Fig. 11 Points in Fuzzy Clusters 

 
At runtime a Type-C FIS determines the “contextualization” 

of each input tuple using each context’s corresponding 
membership function.  Any context whose membership value 
is greater than zero will have its corresponding algorithm run 
and its output fuzzified.  Defuzzification is achieved using 
traditional fuzzy methods Ը ൌ ∑ ௪ሺ௦ሻఓሺ௦ሻసబ∑ ఓሺ௦ሻసబ , ݏ א ,ܦ ሻݏሺߤ  0        (12) 

 
Where Ը is crisp result, si is an input tuple in a domain D, 

wi is the weight, µc is the context membership and ai is the 
intrinsic function for any context whose µc is greater than zero. 

Fuzzymorphism occurs when contexts overlap as might 
occur in a problem space similar to that in fig 9.  As a state 

moves away from the center of one context and closer to the 
center of another, the resulting defuzzification will take on 
more of the characteristics of the underlying context 
algorithm, hence a Type-1 FIS might slowly morph to a Type-
2 FIS for example.  Fig. 12 illustrates the concept. 

 
Fig. 12 Type-C membership over a Problem Space 

Fuzzymorphism allows a Type-C based system containing 
multiple approaches to dynamically “morph” into the one 
most suitable for the problem at hand.  In the case of multiple 
Type-1 FIS, Type-C performs similarly to a Nonstationary 
Fuzzy System.  However, because Type-C is algorithm 
independent, the framework will support any algorithm 
capable of accepting the input tuple and producing a 
corresponding output, allowing for a much more diverse 
approach. 

IV. TEST RESULTS 
For test purposes an existing Fuzzy Type-1 framework [17], 

[18] with 6 fuzzy rules was used to navigate a robot car 
around a maze.  The car has an easy time navigating the 
simple maze as shown in fig 12, but has an equally difficult 
time when obstacles are introduced, such as those shown in fig 
13.  The SDP, in the form of the obstacles, causes the car to 
act as if a walls exists and reverse course rather than navigate 
around.  As shown in fig 13, the car failed to navigate the two 
small obstacles, effectively running in circles. 
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Fig. 12. A Robot Car Navigating a Maze 

 
Fig. 13, Robot Car is Unable to Handle SDP in the Form of Obstacles 

Next, the controller was modified using a Type-C 
architecture.  A second controller was introduced, consisting 
of 4 fuzzy rules.  Its job is to explore obstacles at close range.  
Two contexts were created, one named OBSTACLE with the 
second controller for operation near obstacles, the other named 
OTHER_SPACE for the original controller operating 
everywhere else.  It is useful to have a context that is defined 
as the complement of all other defined contexts. 

 
Fig. 14 Car navigates maze and barriers using Type-C 

 
Once the second controller was added under the Type-C 

construct it became active and fuzzymorphically took over as 

the car neared the barrier, before it was forced into a 180 
degree turn.  Under Context OBSTACLE, the car instead 
explores along the edge of the obstacle.  Upon finding an 
opening, it executes a sharp turn and proceeds until the space 
opens up again and it can fuzzymorphically revert back to the 
Context OTHER-SPACE and resume normal operations. 

V. CONCLUSION AND FUTURE WORK 
Future work needs to be done to demonstrate Type-C utility 

with other algorithms, such as Fuzzy Type-2, Swarm or Ant 
Colony optimizations, artificial neural networks and others for 
different classes of problems.  Currently work is being done to 
improve Type-C for machine learning and optimization, in 
particular for knowing when it is most appropriate to identify 
and generate new contexts.  A memetic algorithm and 
database-driven error and fitness function are under 
development to determine an allowable error threshold which 
can be used to set the boundaries and describe the resulting 
context.  Finally, additional work will incorporate other 
methods of fuzzification and defuzzification within a given 
context. 
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