

Abstract— Generalized solutions to complex problems often
suffer from being overly complicated. The main contribution
of this paper is to describe an architecture that allows for
greater problem generalization without the traditional
corresponding increase in complexity. The architecture
extends traditional fuzzy logic and is called Fuzzy Contexts or
Fuzzy Logic Type-C. Fuzzy logic permits partial membership
and values can belong to multiple fuzzy sets. By breaking down
a problem space into smaller contexts and allowing algorithms
themselves to have relaxed memberships in those contexts, a
Type-C solution can support multiple solutions to complex
problems. This paper describes how problem spaces may be
decomposed into smaller, more easily solvable components and
fuzzified together under a Type-C hierarchy. Test results with
a simulated robotic navigation system demonstrates how a
Type-C implementation is able to improve upon a generalized
fuzzy controller.

I. INTRODUCTION

An algorithm is “any well-defined computational
procedure that takes some value or set of values as input and
produces some value or set of values as output” [1]. In the
decades since the introduction of the first digital computer,
many kinds of algorithms were developed in order to solve
specific classes of problems. For instance, when faced with
a list of names, a developer may decide it necessary to sort
them using a sorting algorithm such as a quicksort.

Quicksort is very useful for sorting problems [1] but
would likely be a very poor application for a scheduling
problem [2]. Hence, other algorithms are needed as
problems and requirements change. Imagine a domain of
problems in which some solutions are best served using a
sorting algorithm and others using a scheduling algorithm as
shown in fig 1.

Fig. 1, Different Problems within a Problem Space

It is not uncommon in a larger domain to see different
problem spaces overlap.

K. McCarty is with the University of Idaho, Idaho Falls, ID 83402 USA

208-282-7900; email:kmccarty@ieee.org.
M. Manic is with the University of Idaho, Idaho Falls, ID 83402 USA

208-282-7900; email:misko@uidaho.edu.

Even within a given problem space, circumstances can
arise which introduce “situational discontinuity”. Situational
discontinuity occurs when the problem space, for example, a
road, contains occurrences which change the resulting
problem significantly, such as hitting a patch of ice.
Because the subsequent behavior must be so different, it is
effectively the same having a different problem space
altogether. Living creatures are naturally well-equipped to
adapt to Situational Discontinuity Problems (SDPs). A
duck, for example, swims in the water and walks on land and
flies through the air. Humans sweat when hot and shiver
when cold and so on.

In the artificial world, handling SDPs becomes a matter of
using different algorithms or generalizing a single approach.
In data mining, for example, there are many algorithms used
to find interesting information from huge, often disparate
data sets [3]. An experienced data miner needs to be
familiar with Decision Trees, Neural Networks, Linear
Regression and a whole host of other algorithms, each of
which has advantages depending upon the underlying
patterns in the data [4]. Something as simple as a fuzzy
thermostat may have some rules for temperature, other for
humidity and still others for time of day in order to handle
many different demands for climate control.

Intuitively, it seems obvious that different classes of
problems require different approaches, but the problem with
SDPs is that they tend to be ambiguous, hence it can be
difficult to determine when an SDP has occurred and what to
do about it. A fuzzy controller trying to navigate a maze
must already deal with a number of navigation problems
without also having to negotiate obstacles such as ice and
potholes that it may or may not encounter. Ideally there
would be a generalized contextual approach capable of
handling all the underlying SDPs encountered; one that was
efficient, easy to understand and implement. Psuedocode for
such an approach might look something like the following:

result TYPE-C_EVALUATE (contexts, tuple)
inputs: contexts, a set of fuzzy contexts in which each
context represents a problem scenario, such as ice,
potholes, smooth, etc.

: tuple, set of values representing measurements or state
of process
output: crisp result

Step 1: Test each context to see if it is valid for this state
Step 2: For each valid context:
 Determine the corresponding weighting of this context
 Determine the membership value for this context
 Run the corresponding context algorithm against tuple
Step 3: Combine algorithm results, weight and membership
values to get result. Return result

Fig. 2, Pseudocode for a Generalized Contextual Approach

Fuzzy Contexts (Type C) and Fuzzymorphism to
Solve Situational Discontinuity Problems

Kevin McCarty and Milos Manic

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 689

This approach is useful to avoid the complexity problems
of generalized algorithms [5]. This paper presents a novel
implementation of this approach called Fuzzy Logic Type-C
and is organized as follows: Section II presents the problem
statement, limitations and prior work in a number of Fuzzy
techniques. Section III introduces the Fuzzy Context and
how it can be applied to solve the SDPs in a complex
problem space and describes the architecture of a Type-C
application. Section IV presents test results demonstrating
the advantages of a Type-C based implementation. Section
V presents conclusions and future work.

II. PROBLEM STATEMENT AND PRIOR WORK

Describing the behaviors of complex systems present
many challenges for the software architect and developer.
Foremost among them is the ability to model behaviors that
are by their very nature imprecise [6]. In the “crisp” world,
this is a particularly difficult task since even a small number
of inputs requires a complex equation in order to create a
smooth, continuous result. In particular, crisp solutions have
difficulty properly describing behavior at boundaries [7].
Consider what the graph of a thermostat temperature might
look like using crisp definitions of COOL, WARM and HOT
as seen in fig 3.

Cool
Warm

Hot

0 10 20 30 40 50
Fig. 3, Crisp Definitions for a Thermostat Control

Discontinuity at the boundaries must be smoothed in order

for the function to prevent hyper-oscillation around those
values. Fuzzy logic, also known as Type-1 Fuzzy Logic,
introduced by Lofti Zadeh [6]-[8] addresses these problems
by approximate, rather than precise, descriptions for terms
and allows for polyvalent membership definitions. In the
crisp definition above, 19.999 degrees is COOL while 20
degrees is WARM. In a fuzzy definition, 19.999 degrees is,
to an extent, COOL, and also, to an extent, WARM. As
compared to a crisp controller, a fuzzy controller allows for
greater linguistic precision in describing a complex system
behavior while at the same time relaxing precision around
the boundary points and elsewhere. This is done through the
use of a membership function µ whose output, instead of the
traditional FALSE (0) and TRUE (1) allows for output of 0,
1 and all values in between. Thus, for a domain D

 μሺxሻ ՜ ሾ0, 1ሿ, ݔ א (1) ܦ

A fuzzy membership function defines a fuzzy set fs, which

can be described using a linguistic term such as WARM. A
fuzzy set fs is then a set of ordered pairs
 ௦݂ ؠ ሼݔۃ, ݔ|ۄሻݔሺߤ א ሽ (2)ܦ

A fuzzy set can take any convex shape, with each fuzzy
set depending upon its membership function. Triangles are
one common shape. The prior crisp definition for the
thermostat temperature becomes a union of fuzzy sets as
shown in fig 4.

Cool Warm Hot

Fig. 4. Fuzzy Sets as Triangles

Each fuzzy set contributes partially to the final result

depending upon the resulting µ(x). From the example
above, 19.99 degrees centigrade might be classified as 60%
COOL and 40% WARM since the sets overlap.

Fuzzy algorithms are very good at approximating complex
polynomials and provide stronger mechanisms for handling
noise and uncertainty along with variations among “expert”
definitions than their crisp cousins.

However, fuzzy logic also has limitations that pose new
problems. Whereas the crisp algorithm has difficulty with
the discontinuity at a boundary, likewise a fuzzy algorithm
has trouble handling an SDP such as when an obstacle
presents itself.

In the thermostat problem, a crisp solution could be
improved by adding additional temperature tiers [7].
Likewise an SPD could be improved by the addition of
fuzzy rules. However, adding tiers makes the temperature
algorithm significantly more complex; likewise the addition
of fuzzy rules adds significant additional complexity to a
fuzzy solution [5]. Just as Fuzzy Logic was necessary to
solve the crisp boundary discontinuity problem, so there is a
need for an approach to solve situational discontinuities
within SDPs.

The underlying problem within fuzzy systems, and more
generally, all approaches, is that certain problem domains
are more solvable using certain approaches than others.
Within each of these specific problem areas often lies even
more specific issues which require ever more specialized
techniques.

For instance [9, 10] demonstrates how a Fuzzy Type-1
controller was superior navigating around corners but
inferior to a Fuzzy Type-2 controller navigating smoother
surfaces. Even within a particular problem domain, one
configuration of a Fuzzy Inference System (FIS) will be
superior for handling a simple maze while another FIS is
more appropriate elsewhere for obstacles.

A number of methods were introduced to extend fuzzy
systems while also trying to limit the corresponding increase
in complexity. Prior work in this area involves the use of
Fuzzy Type-2 [9]-[12] and Nonstationary Fuzzy [13] sets
and Polymorphic Fuzzy Signatures [5], [14].

Fuzzy Type-2 introduces uncertainty into the fuzzy sets
themselves, in effect relaxing the boundaries of the
membership function µ2, so in contrast to Equation 1:

ଶߤ ൌ ሼሺሺݔ, μሻ, ,ݔଶሺߤ ݔ|ሻሻߤ א ,ܦ ߤ א ሾ0,1ሿሽ (3)

690

Note also that output of µ2 is also member of the set [0,

1]. Whereas a Type-1 fuzzy set is a 2-dimensional object,
Type-2 fuzzy sets are surfaces as demonstrated in fig 5.

 Fig. 5 Type-2 Fuzzy Sets

A Type-2 fuzzy interference system is useful in dealing

with problems such extensive noise or smoothing out erratic
behaviors that plague Type 1 controllers.

Nonstationary Fuzzy Sets (NFS) introduces the notion of
variability of fuzzy sets over some dimension such as time,
location, or even noise. The NFS nfs is described as

 ݊ ௦݂ ൌ ,௦ሺ݀ߤ אௗא௫݀/ݔ/ሻݔ (4)

Where d is some value along a dimension of the problem
domain D and x is a tuple or point within the set of possible
inputs X. Nonstationary Fuzzy Sets allow for a dynamic
fuzzy membership function (and sets) able to accommodate
significant changes to the problem space. A perturbation
function adjusts the underlying membership functions as
needs change. The NFS is then able to generate a variable
FIS to handle changes in the problem space which otherwise
might cause difficulties to a static Type-1 or Type-2 FIS.

Finally, Polymorphic Fuzzy Signatures (PFS) describe a
multidimensional fuzzy tree of fuzzy sets where each leaf
contains a specific fuzzy membership function.
Fuzzification occurs by traversing the branches whose meta-
fuzzy signature indicates membership and combining the
applicable membership functions at the leaves using
traditional fuzzy functions such as max and min. The
polymorphic fuzzy signature is described as:

:௦ߤ ܺ ՜ ሾܿሿୀଵ ൫ؠ ∏ ܿୀଵ ൯ (5)

where ci = ൝ൣܿ൧ୀଵ ; ሺ݇ ݄ܿ݊ܽݎܾ ݂݅ 1ሻሾ0,1ሿ ; ݂݅ ݈݂݁ܽ

Polymorphic fuzzy signatures allow one to break down an

SDP into smaller, easier to describe, components. Each
component is then associated with a particular FIS and
signature. Each FIS output is fuzzified, with the resulting
defuzzification using a traditional methods.

Fig. 6 Polymorphic Fuzzy Signature Tree

III. FUZZY CONTEXTS

Fuzzy Contexts, or Fuzzy Type-C extends the concepts of
the Fuzzy Logic, PFS and NFS into a rich framework
supporting the use of multiple, distinct approaches to solve
varied problems.

Traditional approaches take an existing algorithm and try
to generalize over a larger problem domain. Typically this is
accomplished by adding complexity to the algorithm. For
instance, a neural network adds neurons while a fuzzy
controller adds fuzzy rules, both at a cost of complexity to
an algorithm with correspondingly diminishing returns [5].
For example a simple fuzzy controller designed to solve a
navigation problem can perform quite well with a small
number of rules. Adding new rules gives the controller more
capability, but each new rule expands the solution on a
smaller and smaller scale. Conversely each new rule greatly
increases the system’s complexity [14]. Even within a
problem space suited for a particular approach, an algorithm
can still fall victim to problems of complexity and
diminishing returns as illustrated by fig 7.

Fig. 7 Adding Fuzzy Rules Results in Diminishing Returns

Furthermore, there are times when multiple approaches

may be equally worthy at certain stages of a process.
Consider the example of a scheduler - one with a small
number of possible configurations may be best served with a
global ranking system; while a larger number of
configurations may require some sort of local search
technique [15]. The effectiveness of these different
approaches can overlap, creating an intersection of
subdomains as demonstrated in fig 8.

Fig. 8, Overlap of Techniques for a Scheduler

691

In this situation, either approach is acceptable. More
importantly, the union of the two spaces gives the combined
algorithms a larger surface area with less overall complexity
than trying to extend either approach separately. The
problem lies in determining the situation, or “context” in
which to apply one algorithm or the other. For another
example of how a context applies, albeit in a different way,
consider an inventory control problem at a department store.
Seasonal contexts dictate which items are most import to
maintain inventory and how much. As before with the
scheduler, an inventory control system needs to account for
the season, or context, in order to be most efficient, this time
at maintaining inventory levels.

Living things incorporate contexts quite well, we are
naturally in tune with our external situation; but applying
contexts to artificial processes requires a mechanism to both
identify a given context as well as the best algorithmic
behavior to apply, along with behavior at transition points
where the “best” algorithm is ambiguous. Fuzzy logic
provides a useful foundation for exploiting this imprecision
and creating and using contexts [8]. With Fuzzy Type-C,
diverse problem spaces can be combined without sacrificing
the simplicity and power of individual problem solving
techniques. Consider a problem space P over a domain D. It
consists of a collection of states s, which is a tuple of si
values, each si value belonging to D.

 ܲ ؠ ሼݏ ൌ ,ଵݏ . . , ,ݏ ሽ (6)ܦ߳ݏ

An algorithm a, such as a Type-2 FIS operates on P

taking as input an sp and generates a result rp.
 ܽ ؠ ݂ሺݏሻ, ݂൫ݏ൯ ൌ (7)ݎ

A fuzzy “signature” is a collection of problem states, upon

which the algorithm works efficiently, hence:
 ௦݂ ൌ ∑ ܽ௦ୀଵ , ݏ א ܲ, ݏ א (8) ܦ

The “context” is the combination of the algorithm, the

signature and all the associated states along with a
membership function µc. µc determines membership within
a given context of any particular state si.

ܥ ൌ ሼ ௦݂, ܽ , ∑ ݏ , ,ߤ ݏ א ܲ, ሻݏሺߤ א ሾ0, 1ሿሽ (9)

The Type-C FIS contains all the contexts associated with
P. ܥ ൌ ∑ ୀଵܥ (10)

Fig 9 demonstrates how this approach might handle a

complex problem domain.

Fig. 9 Solving a Problem Space Using Multiple Approaches

Hence, Fuzzy Type-C encapsulates multiple problem

solving approaches by associating a “signature” of an
environment with a distinct Type-1, Type-2 FIS or other
algorithm and all the potential states the algorithm was
designed to address.

Because the new contexts can be added as a problem
space expands, a Type-C FIS allows an expansion of a
problem space into a larger domain without having to overly
generalize.

The Type-C architecture consists of the following major
components:

1. A set of inputs as a tuple
2. A series of contexts. Each context consists of:

a. Fuzzy signature
b. Membership function
c. Algorithm that receives the input tuple and

returns a result.
3. Results fuzzifier
4. Optional optimizer/contextualizer for dynamic

optimization and automated learning. It determines if
the error rate is acceptable, otherwise will strive to
optimized an existing context or generate a new
context.

5. Defuzzifier that takes fuzzified output and generates
a crisp result.

The architecture is illustrated by fig 10.

692

Fig. 10 Fuzzy Context Architecture

The Contexts Fuzzifier component uses a technique similar

to that of fuzzy classification to determine membership of a
context. Unlike in crisp sets where a data point is either in or
not in a set, fuzzy classifications allow a point to have
membership in multiple sets as shown in fig 11.

Fuzzy clusters are very useful in creating “transition” sets
from one problem space to another within a domain. Likewise
fuzzy clusters can determine membership of a given tuple with
a context. Cluster, and context, creation and membership is
determined using techniques such as discussed in [16].

Fig. 11 Points in Fuzzy Clusters

At runtime a Type-C FIS determines the “contextualization”

of each input tuple using each context’s corresponding
membership function. Any context whose membership value
is greater than zero will have its corresponding algorithm run
and its output fuzzified. Defuzzification is achieved using
traditional fuzzy methods Ը ൌ ∑ ௪ሺ௦ሻఓሺ௦ሻసబ∑ ఓሺ௦ሻసబ , ݏ א ,ܦ ሻݏሺߤ 0 (12)

Where Ը is crisp result, si is an input tuple in a domain D,

wi is the weight, µc is the context membership and ai is the
intrinsic function for any context whose µc is greater than zero.

Fuzzymorphism occurs when contexts overlap as might
occur in a problem space similar to that in fig 9. As a state

moves away from the center of one context and closer to the
center of another, the resulting defuzzification will take on
more of the characteristics of the underlying context
algorithm, hence a Type-1 FIS might slowly morph to a Type-
2 FIS for example. Fig. 12 illustrates the concept.

Fig. 12 Type-C membership over a Problem Space

Fuzzymorphism allows a Type-C based system containing
multiple approaches to dynamically “morph” into the one
most suitable for the problem at hand. In the case of multiple
Type-1 FIS, Type-C performs similarly to a Nonstationary
Fuzzy System. However, because Type-C is algorithm
independent, the framework will support any algorithm
capable of accepting the input tuple and producing a
corresponding output, allowing for a much more diverse
approach.

IV. TEST RESULTS
For test purposes an existing Fuzzy Type-1 framework [17],

[18] with 6 fuzzy rules was used to navigate a robot car
around a maze. The car has an easy time navigating the
simple maze as shown in fig 12, but has an equally difficult
time when obstacles are introduced, such as those shown in fig
13. The SDP, in the form of the obstacles, causes the car to
act as if a walls exists and reverse course rather than navigate
around. As shown in fig 13, the car failed to navigate the two
small obstacles, effectively running in circles.

693

Fig. 12. A Robot Car Navigating a Maze

Fig. 13, Robot Car is Unable to Handle SDP in the Form of Obstacles

Next, the controller was modified using a Type-C
architecture. A second controller was introduced, consisting
of 4 fuzzy rules. Its job is to explore obstacles at close range.
Two contexts were created, one named OBSTACLE with the
second controller for operation near obstacles, the other named
OTHER_SPACE for the original controller operating
everywhere else. It is useful to have a context that is defined
as the complement of all other defined contexts.

Fig. 14 Car navigates maze and barriers using Type-C

Once the second controller was added under the Type-C

construct it became active and fuzzymorphically took over as

the car neared the barrier, before it was forced into a 180
degree turn. Under Context OBSTACLE, the car instead
explores along the edge of the obstacle. Upon finding an
opening, it executes a sharp turn and proceeds until the space
opens up again and it can fuzzymorphically revert back to the
Context OTHER-SPACE and resume normal operations.

V. CONCLUSION AND FUTURE WORK
Future work needs to be done to demonstrate Type-C utility

with other algorithms, such as Fuzzy Type-2, Swarm or Ant
Colony optimizations, artificial neural networks and others for
different classes of problems. Currently work is being done to
improve Type-C for machine learning and optimization, in
particular for knowing when it is most appropriate to identify
and generate new contexts. A memetic algorithm and
database-driven error and fitness function are under
development to determine an allowable error threshold which
can be used to set the boundaries and describe the resulting
context. Finally, additional work will incorporate other
methods of fuzzification and defuzzification within a given
context.

VI REFERENCES
[1] Cormen T, Leiserson C, Rivest R, Stein C Introduction to Algorithms 3rd

Ed., MIT Press 2009
[2] Sipser M, Introduction to the Theory of Computation 3rd Ed. Thompson

Course Technology, 2102
[3] Han J, Kamber M, Pei J, Data Mining: Concepts and Techniques 3rd Ed.,

Morgan Kaufmann Publishers 2011
[4] MacLennan J, Tang Z, Crivat B, Data Mining with SQL Server 2008,

Wiley Press 2008
[5] Mendis B, Gedeon T "Polymorphic fuzzy signatures," IEEE Conference

on Fuzzy Systems July 2010
[6] Zadeh, L A (1965) Fuzzy sets, Information and Control
[7] Cox E (1994) The fuzzy systems handbook, Academic Press, Chestnut

Hill, MA
[8] Zadeh, L Is there a need for Fuzzy Logic? Science Direct 2008
[9] O. Linda, M. Manic, "Fuzzy Force-Feedback Augmentation for Manual

Control of Multi-Robot System," in IEEE Trans. on Industrial
Electronics, Aug. 2011

[10] O. Linda, M. Manic, "Uncertainty-Robust Design of Interval Type-2
Fuzzy Logic Controller for Delta Parallel Robot," in IEEE Transaction
on Industrial Informatics, Nov. 2011

[11] Mendel JM, John RIB (2002) Type-2 fuzzy sets made simple. IEEE
Transactioins on Fuzzy Systems

[12] Hagras H, Wagner C (2012) Towards the wide spread use of type-2
fuzzy logic systems in real world applications. IEEE Computational
Intelligence Magazine

[13] Garibaldi, Jonathan M., Marcin Jaroszewski, and Salang Musikasuwan.
"Nonstationary fuzzy sets." Fuzzy Systems, IEEE Transactions on
(2008)

[14] B. S. U. Mendis, “Fuzzy signatures: Hierarchical fuzzy systems and
applications,” Ph.D. dissertation, College of Engineering and Computer
Science, The Australian National University, Australia, 2008.

[15] Russell S, Norvig P, Artificial Intelligence A Modern Approach,
Prentice Hall 2009

[16] Ming-Chuan Hung; Don-Lin Yang, "An efficient Fuzzy C-Means
clustering algorithm," 2001, Proceedings IEEE International Conference
on Data Mining

[17] AForge.NET Framework. http://www.aforgenet.com/aforge/framework/
Accessed 12 Jan 2013

[18] K. McCarty, M. Manic, "A Fuzzy Framework with Modeling Language
for Type 1 and Type 2 Application Development," in Proc. of IEEE 6th
International Conference on Human System Interaction, 2012

694

