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Abstract—In this paper, the relaxed delay-dependent stabiliza-
tion problem for a class of Takagi and Sugeno (T-S) fuzzy time-
delay systems is explored. By utilizing homogeneous polynomials
scheme, Pólya’s theorem and some slack matrices, a novel relaxed
stabilization condition for a class of T-S fuzzy time-delay systems
is proposed in terms of a linear matrix inequalities (LMIs).
Finally, an example is given to demonstrate that the proposed
stabilization condition can provide a longer allowable delay time
than some existing studies.

I. INTRODUCTION

It is known that Takagi and Sugeno (T-S) fuzzy model based
control scheme provides a simple and effective design proce-
dure for the stability/stabilization analysis and the controller
design of nonlinear systems. T-S fuzzy model consists of a
family of local linear-type models connected through nonlinear
fuzzy membership functions. For the controller design, the
well known parallel distributed compensation (PDC) scheme
[1], [2] is adopted to stabilize the overall T-S fuzzy model.
By examining the stability and stabilization problems of T-S
fuzzy models, the Lyapunov theorem [3], [4] is mainly adopted
to yield the stability/stabilization conditions of T-S fuzzy
system. In addition, in T-S fuzzy model-based control, many
stability/stabilization conditions can be obtained by utilizing
linear matrix inequalities (LMIs). Since T-S fuzzy model-
based control provides these systematic design procedures, the
stability and stabilization problem for T-S fuzzy model has
been explored in many studies [5], [6].

In general, systems with time-delay impose difficulties and
restrictions on the design of a stabilizing controller. For this
reason, the stabilization problems for systems with time-delay
become an important topic. Therefore, there are many studies
which provides different methods to obtain the stabilization
conditions. Generally speaking, the physical systems with
time-delay are more complicated than that of systems without
time-delays. During the two decades, fuzzy systems with time-
delay were investigated in [7]–[12]. In [13] and [14], the
Lyapunov-Krasovskii approach and the Lyapunov-Razumikhin
functional method are adopted to explore the stability of a
class of fuzzy delay systems. [15] proposed a novel result
for fuzzy H∞ design of fuzzy time-delay system. In [16],
the authors explored the global exponential fuzzy observer
for time-delay fuzzy bilinear systems with disturbances. [17]

constructs a novel Lyapunov function to obtain an improved
stability criterion. In addition to time-delay stabilization prob-
lems of fuzzy systems, the relaxed stabilization conditions for
fuzzy time-delay systems are explored in many studies. For
example, [18] propounded a partition approach for system with
constant delay-time. [19] utilizes the input-output approach to
obtain the less conservative stabilization condition. In [20], the
Gu discretization technique and strategies to extend the slack
matrix variables and a less conservative matrix is obtained.

Following the introduction, the paper is organized as fol-
lows. In Section II, some definitions and the stabilization
problem for the T-S time-delay fuzzy systems are intro-
duced. By applying the homogeneous polynomials scheme,
augmented matrices and Pólya’s theorem theorem, the stabi-
lization conditions for the T-S time-delay fuzzy systems can
be represented in terms of LMIs form in Section III. In Section
IV, a numerical example is provided to demonstrate that the
propounded stabilization condition is less conservative than
some studies and the proposed control scheme is effective and
validity. Finally, in Section V, conclusions are drawn.

The symbol * means transposed elements in LMI that can
be obtained by transpose operations which are symbolized by
T . ! denotes factorial for combinatoric expression. Let K(h)
be the set of r-tuple defined as below:

K(h) = { ( k1 k2 · · · kr ) : k1 + k2 + · · ·+ kr = h,

∀ki ∈ I+( positive integers ), i = 1, 2, · · · , r
}
,

where h is the total number of polynomial degree in µi,
i = 1, 2, · · · , r . Since the number of rules in fuzzy is r,
the number of elements in K(h) is expressed by J(h) =
(r + h− 1)!/ (h!(r − 1)!). For example, r = 2

K(3) = { (30), (21), (12), (03) }
= { t(1), t(2), t(3), t(4) }
=

{
(µ3

1µ
0
2), (µ

2
1µ

1
2), (µ

1
1µ

2
2), (µ

0
1µ

3
2)
}
.

To ease the presentation, we adopt the notations displayed
below:

k = k1k2 · · · kr
µk = µk1

1 µ
k2
2 · · ·µkr

r

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 
July 6-11, 2014, Beijing, China 

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 2294



ei = 0 · · · 1︸︷︷︸
ith

· · · 0

k − ei = k1k2 · · · (ki − 1) · · · kr
π(k) = (k1!) (k2!) · · · (kr!)

Ck
ii(h) =

(h!)ki(ki−1)
π(k) , Ck

ij(h) =
(h!)kikj

π(k) .

II. PRELIMINARIES

The fuzzy model proposed by Takagi-Sugeno is display by
fuzzy IF-THEN rules. To begin, consider the following ith
rule of T-S fuzzy time-delay system.
Rule i :
IF ξ1(t) is M1(t) and · · · and ξp(t) is Mip(t)
THEN

ẋ(t) = Aix(t) +Adix(t− h (t)) +Biu(t) (1)

x(t) = ϕ(t), t ∈ [−max { hM } , 0]
where ξ1(t), ξ2(t), · · · ξp(t) are premise variables, Mij , i =
1, 2, · · · , r ; j = 1, 2, · · · , r are fuzzy sets, r is fuzzy rules
number. x(t) ∈ Rn is state, u(t) ∈ Rn is input, and the
delay time satisfies 0 ≤ h(t) ≤ hM , 0 ≤ ḣ(t) ≤ hD. The
matrices Ai, Adi ∈ Rn×n and Bi ∈ Rn×s and initial vector
ϕ(t) belongs to the set of continuous functions.

The overall T-S fuzzy time-delay system can be expressed
as (2),

ẋ(t) =

r∑
i=1

βi(ξ(t))[Aix(t) +Adix(t− h(t)) +Biu(t)]

r∑
i=1

βi(ξ(t))

=
r∑

i=1

µi(ξ(t))[Aix(t) +Adix(t− h(t)) +Biu(t)]

= A(µ)x(t) +Ad(µ)x(t− (h(t)) +B(µ)u(t)) (2)

where ξ(t) = [ξ1(t), · · · , ξn(t)], and Mij(ξ(t)) is the

membership degree of ξ(t), βi(ξ(t)) =
p∏

i=1

Mij(ξ(t)),

µi = βi(ξ(t))/
∑
i=1

βi(ξ(t)),
r∑

i=1

µi(ξ(t))Ai = A(µ),
r∑

i=1

µi(ξ(t))Adi = Ad(µ), and
r∑

i=1

µi(ξ(t))Bi = B(µ). Basic

properties of βi(ξ(t)) are βi(ξ(t)) ≥ 0 and
∑
i=1

βi(ξ(t)) > 0.

It is clear that
r∑

i=1

µi(ξ(t)) ≥ 0, and
r∑

i=1

µi(ξ(t)) = 1.

The fuzzy controller for the T-S fuzzy time-delay systems
(1) can be formulated as follows:

u(t) =
∑

k∈K(1)

µkFkx(t)

= F (µ)x(t) (3)

By substituting the (3) into (2), the overall closed-loop fuzzy
system can be obtained as

ẋ(t) = (A(µ) +B(µ)F (µ))x(t) +Ad(µ)x(t− h(t)) (4)

In next section, the relaxed stabilization of (4) will be dis-
cussed.

III. MAIN RESULTS

Before proceeding with the following theorem, we firstly
give the following results, which will be used in the proof of
the theorem.

Lemma 1: [11] For any constant matrices Q11, Q22, Q12 ∈

R, Q11 ≥ 0, Q22 ≥ 0,

[
Q11 Q12

∗ Q22

]
≥ 0 , scalar τ(t) ≤ τ̄ ,

and vector function ẋ : [−τ̄ , 0]→ Rn such that the following
integration is well defined, then

−τ
∫ t

t−τ̄

[
xT (s) ẋT (s)

] [ Q11 Q12

∗ Q22

][
x(s)

ẋ(s)

]
ds

≤

 x(t)

x(t− τ(t))∫ t

t−τ̄
x(s)ds


T  −Q22 Q22 −QT

12

Q22 −Q22 QT
12

−Q12 Q12 −Q11


×

 x(t)

x(t− τ(t))∫ t

t−τ̄
x(s)ds

 . (5)

Lemma 2: [21] A system is quadratically stabilizable if and
only if there exist a symmetric positive definite matrix Q, Zk,
k ∈ K (1) and a sufficiently large d ∈ N such that

Rk =
∑

k′∈K(d)

N∑
i=1

d!

π(k′)

( (ki − k
′

i)

π(ki − k′)
(AiQ+ ∗)

+(BiZk−k′−ei
+ ∗)

)
< 0

where, k ∈ K (d+ 2) and controller gain F (µ̂) = Z(µ̂)Q−1,
Zk ∈ Rn×m, Z(µ̂) =

∑
k∈K(1) Zkµ

k.

Lemma 3: (Pólya’s theorem) [22] For a positive integer
r, △r: (µ1, · · · , µr) | µi ≥ 0,

∑r
i=1 µi = 1. If a real

homogeneous polynominal F (µ1, · · · , µr) is positive definite,
then for a sufficiently large d all the coefficients of

(µ1 + · · ·+ µr)
d F (µ1, · · · , µr)

are positive.
Theorem 1: If there exist positive constant d2, d3, and

positive definite symmetric matrix R, positive definite ma-
trices P 11, P 22, Q11, Q22, real matrices X , P 12, Q12, and[
P 11 P 12

∗ P 22

]
≥ 0,

[
Q11 Q12

∗ Q22

]
≥ 0 with 0 ≤ h(t) ≤

hM , 0 ≤ ḣ(t) ≤ hD and a sufficiently large d such that
the following LMIs conditions hold, then the T-S fuzzy time-
delay system is quadratically stablilize via the fuzzy controller
F (µ) = F̄ (µ)X−1, where F̄ (µ) =

∑
k∈K(1)

µkF̄k.

∇ < 0 (6)

where

∇ = diag
[
∇t(1),∇t(2), ...,∇t(J(d+2))

]
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∇k =


∇(1, 1) ∇(1, 2) ∇(1, 3) ∇(1, 4)
∗ ∇(2, 2) ∇(2, 3) ∇(2, 4)
∗ ∗ ∇(3, 3) ∇(3, 4)
∗ ∗ ∗ ∇(4, 4)

 < 0

∇(1, 1) =
2!

π(k − k!)
[
P 12 + ∗+R+ h2MQ11 −Q22

]
+

r∑
i=1

1!(ki − k′i)
π(k − k′)

[
AiX

T + ∗
]

+
r∑

i=1

[
BiF k−k′−ei + ∗

]

∇(1, 2) =
2!

π(k − k′)
[
−(1− hD)P 12 +Q22

]
+

r∑
i=1

1!(ki − k′i)
π(k − k′)

[
AdiX

T + d2XA
T
i

]
+

r∑
i=1

[
d2F

T

k−k′−eiB
T
i

]

∇(1, 3) =
2!

π(k − k′)

[
P

T

22 −Q
T

12

]

∇(1, 4) =
2!

π(k − k′)
[
P 11 + h2MQ12 −XT

]
+

r∑
i=1

1!(ki − k′i)
π(k − k′)

[
d3XA

T
i

]
+

r∑
i=1

[
d3F

T

k−k′−eiB
T
i

]

∇(2, 2) =
2!

π(k − k′)
[
−(1− hD)R−Q22

]
+

r∑
i=1

1!(ki − k′i)
π(k − k′)

[
d2AdiX

T + ∗
]

∇(2, 3) =
2!

π(k − k′)

[
−(1− hD)P

T

22 +Q
T

12

]

∇(2, 4) =
2!

π(k − k′)
[
−d2XT

]
+

r∑
i=1

1!(ki − k′i)
π(k − k′)

[
d3XA

T
di

]

∇(3, 3) =
2!

π(k − k′)
[
−Q11

]

∇(3, 4) =
2!

π(k − k′)

[
P

T

12

]

∇(4, 4) =
2!

π(k − k′)
[
h2MQ22 − d3X − d3XT

]
.

Proof : Let us consider a Lyapunov function

V (t) = V1(t) + V2(t) + V3(t) (7)

where

V1(t) = ρT (t)Pρ(t) (8)

V2(t) =

∫ t

t−h(t)

xT (s)Rx(s)ds (9)

V3(t) = hM

∫ t

t−hM

(s− (t− hM )) εT (s)Qε(s)ds (10)

ρ(t) =

[
xT (t)

(∫ t

t−h(t)
x(s)ds

)T]T
, P =

[
P11 P12

∗ P22

]
,

Q =

[
Q11 Q12

∗ Q22

]
, ε(s) = [ xT (s) ẋT (s) ]T .

The time derivative of Lyapunov function (7) becomes

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) (11)

where

V̇1(t) = ρT (t)P ρ̇

= 2

[
x(t)(∫ t

t−h(t)
x(s)ds

) ]T [ P11 P12

∗ P22

]

×

[
ẋ(t)

x(t)− (1− ḣ(t))x(t− h(t))

]
(12)

V̇2(t) = xT (t)Rx(t)

−(1− ḣ(t))xT (t− h(t))Rx(t− h(t)) (13)

V̇3(t) = h2M

[
x(t)

ẋ(t)

]T [
Q11 Q12

∗ Q22

][
x(t)

ẋ(t)

]

−hM
∫ t

t−hM

[
x(s)

ẋ(s)

]T [
Q11 Q12

∗ Q22

][
x(s)

ẋ(s)

]
ds. (14)

According to 0 ≤ ḣ(t) ≤ hD, one has the following results

V̇1(t) ≤ 2

[
x(t)∫ t

t−h(t)
x(s)ds

]T [
P11 P12

∗ P22

]

×

[
ẋ(t)

x(t)− (1− hD)x(t− h(t))

]
(15)

V̇2(t) ≤ xT (t)Rx(t)
− (1− hD(t))xT (t− h(t))Rx(t− h(t)). (16)
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By Lemma 2, one has the following results from (14).

V̇3(t) ≤ h2M

[
x(t)

ẋ(t)

]T [
Q11 Q12

∗ Q22

][
x(t)

ẋ(t)

]

+

 x(t)

x(t− h(t))∫ t

t−h(t)
x(s)ds


T  −Q22 Q22 −QT

12

Q22 −Q22 QT
12

−Q12 Q12 −Q11



×

 x(t)

x(t− h(t))∫ t

t−h(t)
x(s)ds

 . (17)

In addition, the following result is satisfied.

0 = 2
[
xT (t)T1 + xT (t− h(t))T2 + ẋT (t)T3

]
×[(A(µ) +B(µ)F (µ))x(t)

+Ad(µ)x(t− h(t))− ẋ(t)]. (18)

Concluding by (15), (16), (17) and (18), we can obtain

V̇ (t) ≤ ΦT (t)ΘΦ(t) (19)

where

ΦT (t) =
[
xT (t) xT (t− h(t))

(
∫ t

t−h(t)
x(s)ds)T ẋT (t)

]
(20)

Θ =


Θ(1, 1) Θ(1, 2) Θ(1, 3) Θ(1, 4)

∗ Θ(2, 2) Θ(2, 3) Θ(2, 4)

∗ ∗ Θ(3, 3) Θ(3, 4)

∗ ∗ ∗ Θ(4, 4)

 (21)

Θ(1, 1) = P12 + ∗+R+ h2MQ11 −Q22 + T1A(µ) + ∗
+T1B(µ)F (µ) + ∗

Θ(1, 2) = −(1− hD)P12 +Q22 + T1Ad(µ) +AT (µ)TT
2

+FT (µ)BT (µ)TT
2

Θ(1, 3) = PT
22 −QT

12

Θ(1, 4) = P11 + h2MQ12 − T1 +AT (µ)TT
3

+FT (µ)BT (µ)TT
3

Θ(2, 2) = −(1− hD)R−Q22 + T2Ad(µ) + ∗

Θ(2, 3) = −(1− hD)PT
22 +QT

12

Θ(2, 4) = −T2 +AT
d (µ)T

T
3 ,Θ(3, 3) = −Q11

Θ(3, 4) = PT
12,Θ(4, 4) = h2MQ22 − T3 − TT

3

In order for V̇ (t) < 0, ∀ ̸= 0, Θ < 0 should be satisfied. By
utilizing homogeneous polynomial technique, Lemma
2, and pre- and post-multiplying both side of (21)
with diag

[
X X X X

]
, and defining T−1

1 = X ,
T2 = d2T1, T3 = d2T1, P̄11 = XP11X , P̄12 = XP12X ,
P̄22 = XP22X , Q̄11 = XP11X , Q̄12 = XP12X ,
Q̄22 = XP2X , R̄ = XRX , F̄ (µ) = F (µ)X , we have
the following results,

∑
k∈K(2)

µkΨk = Ψ(µ) < 0 (22)

Ψk =


Ψ(1, 1) Ψ(1, 2) Ψ(1, 3) Ψ(1, 4)

∗ Ψ(2, 2) Ψ(2, 3) Ψ(2, 4)

∗ ∗ Ψ(3, 3) Ψ(3, 4)

∗ ∗ ∗ Ψ(4, 4)


Ψ(1, 1) =

2!

π(k)

[
P 12 + ∗+R+ h2MQ11 −Q22

]
+

r∑
i=1

1!ki
π(k)

[
AiX

T + ∗
]
+

r∑
i=1

[
BiF k−ei + ∗

]

Ψ(1, 2) =
2!

π(k)

[
−(1− hD)P 12 +Q22

]
+

r∑
i=1

1!ki
π(k)

[
AdiX

T + d2XA
T
i

]
+

r∑
i=1

[
d2F

T

k−eiB
T
i

]

Ψ(1, 3) =
2!

π(k)

[
P

T

22 −Q
T

12

]

Ψ(1, 4) =
2!

π(k)

[
P 11 + h2MQ12 −XT

]
+

r∑
i=1

1!ki
π(k)

[
d3XA

T
i

]
+

r∑
i=1

[
d3F

T

k−eiB
T
i

]

Ψ(2, 2) =
2!

π(k)

[
−(1− hD)R−Q22

]
+

r∑
i=1

1!ki
π(k)

[
d2AdiX

T + ∗
]

Ψ(2, 3) =
2!

π(k)

[
−(1− hD)P

T

22 +Q
T

12

]

Ψ(2, 4) =
2!

π(k)

[
−d2XT

]
+

r∑
i=1

1!ki
π(k)

[
d3XA

T
di

]

Ψ(3, 3) =
2!

π(k)

[
−Q11

]
,Ψ(3, 4) =

2!

π(k)

[
P

T

12

]

Ψ(4, 4) =
2!

π(k)

[
h2MQ22 − d3X − d3XT

]
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By utilizing Lemma 3 to (22), we can obtain(
r∑

i=1

µi

)d

Ψ(µ)

=
∑

k∈(d+2)

µk
∑

k′∈(d)

d!

π(k′)
· ∇

=
∑

k∈(d+2)

µk · ∇k < 0. (23)

Concluding by above discussion, we can obtain (6). This
completes the proof of the theorem.

IV. SIMULATION

Let us consider the following T-S fuzzy time-delay system
given in [7]–[11].
Rule 1 : IF x1(t) is M1(t)

THEN ẋ(t) = A1x(t) +Ad1x(t− h(t)) +B1u(t) (24)

Rule 2 : IF x1(t) is M2(t)

THEN ẋ(t) = A2x(t) +Ad2x(t− h(t)) +B2u(t) (25)

where A1 =

[
0 0.6

0 1

]
, A2 =

[
1 0

1 0

]
,

Ad1 =

[
0.5 0.9

0 2

]
, Ad2 =

[
0.9 0

1 1.6

]
,

B1 = B2 =

[
1

1

]
.

The membership functions of Example 1 are defined as:
µ1(t) = (1/(1+exp(−2x1+0.5)), µ2(t) = 1−µ1(t). TABLE
I shows the comparisons results of the maximal allowable
delay time with six different studies. From TABLE I, It is
readily seen that the proposed stabilization conditions provide
the maximum allowable delay time than the other existing
methods.

By utilizing the LMIs toolbox to solve the convex opti-
mization problem in Theorem 1 using with d2 = 0.15 and
d3 = 1.65, one can obtain the controller gain as:

F10 = [50.2596 − 147.0573] ,

F01 = [53.6308 − 156.0181] .

The state responses by applying the obtained controller with
x(0) = [2 1]

T , d2 = 0.15, d2 = 1.65 and hM = 1.217
seconds is shown in the Fig. 1. Simulation results show that
the trajectories of the fuzzy time-delay systems converge to
the equilibrium state after some transient times.

TABLE I
COMPARISONS AMONG VARIOUS METHODS

Methods Maximum allowed hM
Theorem 2 of [7] 0.1524s
Theorem 1 of [8] 0.2302s
Corollary 2 of [9] 0.2574s
Theorem 1 of [9] 0.2664s

Theorem 1 of [10] 0.9s
Corollary 2 of [11] 1.05s

Theorem 2 of this paper 1.217s
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Fig. 1. The state responses for T-S fuzzy time-delay systems.

V. CONCLUSION

In this paper, the novel relaxed stabilization conditions for
the T-S fuzzy time-delay systems are explored. Based on
homogenuous polynomial technique, and Pólya’s theorem, a
delay-dependent relaxed stabilization is formulated in terms
of LMIs. Finally, an example is illustrated to demonstrate that
the proposed method can provide the maximal allowable delay
than some existing methods.

ACKNOWLEDGMENT

This work was supported by the National Science Council
of Taiwan, R.O.C., under Grant NSC-102-2221-E-027-029-.

REFERENCES

[1] H. K. Lam, “LMI-based stability analysis for fuzzy-model-based control
systems using artificial T-S fuzzy model,” IEEE Trans. on Fuzzy
Systems, vol. 19, no. 3, pp. 505–513, Jun. 2011.

[2] S. H. Tsai, “Delay-dependent robust stabilization for a class of fuzzy
bilinear systems with time-varying delays in state and control input,”
International Journal of Systems Science, vol. 45, no. 3, pp. 115–134,
Mar. 2014.

[3] J. C. Lo and J. R. Wan, “Studies on linear matrix inequality relaxations
for fuzzy control systems via homogeneous polynomials,” IET Control
Theory Appl, vol. 4, no. 11, pp. 2293–2302, Jan. 2010.

[4] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis:
A Linear Matrix Inequality Approach. New York. Wiley, 2001.

2298



[5] J. C. Lo and M. L. Lin, “Observer-based robust H∞ control for fuzzy
systems using two-step procedure,” IEEE Trans. on Fuzzy Systems,
vol. 12, no. 3, pp. 350–359, Jun. 2004.

[6] J. Yoneyama, “Robust stability and stabilization for uncertain Takagi-
Sugeno fuzzy time-delay systems,” Fuzzy Sets and Systems, vol. 158,
no. 2, pp. 115–134, Jan. 2007.

[7] B. Chen and X. P. Liu, “Delay-dependent robust H∞ control for T-S
fuzzy systems with time delay,” IEEE Trans. on Fuzzy Systems, vol. 13,
no. 2, pp. 238–249, Aug. 2005.

[8] X. P. Guan and C. L. Chen, “Delay-dependent guaranteed cost control
for T-S fuzzy systems with time delays,” IEEE Trans. on Fuzzy Systems,
vol. 12, no. 2, pp. 236–249, Apr. 2004.

[9] H. N. Wu and H. X. Li, “New approach to delay-dependent stability
analysis and stabilization for continuous-time fuzzy systems with time-
varying delay,” IEEE Trans. on Fuzzy Systems, vol. 15, no. 3, pp. 482–
493, Jun. 2007.

[10] Y. Zhao, H. Gao, J. Lam, and B. Du, “Stability and stabilization
of delayed T-S fuzzy systems: A delay partitioning approach,” IEEE
Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 750 – 762, Aug.
2009.

[11] L. Li and X. Liu, “New results on delay-dependent robust stability crite-
ria of uncertain fuzzy systems with state and input delays,” Information
Sciences, vol. 179, pp. 1134–1148, Dec. 2009.

[12] S. H. Tsai and C. L. Li, “LMI-based non-quadratic stabilization condi-
tions for T-S fuzzy systems with delays in state and input,” 2012 IEEE
International Conference on Systems Man and Cybernetics, pp. 2247–
2252, 2012.

[13] K. O. P. J. L. S. Park, M.J., “A new augmented Lyapunov-Krasovskii
functional approach for stability of linear systems with time-varying
delays,” Appl. Math. Comput., vol. 217, pp. 7197–7209, May. 2011.

[14] F. P. M. Cao Y. Y, “Analysis and synthesis of nonlinear time-delay
systems via fuzzy control approach,” IEEE Trans Fuzzy Systems, vol. 8,
no. 2, pp. 200–211, 2000.

[15] Y. X. Jinhui Zhang and R. Tao, “New results on H∞ filtering for fuzzy
time-delay systems,” IEEE Trans. on Fuzzy Systems, vol. 17, no. 1, pp.
128–137, Feb. 2009.

[16] S. H. Tsai, “A global exponential fuzzy observer design for time-
delay Takagi-Sugeno uncertain discrete fuzzy bilinear systems with
disturbance,” IEEE Trans. on Fuzzy Systems, vol. 20, no. 6, pp. 1063–
1075, Dec. 2012.

[17] H. Shao, “New delay-dependent stability criteria for systems with
interval delay,” IEEE Trans. on Fuzzy Systems, vol. 45, no. 3, pp. 744–
749, Mar. 2009.

[18] L. J. D. B. Zhao. Y, Gao. H, “Stability and stabilization of delayed T-S
fuzzy systems: A delay partitioning approach,” IEEE Trans. on Fuzzy
Systems, vol. 17, no. 4, pp. 750–762, 2009.

[19] K. H. Lin Zhao, Huijun Gao, “Robust stability and stabilization of
uncertain T-S fuzzy systems with time-varying delay: An inputoutput
approach,” IEEE Trans. on Fuzzy Systems, vol. 21, no. 5, pp. 883–897,
Oct. 2013.

[20] L. A. M. Fernando O. Souza and R. M. Palhares, “On stability and
stabilization of T-S fuzzy time-delayed systems,” IEEE Trans. on Fuzzy
Systems, vol. 17, no. 6, pp. 1450–1455, Dec. 2009.

[21] V. F. Montagner, R. C. L. F. Oliveira, P. L. D. Peres, and P. A.
Bliman, “Linear matrix inequality characterisation for H1 and H2

guaranteed cost gain-scheduling quadratic stabilisation of linear time-
varying polytopic systems,” IET Control Theory Appl, vol. 1, no. 6, pp.
1726–1735, Nov. 2007.

[22] G. Hardy, J. Littlewood, and G. Pólya, Inequalities. Cambridge
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