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Abstract—In this paper, we propose an observer based model
reference adaptive iterative learning control (MRAILC) using
model reference adaptive control strategy for more general class
of uncertain nonlinear systems with non-canonical form and
iteration-varying reference trajectories. Due to the system state
vector is assumed to be unmeasurable, a state tracking error
observer is applied for state tracking error estimation. Based on
the state tracking error observer and a mixed time-domain and s-
domain technique, a relative degree one output observation error
model whose inputs are some uncertain nonlinearities and filtered
signals which is derived to solve the relative degree problem
caused by the system states are not measurable. Besides, we also
apply some auxiliary signals and an averaging filter to transfer
the original output observation error to a new formulation so
that we can implement the AILC without using differentiators.
The filtered fuzzy neural network (filtered-FNN) using the sys-
tem state estimation vector as the input vector is applied for
approximation of the unknown plant nonlinearities. In order
to overcome the lumped uncertainties associated with function
approximation error and state estimation error, a normalization
signal is applied as a bounding function for designing a robust
AILC. The stabilization learning component is used to guarantee
the boundedness of internal signals. Based on a Lyapunov like
analysis, we show that all the adjustable parameters as well as
internal signals remain bounded for all iterations and the norm
of output tracking error will asymptotically converge to a tunable
residual set.

Keywords—Adaptive Iterative Learning Control, Observer, Model
Reference Adaptive Control, Filtered Fuzzy Neural Network, Non-
linear Systems

I. INTRODUCTION

It is well known that adaptive iterative learning control
(AILC) scheme [1], [2] has been widely studied for performing
the repeated tracking control of uncertain robotic systems [3],
[4], non-Lipschitz nonlinear systems [5], [6] and precision
motion systems [7]. In recent years, the fuzzy systems, neural
networks or fuzzy neural networks were applied to approxi-
mate the plant nonliearties for the design of the state based
AILC [8], [9], [10], [11] due to the plant nonlinearties are
unknown. It is noted that the most attractive advantages of
the AILC schemes in the research field of ILC is that the
AILC schemes can be used to deal with three important issues:
(1) iteration-varying reference trajectories (2) random large
bounded initial resetting error (3) random bounded disturbance.
In order to facilitate the design of the state based AILC, the
system state vector is necessary assumed to be available for

measurement in aforementioned works [3], [4], [7], [8], [9],
[10], [11], [12], [13], [14]. But unfortunately, the system state
vector of the physical plant is usually unavailable for state
measurement. In order to relax the strictest plant assumption
in these related AILC works that the system state vector is
unavailable for state measurement, the output based AILC
schemes [15], [16], [17], [18] for nonlinear systems using only
output measurement is still a challenge issue in this research
field of ILC. But a comparison with the state based AILC
schemes [8], [9], [10], [11], [12], [13], [14] is that most of
these related output based AILC schemes [15], [16], [17] are
only used to deal with the nonlinear systems satisfying some
special structures: (1) canonical form nonlinear systems (2)
output-feedback form nonlinear systems.

In this paper, an observer based model reference AILC
(MRAILC) using model reference adaptive control strategy is
proposed for a more general class of uncertain nonlinear sys-
tems with non-canonical form and iteration-varying reference
trajectories. In order to deal with the issue that the system
state vector is assumed to be unmeasurable, a state tracking
error observer is applied for state tracking error estimation.
In order to solve the relative degree problem caused by the
system state vector is not measurable, we derive a relative
degree one output observation error model whose inputs are
some uncertain nonlinearities and filtered signals by using
the state tracking error observer and a mixed time-domain
and s-domain technique. On the other hand, we design some
auxiliary signals and an averaging filter to transfer the original
output observation error to a new formulation so that the
AILC can be implemented without using differentiators. In
order to approximate for the unknown plant nonlinearities,
the filtered fuzzy neural network (filtered-FNN) using the
system state estimation vector as the input vector is applied for
approximation of the unknown plant nonlinearities. In addition,
a normalization signal is applied as a bounding function for
designing a robust learning component in order to overcome
the lumped uncertainties are consisted of function approxima-
tion error and state estimation error. The stabilization learning
component is used to guarantee the boundedness of internal
signals. Based on a Lyapunov like analysis, the adaptive laws
combining time domain and iteration domain adaptation are
determined to ensure the convergence of learning error. Finally,
we show that all the adjustable parameters as well as internal
signals remain bounded for all iterations and the norm of
output tracking error will asymptotically converge to a tunable
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residual set whose size depends on some design parameters of
averaging filter as iteration goes to infinity.

In this paper, Lpe[0, T ] denotes the set of Lebesgue measur-
able (or piecewise continuous) real valued (vector) functions
with Lpe norm [10] and ‖(·)t‖∞ = supτ≤t |(·)(τ)| denotes the
truncated L∞ norm of the argument function or vector [19].

II. PROBLEM FORMULATION AND CONTROL OBJECTIVE

In this paper, we consider a class of nonlinear systems
which can perform a given control task repetitively over a
finite time interval [0, T ] as follows,

Ẋj(t) = f(Xj(t)) + b(Xj(t))uj(t)
yj(t) = C�Xj(t) (1)

where C� = [ 1 0 · · · 0 ]. Here Xj(t) ∈ Rn×1 is
the (transformed) state vector of the system which is not
measurable, uj(t) is the control input, yj(t) is the system
output, f(Xj(t)) = [f1(Xj(t)), · · · , fn(Xj(t))]� ∈ Rn×1

and b(Xj(t)) = [b1(Xj(t)), · · · , bn(Xj(t))]� ∈ Rn×1 are
unknown real continuous nonlinear function vectors of states,
j ∈ Z+ denotes the index of iteration. The followings are the
most relevant conditions on the nonlinear system throughout
this paper.

(A1) b1(Xj(t)) = · · · = bρ−1(Xj(t)) = 0, bρ(Xj(t)) �= 0,
ρ > 1. The special case of ρ = 1 is much simpler
and not considered in this paper because of the paper
length limitation.

(A2) The sign of bρ(Xj(t)) is known. Without loss of
generality, we assume bρ(Xj(t)) > 0.

(A3) b(Xj(t)) is bounded ∀Xj(t) ∈ Rn×1.

(A4) f(Xj(t)) is bounded if Xj(t) is bounded.

The control objective is to find an iterative learning controller
uj(t) using only output measurement yj(t) such that yj(t) can
follow an iteration-varying reference output yj

m(t) as close as
possible ∀t ∈ [0, T ] when iteration j approaches infinity. The
iteration-varying reference output is generated by the following
reference model,

Ẋj
m(t) = AmX

j
m(t) +Bmr

j
m(t)

yj
m(t) = C�Xj

m(t) (2)

where

Am =

⎡
⎢⎢⎣

−am
1 1 0 · · · 0

−am
2 0 1 · · · 0

...
...

... · · · ...
−am

n 0 0 · · · 0

⎤
⎥⎥⎦ , Bm =

⎡
⎢⎢⎣

bm1
bm2
...
bmn

⎤
⎥⎥⎦

Here Xj
m(t) ∈ Rn×1 is the state vector, rj

m(t) is the ref-
erence input, Am is a Hurwitz matrix. In general, we will
choose bm1 = · · · = bmρ−1 = 0 and bmρ = 1 according
to assumption (A1)and (A2). The reference model M(s) =
C�(sI − Am)−1Bm =

sn−ρ+bm
ρ+1sn−ρ−1+···+bm

n

sn+am
1 sn−1+···+am

n
is a stable

and minimum phase system with the required specifications.

III. OBSERVER DESIGN AND OBSERVATION ERROR
MODEL

Define the state tracking error vector and output tracking
error as Ej(t) = Xj

m(t) −Xj(t) and ej(t) = yj
m(t) − yj(t)

respectively, then we can easily derive that

Ėj(t) = AmE
j(t) + g(Xj(t))

+ h(Xj(t))uj(t) +Bmu
j(t)

ej(t) = C�Ej(t) (3)

where g(Xj(t)) ≡ AmX
j(t)− f(Xj(t))+Bmr

j
m(t) ∈ Rn×1

and h(Xj(t))) ≡ −[b(Xj(t)) + Bm]uj(t) ∈ Rn×1 are
unknown real continuous bounded nonlinear function vectors
of state if Xj(t) is bounded. An observer is designed for the
state error estimation vector Êj(t) = Xj

m(t)−X̂j(t) as follows

˙̂
E

j

(t) = AmÊ
j(t) +Ko(ej(t) − êj(t))

êj(t) = C�Êj(t) (4)

where Ko = [ko
1 , · · · , ko

n]� ∈ Rn is the observer gain vector
designed such that Ao = Am−KoC

� is Hurwitz. Let Ẽj(t) =
Ej(t)− Êj(t), the observation error dynamics can be derived
as

˙̃
E

j

(t) = AoẼ
j(t) + g(Xj(t)) + h(Xj(t))uj(t)

+Bmu
j(t)

ẽj(t) = C�Ẽj(t) (5)

Note that |ẽj(0)| = |ej(0) − êj(0)| = |ej(0)| = εj .
Based on the universal approximation theorem, g(Xj(t)) can
be approximated by a traditional FNN W j(t)�O(3)(Xj(t)).
Here O(3)(Xj(t)) ∈ RM×1 is the basis function vector
with M being the number of rule nodes and W j(t) =
[W j

1 (t), · · · ,W j
n(t)] ∈ RM×n is the weight matrix of

the output layer. According to the universal approxima-
tion theorem, there will exist an optimal weight matrix
W ∗ = [W ∗

1 , · · · ,W ∗
n ] ∈ RM×n such that g(Xj(t)) =

W ∗�O(3)(Xj(t)) + εj(Xj(t)), where ε(Xj(t)) ∈ Rn×1 is
the approximation error vector satisfying ‖εj(Xj(t))‖ ≤ ε∗ in
a certain compact set. This implies that (5) can be rewritten as

˙̃
E

j

(t) = AoẼ
j(t) +W ∗�O(3)(X̂j(t)) + δj(t)

+ h(Xj(t))uj(t) +Bmu
j(t)

ẽj(t) = C�Ẽj(t) (6)

where δj(t) = [δj
1(t), · · · , δj

n(t)]� = W ∗�(O(3)(Xj(t)) −
O(3)(X̂j(t)) + ε(Xj(t)) ∈ Rn×1 is bounded. The control
objective is now transformed into a problem of forcing the
output observation error ẽj(t) to converge to zero. We now
adopt the mixed use of a time signal and a Laplace transfer
function to obtain the explicit expression of ẽj(t) in (6) in time
domain with a filtered version as

ẽj(t) = H(s)
[
−uj(t)

]
+

n∑
i=1

Hi(s)
[
W ∗�

i O(3)(X̂j(t))

+ δj
i (t)

]
+

n∑
i=ρ

Hi(s)
[
hi(Xj(t))uj(t)

]
(7)
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where H(s) = C� (sI −Ao)
−1Bm = sn−ρ+···+bm

n

det(sI−Ao) , Hi(s) =
sn−i

det(sI−Ao) and Hi(s) = H(s) sn−i

sn−ρ+···+bm
n

. The observer gain
vector Ko will be chosen such that det(sI − Ao) being
any Hurwitz polynomial. The above equation can be further
rewritten as

ẽj(t)

= H(s)

[
uj(t) +

n∑
i=1

sn−i

sn−ρ + · · · + bmn

[
W ∗�

i O(3)(X̂j(t))

+ δj
i (t)

]
+

n∑
i=ρ

sn−i

sn−ρ + · · · + bmn

[
hi(Xj(t))uj(t)

]]
(8)

It should be noted that sn−i

sn−ρ+···+bm
n

, i = 1, · · · , n are stable due
to assumption (A1) but may be proper or nonproper. Rewrite
(8) as ẽj(t) = H(s)[uj(t) + uj(t)] where

uj(t) =
n∑

i=1

sn−i

sn−ρ + · · · + bmn

[
W ∗�

i O(3)(X̂j(t)) + δj
i (t)

]

+
n∑

i=ρ

sn−i

sn−ρ + · · · + bmn

[
hi(Xj(t))uj(t)

]
(9)

According to the approach of traditional model reference
adaptive control [19], it is known that if uj(t) = 0 so that
ẽj(t) = H(s)[uj(t)], there exists a constant parameter vector
Θ = [θ1, · · · , θ2n]� ∈ R2n×1 such that the following Laplace
algebraic equation will be satisfied:

1 − φa(s) − φb(s)H(s) = θ2nM
−1(s)H(s) (10)

where φa(s) = [θ1, · · · , θn−1]
a(s)
λ(s) , φb(s) = [θn, · · · , θ2n−2]

a(s)
λ(s) + θ2n−1, a(s) = [sn−2, · · · , s, 1]� and λ(s) = sn−1 +
λ1s

n−2 + · · · + λn−1 is a monic Hurwitz polynomial will be
designed. Since H(s) and M(s) are known transfer functions,
λ(s) is a known monic Hurwitz polynomial, the constant
parameter vector Θ will be a known constant parameter vector
by solving the Laplace algebraic equation (10) and we can
easily derive that θ2n = 1. Operating both sides of (10) on
uj(t) + uj(t) implies that

ẽj(t)

= M(s)
[
uj(t) + uj(t) − φa(s)

[
uj(t) + uj(t)

]

−φb(s)
[
ẽj(t)

]]

= M(s)
[
uj(t) − Θ�wj(t) + (1 − φa(s))

[
uj(t)

]]

= M(s)
[
uj(t) − Θ�wj(t)

+
n∑

i=1

Pi(s)
[
W ∗�

i O(3)(X̂j(t)) + δj
i (t)

]

+
n∑

i=ρ

Pi(s)
[
hi(Xj(t))uj(t)

]
(11)

where wj(t) =
[

a(s)
λ(s) [u

j(t)], a(s)
λ(s) [ẽ

j(t)], ẽj(t)
]�

,

Pi(s) ≡
(
1 − θ1sn−2+···+θn−1

λ(s)

)
sn−i

sn−ρ+···+bm
n

. Since the

reference model M(s) is relative degree ρ, we can choose
L(s) = (s+ λm

2 ) · · · (s+ λm
ρ ) as a Hurwitz polynominal with

degree ρ− 1 such that

M(s) =
sn−ρ + · · · + bmn
det(sI −Am)

=
1

(s+ λm
1 )(s+ λm

2 ) · · · (s+ λm
ρ )

, then we have M(s)L(s) = 1
�(s) = 1

s+λm
1

is a stable
relative degree one transfer function. Now, if we let Gi(s) ≡

1
L(s)Pi(s) = 1

L(s)

(
1 − θ1sn−2+···+θn−1

λ(s)

)
sn−i

sn−ρ+···+bm
n

being

stable due to L(s), λ(s) and sn−ρ + · · · + bmn are Hurwitz
polynomials but may be proper or nonproper. Then according
to (9) and (11), the output observation error model (11) can
then be written as

ẽj(t) =
1

(s)

[
1

L(s)
[uj(t)] − Θ�ξj(t)

+
n∑

i=1

W ∗�
i O

(4)
i (X̂j(t)) + δj

L(t)

]
(12)

where ξj(t) = 1
L(s)

[
wj(t)

]
, O

(4)
i (X̂j(t)) =

Gi(s)
[
O(3)(X̂j(t))

]
and the lumped uncertainties is

δj
L(t) =

n∑
i=ρ

Gi(s)
[
hi(Xj(t)))uj(t)

]
+

n∑
i=1

Gi(s)
[
δj
i (t)

]
,

respectively.

IV. DESIGN OF OBSERVER-BASED MRAILC

In next, we define an augmented signal with filtered version
as

yj
a(t) =

1

(s)

[
vj(t) − 1

L(s)

[
uj(t)

]]
, yj

a(0) = 0 (13)

where vj(t) is an auxiliary input to be designed later. Then,
design an auxiliary error signal as

ej
a(t) = ẽj(t) + yj

a(t), ej
a(0) = ẽj(0) (14)

Substituting (11) and (13) into (14), we can find that

ej
a(t) =

1

(s)

[
vj(t) − Θ�ξj(t)

+
n∑

i=1

W ∗�
i O

(4)
i (X̂j(t)) + δj

L(t)

]
(15)

Then the time-domain state space representation of (15) can
be derived as

ėj
a(t) = −λm

1 e
j
a(t) + vj(t) − Θ�ξj(t)

+
n∑

i=1

W ∗�
i O

(4)
i (X̂j(t)) + δj

L(t) (16)

To overcome the uncertainties from initial output tracking
error, a new signal ej

φ(t) is introduced as follows,

ej
φ(t) = ej

a(t) − φj(t)sat
(
ej

a(t)
φj(t)

)
, φj(t) = εje−λm

1 t (17)
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where sat is a saturation function defined as

sat
(
ej

a(t)
φj(t)

)
=

⎧⎨
⎩

1 if ej
a(t) > φj(t)

ej
a(t)

φj(t) if |ej
a(t)| ≤ φj(t)

−1 if ej
a(t) < −φj(t)

Note that 0 < εje−βT ≤ φj(t) ≤ εj and ej
φ(0) = 0, ∀j ≥ 1.

Now differentiate 1
2 (ej

φ(t))2 as follows,

1
2
d

dt
(ej

φ(t))2 = ej
φ(t)

(
ėj

a(t) − sgn
(
ej

φ(t)
)
φ̇j(t)

)

= −λm
1 (ej

φ(t))2 + ej
φ(t)

[
vj(t) − Θ�ξj(t)

+
n∑

i=1

W ∗�
i O

(4)
i (X̂j(t)) + δj

L(t)
]

(18)

where sgn(ej
φ(t)) is the typical signum function. Next, we

introduce the normalization signal mj(t) [20] as follows,

mj(t) =
δ2

s+ δ1

[
1 +

∣∣uj(t)
∣∣] (19)

where mj(0) > δ2
δ1

, δ1, δ2 > 0 and δ1 < δ∗. Here δ∗ is the
least positive constant such that Gi(s− δ∗) is stable systems.
According to the definition of δj

L(t) defined in (9), we can find
that

∑n
i=1Gi(s)

[
δj
i (t)

]
is bounded since δj

i (t) are bounded
and Gi(s) is a stable proper or strictly proper transfer function
for i = 1, 2, · · · , n. Furthermore

∑n
i=ρ Gi(s)

[
hi(Xj(t))uj(t)

]
will be bounded by uj(t) since hi(Xj(t)) is bounded and
Gi(s) is a strictly proper transfer function for i = ρ, · · · , n.
Hence by using Lemma 3.1 in [20], we can prove that∣∣∣δj

L(t)
∣∣∣ ≤ ψ∗(mj(t) + 1) for some unknown positive constant

ψ∗. Based on the derived error model and the useful signals,
we design uj(t) and vj(t) as follows

uj(t) =
L(s)
F ρ(τs)

[vj(t)] (20)

vj(t) = Θ�ξj(t) −
n∑

i=1

W j
i (t)�O(4)

i (X̂j(t))

− sat
(
ej

a(t)
φj(t)

)
ψj(t)(mj(t) + 1)

− ej
φ(t)ξj(t)�ξj(t) − ej

φ(t)(mj(t) + 1)2 (21)

where W j
i (t)�O(4)(X̂j(t)) is the ith output of a filtered-FNN,

W j
i (t), i = 1, · · · , n is the weight matrix of the network

and ψj(t) is control parameter. W j
i (t) and ψj(t) are used

to compensate for the unknown W ∗
i , i = 1, · · · , n and ψ∗

respectively. Furthermore, we define F (τs) = (τs + 1) with
τ being a small positive constant. In the literature, 1

F (τs) is
referred to as an averaging filter, which is obviously a low-
pass filter whose bandwidth can be arbitrarily enlarged as τ
approaches 0. A set of stable adaptive laws is designed to tune
all the control parameters as follows,

(1 − γ1)Ẇ
j
i (t) = −γ1W

j
i (t) + γ1W

j−1
i (t)

+β1e
j
φ(t)O(4)

i (X̂j(t)) (22)

(1 − γ2)ψ̇j(t) = −γ2ψ
j(t) + γ2ψ

j−1(t)
+β2|ej

φ(t)|(mj(t) + 1) (23)

with W j
i (0) = W j−1

i (T ), i = 1, · · · , n, ψj(0) = ψj−1(T ) for
j ≥ 1, and 0 < γ1, γ2 < 1, β1, β2 > 0.

V. ANALYSIS OF STABILITY AND CONVERGENCE

If we define the parameter error as W̃i(t) = W j
i (t) −W ∗

i ,
i = 1, · · · , n and ψ̃j(t) = ψj(t) − ψ∗ and substitute (21) into
(18), we have

1
2
d

dt
ej

φ(t)2

≤ −λ1e
j
φ(t)2 − ej

φ(t)
n∑

i=1

W̃ j
i (t)�O(4)

i (X̂j(t))

−|ej
φ(t)|ψ̃j(t)(mj(t) + 1) − ej

φ(t)2ξj(t)�ξj(t)

− ej
φ(t)2(mj(t) + 1)2 (24)

Lemma 1 : Consider the nonlinear system (1) performing
a repetitive control task. If we apply the observer-based
MRAILC (13), (14), (17), (19), (20), and (21) with adaptation
laws (22) and (23), then we guarantee that e1φ(t), e1a(t), W̃

1
i (t),

ψ̃1(t) are bounded.

Proof: Choose a Lyapunov-like positive function as

V j
a (t) =

1
2
ej

φ(t)2 +
(1 − γ1)

2β1

n∑
i=1

W̃ j
i (t)�W̃ j

i (t)

+
(1 − γ2)

2β2
ψ̃j(t)2

then we have

V̇ j
a (t) ≤ γ1

2β1

n∑
i=1

W̃ j−1
i (t)�W̃ j−1

i (t) +
γ2

2β2
ψ̃j−1(t)2

≡ V j−1
b (t) (25)

Since W̃ 0
i (t) = −W ∗

i , i = 1, · · · , n and ψ̃0(t) = −ψ∗ are
bounded for all t ∈ [0, T ] so that if j = 1, (25) is rewritten as

V̇ 1
a (t) ≤ γ1

2β1

n∑
i=1

W ∗�
i W ∗

i +
γ2

2β2
(ψ∗)2 (26)

It readily implies V 1
a (t), e1φ(t), W̃ 1

i (t), ψ̃1(t) ∈ L∞e[0, T ], i =
1, · · · , n since V 1

a (0) is bounded.

Lemma 2 : Consider the problem set-up in Lemma 1. The pro-
posed observer-based MRAILC guarantees that ej

φ(T ), W̃ j(T )
and ψ̃j(T ) are bounded for all j ≥ 1 as well as
limj→∞

∫ T

0
ej

φ(t)2dt = 0 and limj→∞ ej
φ(T )2 = 0.

Proof: Define a positive function V j(T ) as

V j(T )

=
∫ T

0

(
γ1

2β1

n∑
i=1

W̃ j
i (t)�W̃ j

i (t) +
γ2

2β2
ψ̃j(t)2

)
dt

+
1 − γ1

2β1

n∑
i=1

W̃ j
i (T )�W̃ j

i (T ) +
1 − γ2

2β2
ψ̃j(T )2 (27)
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Using the technique of integration by parts, we can prove that

V j(T ) − V j−1(T )

≤
∫ T

0

(
ej

φ(t)
n∑

i=1

W̃ j
i (t)�O(4)

i (X̂j(t))

+ |ej
φ(t)|ψ̃j(t)(mj(t) + 1)

)
dt

≤ −
∫ T

0

(
λm

1 e
j
φ(t)2 + ej

φ(t)2ξj(t)�ξj(t)

+ ej
φ(t)2(mj(t) + 1)2

)
dt− 1

2
ej

φ(T )2 (28)

where we use the integration of (24) from 0 to T and the
property of 1

2 (ej
φ(0))2 = 0.

Since V 1(T ) is bounded by Lemma 1 and V j(T ) is positive
and monotonically decreasing, we conclude by the result of
(28) that V j(T ) is bounded for all j ≥ 1 and will converge
as j approaches infinity to some limit value V (T ) which
is independent of j. Since V j−1(T ) − V j(T ) ≤ V 1(T ),
(28) also implies that

∫ T

0
ej

φ(t)2dt,
∫ T

0
ej

φ(t)2ξj(t)�ξj(t)dt,∫ T

0 ej
φ(t)2(mj(t)+1)2dt and ej

φ(T )2 are bounded for all j ≥ 1.

Furthermore, limj→∞
∫ T

0
ej

φ(t)2dt = 0 and limj→∞ ej
φ(T )2 =

0.

Lemma 3 : Consider the problem set-up in Lemma 1. The
proposed observer-based MRAILC ensures that all the internal
signals are bounded.

Proof: Integrating (25) from 0 to t, we have

V j
a (t) ≤ V j

a (0) +
∫ T

0

V j−1
b (t)dt (29)

Since V j(T ) defined in (27) is bounded and V j
a (0) is

bounded by using Lemma 2, we can conclude from (29) that∫ T

0
V j−1

b (t)dt is bounded and hence, V j
a (t), ej

φ(t), W̃ j
i (t),

ψ̃j(t), ej
a(t), ∈ L∞e[0, T ].

However, the boundedness of V j
a (t), ej

φ(t), W̃ j
i (t), ψ̃j(t),

ej
a(t), can not guarantee the boundedness of mj(t) and input
uj(t). In order to show the boundedness of mj(t) and uj(t)
for all t ∈ [0, T ], we first note that

∫ t

0 e
j
φ(t′)2ξj(t′)�ξj(t′)dt′,∫ t

0
ej

φ(t′)2(mj(t′) + 1)2dt′ ∈ L∞e[0, T ]. Now we adopt some
techniques given in chapter 2 of [19]. Consider uj(t) in (20)
as follows,

uj(t) =
L(s)
F ρ(τs)

[vj(t)]

=
L(s)
F ρ(τs)

[ n∑
i=1

W j
i (t)�O(4)

i (X̂j(t))

+sat
(
ej

a(t)
φj(t)

)
ψj(t)(mj(t) + 1)

]

+
sL(s)
F ρ(τs)

[∫ t

0

ej
φ(t′)ξj(t′)�ξj(t′)dt′

+ej
φ(t′)(mj(t′) + 1)2dt′

]
(30)

Since W j
i (t), O(4)

i (X̂j(t)), ψj(t),
∫ t

0 e
j
φ(t′)ξj(t′)�ξj(t′)dt′

and
∫ t

0
ej

φ(t′)(mj(t′) + 1)2dt′ are bounded for t ∈ [0, T ],
and L(s)

F ρ(τs) is strictly proper stable transfer function, sL(s)
F ρ(τs)

is proper stable transfer function, (30) implies that uj(t) will
satisfy

|uj(t)| ≤ k1

(‖(ξj)t‖∞ + ‖(mj)t‖∞
)

+ k1 (31)

for some k1 > 0 by lemma 2.6 in [19]. Now, we investigate
the filtered signal ξj(t). By definition,

ξj(t)

=
1

L(s)
[uj(t)]

≡
[

a(s)
L(s)λ(s)

[uj(t)],
a(s)

L(s)λ(s)
[ẽj(t)],

1
L(s)

[ẽj(t)]
]�

=
[
ξj
1(t), ξ

j
2(t), ξ

j
3(t)

]�
(32)

Suppose that the corresponding state-space realization of each
element of ξj(t) is Azi, Bzi, Czi with state variable zj

i (t), i =
1, 2, 3. Together with the observation error dynamics (6) and
normalization signal (19), we construct an extended dynamic
equation as follows:
⎡
⎢⎢⎢⎢⎣

˙̃
E

j

(t)
ṁj(t)
żj
1(t)
żj
2(t)
żj
3(t)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

Ao 0 0 0 0
0 −δ1 0 0 0
0 0 Az1 0 0
0 0 0 Az2 0
0 0 0 0 Az3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Ẽj(t)
mj(t)
zj
1(t)
zj
2(t)
zj
3(t)

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

qj
1(t)
qj
2(t)
qj
3(t)
qj
4(t)
qj
5(t)

⎤
⎥⎥⎥⎥⎦

(33)

where qj
1(t) = W ∗�O(3)(X̂j(t)) + δj(t) + h(Xj(t))uj(t) +

Bmu
j(t), qj

2(t) = −δ2(1 + |uj(t)|) , qj
3(t) = Bz1u

j(t),
qj
4(t) = Bz2ẽ

j(t), qj
5(t) = Bz3ẽ

j(t) . Let Xj
a(t) be the state

vector of the extended dynamic equation (33). Taking norms
on (33) will yield

‖Ẋj
a(t)‖ ≤ k2‖Xj

a(t)‖ + k2|uj(t)| + k2

≤ k3‖(Xj
a)t‖∞ + k3 (34)

for some k2, k3 > 0 since |qj
1(t)| ≤

γ1

(‖(ξj)t‖∞ + ‖(mj)t‖∞
)

+ γ1 and |ẽj(t)| = |C�Ẽj(t)| ≤
‖Xj

a(t)‖. This implies that Xj
a(t) is regular [19] and

mj(t) is a smooth signal. Together with the result

of
∫ t

0

(
ej

φ(t′)ξj(t′)�ξj(t′) + ej
φ(t′)(mj(t′) + 1)2

)
dt′ ∈

L∞e[0, T ], we can now conclude that ξj(t),mj(t) ∈
L∞e[0, T ].

Due to W j
i (t), O(4)

i (X̂j(t)), ψj(t), ξj(t), mj(t), ej
φ(t) ∈

L∞e[0, T ], we have vj(t) ∈ L∞e[0, T ] (by (21)). The facts of
vj(t) ∈ L∞e[0, T ] and L(s)

F ρ(τs) being a strictly proper stable
transfer function implies that uj(t) ∈ L∞e[0, T ] (by (20)). By
the facts of vj(t), uj(t) ∈ L∞e[0, T ], we can easily prove that
all the internal signals are bounded.
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Theorem 1 : Consider the system set-up in Lemma 1. The
proposed observer-based MRAILC guarantees the tracking
performance and system stability as follows :

(T1) lim
j→∞

ej
φ(t)2 = 0, for all t ∈ [0, T ].

(T2) lim
j→∞

|ej
a(t)| ≤ e−λm

1 tε∞, for all t ∈ [0, T ].

(T3) lim
j→∞

|ẽj(t)| ≤ e−λm
1 tε∞ + τk4, for all t ∈ [0, T ] and

for some k4 > 0.

(T4) Let δ and k5 be the positive constants such that the
transition matrix Φ(t) of Ac satisfies |Φ(t)| ≤ k5e

−δt.
Then there exists a positive constant k6 such that
limj→∞ |êj(t)| ≤ k6

(
ε∞ e

−λm
1 t−e−δt

δ−λ1
+ τk4

1−e−δt

δ

)
,

for all t ∈ [0, T ].

(T5) limj→∞ |ej(t)| = |e∞(t)| ≤ e−λm
1 tε∞ + τk4 +

k6

(
ε∞ e

−λm
1 t−e−δt

δ−λm
1

+ τk4
1−e−δt

δ

)
, for all t ∈ [0, T ].

Proof : Based on Lemma 1, Lemma 2 and Lemma 3, we
can conclude the results of (T1) and (T2) by using similar
argument for Barbalat’s lemma (e.g., Lemma 3.2.6 in [21]).
For (T3), substituting (20) into (13), we can find that ej

a(t)
actually satisfies

ej
a(t) = ẽj(t) − yj

a(t)

= ẽj(t) − 1

(s)

(
1 − 1

F ρ(τs)

)[
vj(t)

]

�
= ẽj(t) −Rj(t) (35)

Since vj(t) is bounded and the H∞ norm of ‖ 1
s (1 −

1
F ρ(τs) )‖∞ = nτ and ‖ s

�(s)‖∞ is bounded, we can conclude
that

|Rj | ≤
∥∥∥∥

1
s

(
1 − 1

F ρ(τs)

)∥∥∥∥
∞

∥∥∥∥
s


(s)

∥∥∥∥
∞
‖(vj)t‖∞ ≤ τk4

for some k4 > 0. Taking norms on (35), we find that

|ẽj(t)| ≤ |ej
a(t)| + |Rj(t)| ≤ |ej

a(t)| + τk4

As iteration goes to infinity,

lim
j→∞

|ẽj(t)| ≤ e−λm
1 tε∞ + τk4

Finally, the results of (T4) and (T5) can be achieved by the
similar technique in [10].

VI. SIMULATION EXAMPLE

In this section, we consider a strict-feedback nonlinear
system [22] whose dynamic equation is given as follows,

ẋj
1(t) = 0.1(xj

1(t))
2 + (1 + 0.1 sin(xj

1(t)))x
j
2(t))

ẋj
2(t) = 0.2e−xj

2(t) + xj
1(t) sin(xj

2(t))
+ (1 + 0.3 cos(xj

1(t)))u
j(t)

yj(t) = xj
1(t)

where Xj(t) = [xj
1(t), x

j
2(t)]

� ∈ R2×1 is the state vector
of the system, uj(t) ∈ R is the control input, yj(t) ∈ R
is the system output. Here the input gain function is chosen

as (1 + 0.3 cos(yj(t)) rather than 1 such that it will be more
general than the one in [22]. The iteration-varying reference
trajectory dynamics is designed as in (2) with am

1 = 2, am
2 =

1, bm1 = 0, bm2 = 1, rj
m(t) = sin(t)+0.01 sin(2πj/5). The con-

trol objective is to let system output yj(t) track yj
m(t) as close

as possible over a finite time interval [0, 30] with only yj(t) is
measurable. Furthermore, we design det(sI−Am) = (s+1)2,
det(sI − Ao) = (s + 2)2, λ(s) = (s + 1), 
(s) = s + 1
and L(s) = (s + 1), respectively. Since H(s) = 1

(s+2)2 and
M(s) = 1

(s+1)2 are known transfer functions, the constant
parameter vector Θ = [θ1, θ2, θ3, θ4]� = [2,−1,−4, 1]� will
be a known constant parameter vector by solving the Laplace
algebraic equation (10) so that we can easily design Gi(s) =

s−1
(s+1)2 s

2−i, i = 1, 2. In addition, the normalization signal
mj(t) is designed with δ1 = 0.02, δ2 = 0.04, mj(0) = 5.
To guarantee a satisfied tracking performance, the adaptation
algorithms in (22) and (23) are designed with γ1 = γ2 = 0.5
and β1 = β2 = 500, respectively. Besides, the averaging filter
in (20) is given with τ = 0.01. The nice learning performance
is shown in Figure 1. It is clear that the effectiveness of the
learning controller can be achieved by the proposed AILC.
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Figure 1 : (a) supt∈[0,30] |ej
φ(t)| versus j; (b) e5a(t) (solid line)

and ±φ5(t) (dotted lines) versus t; (c) y5(t) (solid line) and
y5

m(t) (dotted line) versus t; (d) e5(t) (solid line ) versus t;
(e) u5(t) versus t.

VII. CONCLUSION

An observer based MRAILC for repeated tracking control
is proposed for more general class of uncertain nonlinear sys-
tems with non-canonical form and iteration-varying reference
trajectories in this paper. Since the system state vector is
assumed to be unmeasurable, a state tracking error observer is
designed to estimate the unknown system state vector. Besides,
a relative degree one output observation error model based on
the tracking error observer and a mixed time-domain and s-
domain technique is derived for the design of the MRAILC.
By using a technique of averaging filter, a filtered fuzzy neural
learning component is used to approximate the unknown plant
nonlinearities, a robust learning component is designed to
compensate for the lumped uncertainties and a stabilization
learning component is used to guarantee the boundedness of
internal signals, respectively. Finally, we use a Lyapunov like
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analysis to derive adaptive laws and study stability and learning
performance. All adjustable parameters as well as the internal
signals will remain bounded. Furthermore, asymptotically con-
vergence of output tracking error to a tunable residual set is
shown as iteration goes to infinity.
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