
Fast Color Reduction Using Approximative c-Means Clustering Models

László Szilágyi1, Gellért Dénesi2 and Sándor M. Szilágyi3

Abstract— In this paper we propose an efficient color re-
duction framework that employs c-means clustering to extract
optimal colors. The processing consists of three stages: prepro-
cessing, c-means clustering, and creation of the output image.
The main goal of the first stage is to transform the pixel matrix
into a list of records, which indicates what colors are present
in the image and how many times they appear. To achieve this,
first we apply a static color quantization scheme that aligns the
16.7 million possible colors with 140 thousand grid points, and
build the histogram of this quantized image. Then we mark least
frequent quantized colors to be ignored during the clustering
stage, the amount of such marks being controlled by the pixel
inclusion parameter. Leaving out 2 − 5% of the image pixels
can reduce the number of colors to 500-5000 in most images.
This limited set of colors together with frequency information
consists the input of the c-means clustering process performed
in the second stage. Before creating the final output image,
the marked quantized colors are mapped to the closest cluster.
Thorough numerical tests were performed on 500 randomly
chosen images using both fuzzy and hard c-means clustering.
Evaluations revealed that hard c-means is more suitable than
fuzzy c-means for the given problem, both in terms of accuracy
and efficiency. The proposed method performs quicker 2-3 times
than other recent reported solutions.

I. INTRODUCTION

Data reduction has always been widely researched due to
limitations in storage space and communication bandwidth
[4]. The relevant issue in most such applications is to
retain the meaning of the data as much as possible while
reducing its size. This requirement led to several optimal
methods which employed self-organizing maps [15], self
growing and self organized neural gas [2], ant colony [8],
Fibonacci lattices [12], superposed histogram based adaptive
clustering [9], dynamic programming [10], modified fuzzy
c-means clustering [14], and improved hard c-means clus-
tering [5]. Besides effective storage and communication, the
most relevant applications of color reduction are in image
segmentation [6] and document analysis [13].

Research supported by the Hungarian National Research Funds (OTKA),
Project no. PD103921, and the Hungarian Academy of Sciences through
the János Bolyai Fellowship program.

1L. Szilágyi is with Dept. of Control Engineering and Information
Technology, Budapest University of Technology and Economics, Magyar
tudósok krt. 1, 1117 Budapest, Hungary (phone: +36-1-463-4027; fax: +36-
1-463-2699) and with Dept. of Electrical Engineering, Sapientia University,
Calea Sighişoarei 1/C, 540485 Tı̂rgu Mureş, Romania (phone: +40-265-206-
210; fax: +40-265-206-211; e-mail: lalo at ms.sapientia.ro).

2G. Dénesi is with Dept. of Electrical Engineering, Sapientia Univer-
sity, Calea Sighişoarei 1/C, 540485 Tı̂rgu Mureş, Romania (phone: +40-
265-206-210; fax: +40-265-206-211; e-mail: denesigellert at
yahoo.com).

3S. M. Szilágyi is with Dept. of Informatics, Petru Maior Univesity, Str.
N. Iorga nr. 1, 540088 Tı̂rgu Mureş, Romania (phone/fax: +40-265-262-275;
e-mail: szsandor72 at yahoo.com).

In this paper we extend the efficient histogram based fuzzy
c-means clustering of single-channel images [17] to the case
of color images. A static color quantization is first employed,
after which the colors present in the image are listed together
with their frequency. A previously defined parameter controls
the amount of pixels to be ignored by the later processing.
Quantized colors with low frequency value are excluded,
while those above the extracted threshold are selected for
the c-means clustering process. Both fuzzy and hard c-means
clustering models are tested, on a large image set and a
wide range of scenarios created by algorithm parameters, to
establish which is the most accurate and efficient solution.

II. BACKGROUND

A. The fuzzy and hard c-means algorithms

The conventional FCM algorithm partitions a set of object
data into a number of c clusters based on the minimization
of a quadratic objective function. The objective function to
be minimized is defined as:

JFCM =

c∑
i=1

n∑
k=1

umik||xk − vi||2A =

c∑
i=1

n∑
k=1

umikd
2
ik , (1)

where xk represents the input data (k = 1 . . . n), vi
represents the prototype or centroid value or representative
element of cluster i (i = 1 . . . c), uik ∈ [0, 1] is the fuzzy
membership function showing the degree to which vector xk
belongs to cluster i, m > 1 is the fuzzyfication parameter,
and dik represents the distance (any inner product norm
defined by a symmetrical positive definite matrix A) between
vector xk and cluster prototype vi. FCM uses a probabilistic
partition, meaning that the fuzzy memberships of any input
vector xk with respect to classes satisfy the probability
constraint

∑c
i=1 uik = 1.

The minimization of the objective function JFCM is
achieved by alternately applying the optimization of JFCM

over {uik} with vi fixed, i = 1 . . . c, and the optimization of
JFCM over {vi} with uik fixed, i = 1 . . . c, k = 1 . . . n [3].
During each iteration, the optimal values are deduced from
the zero gradient conditions and Lagrange multipliers, and
obtained as follows:

u?ik =
d
−2/(m−1)
ik∑c

j=1 d
−2/(m−1)
jk

∀ i = 1 . . . c,∀ k = 1 . . . n , (2)

v?i =

∑n
k=1 u

m
ikxk∑n

k=1 u
m
ik

∀ i = 1 . . . c . (3)

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 194

According to the alternating optimization scheme of the
FCM algorithm, Eqs. (2) and (3) are alternately applied, until
cluster prototypes stabilize. This stopping criterion compares
the sum of norms of the variations of the prototype vectors vi
within the latest iteration, with a predefined small threshold
value ε.

Hard c-means [16] is a special case of FCM, which uses
m = 1, and thus the memberships are obtained by the
winner-takes-all rule. Each cluster prototype will be the
average of the input vectors assigned to the given cluster.

B. Histogram based quick c-means clustering

Both hard and fuzzy c-means clustering apply global
optimization. In image processing this means none of them
takes into account the position of pixels, as they are labeled
according to their colors only. This property makes c-means
clustering models suitable to histogram based efficient imple-
mentation, in which colors are clustered instead of pixels. In
most single channel gray intensity images the number of gray
levels is less than the number of pixels by several orders of
magnitude, allowing for drastic reduction of processing time
[17]. This paper will show how that previous solution can
be extended to color images.

III. MATERIALS AND METHODS

The proposed method involves three main stages per-
formed sequentially. Clustering millions of pixels with FCM
or HCM does not fit in our target time frame. That is why
in the preprocessing step we first aggregate pixels of similar
color using the histogram and then select only frequent colors
as input for the clustering. This way the HCM or FCM-based
clustering performed in the second step will only need to
group at most a few thousand vectors. The final phase of
labels all colors present in the histogram and generates the
output image by providing a label to each pixel. Details for
each stage are described in the following sections.

A. Data aggregation and color selection

A color image has three data channels independent of each
other. Since several color coding schemes exist, for the sake
of generality we will denote image channels by α, β, and γ.
Each pixel is described by a three-element vector of integers,
having values between 0 and 255. This resolution allows
for more than 16 millions of possible colors, this number
exceeding the amount of pixels in the image. This resolution
is capable to address a lot more colors than the human eye
can distinguish, so we may reduce the number of possible
intensity levels in each channel. Our proposed method rounds
each intensity level to the closest integer number divisible
by 5, cutting the number of possible colors down to 523 =
140, 608. The grid size of this color aggregation scheme
was chosen empirically and was considered large enough to
reduce the colors present in the image to the order of tens of
thousands, and small enough to preserve the most important
details of the image.

In the next step, we create a table of the colors that are
present in the image, and denote it by colBuffer. Row i

Data: image f(x, y) with 1 ≤ x ≤ f.width,
1 ≤ y ≤ f.height; ratio P ∈ [0, 1] of colors to
keep

Result: colBuffer = {(αk, βk, γk, νk, σk, λk), 1 ≤
k ≤ nrCol}

hist2col← zeros(52, 52, 52);
pix2col← zeros(f.width, f.height);
k ← 1;
for each pixel (x, y) do

[α, β, γ]← round(f(x, y)/5);
if hist2col(α, β, γ) = 0 then

hist2col(α, β, γ)← k;
αk ← α; βk ← β; γk ← γ;
νk ← 1;
k ← k + 1;

end
else

νk ← νk + 1;
end
pix2col(x, y)← hist2col(α, β, γ);

end
free(hist2col);
nrCol← k;
colHist← zeros(. . .);
for k = 1 . . . nrCol do

colHist(νk)← colHist(νk) + 1;
end
nrPix← f.width× f.height;
keptP ix← nrPix;
θ ← 0;
while keptP ix > P × nrPix do

θ ← θ + 1;
keptP ix← keptP ix− theta× colHist(θ);

end
for k = 1 . . . nrCol do

σk ← (νk ≥ θ);
end
free(colHist);

Algorithm 1: Preprocessing for fast color reduction

in this table describes the color with index i, and it contains
the following variables:

1) three 8-bit unsigned integers αi, βi, and γi to store the
three components of the given color (according to the
employed image coding scheme);

2) a 32-bit unsigned integer νi initialized with the number
of pixels having the given color;

3) flag σi which will show whether color i is included in
the clustering process;

4) an 8-bit unsigned integer λi that indicates the labeling
of color placed in row i.

The number of records in colBuffer is stored in nrCol. In
the following, the records of colBuffer are referred to as
aggregated colors.

The fast execution of the color reduction process is as-
sisted by two auxiliary tables:

195

1) hist2col is a three-dimensional array of size 52 in
each dimension, hist2col(α, β, γ) indicating the row
index of color (α, β, γ) in the colBuffer. This table
is needed only as long as colBuffer is established.

2) pix2col is a two-dimensional array having its size
equal to the input image, pix2col(x, y) indicating
the row index of the color of pixel (x, y) in the
colBuffer. This table will be used to speed up the
generation of the final result (output image).

Data: color buffer colBuffer with the exception of
labels λk

Result: labels λk, 1 ≤ k ≤ nrCol; cluster prototypes
vi, i = 1 . . . c

Initialize vi, i = 1 . . . c;
repeat

Σv ← zeros(c, 3);
Ωv ← zeros(c, 1);
Φ← 0;
for k = 1 . . . nrCol do

if σk = true then
λ = arg min

i
{dist(vi, [αk, βk, γk])};

Σv(λ)← Σv(λ) + νk[αk, βk, γk];
Ωv(λ)← Ωv(λ) + νk;
if λ 6= λk then

λk ← λ;
Φ← Φ + 1;

end
end

end
for i = 1 . . . c do

vi ← Σv(i)/Ωv(i);
end

until Φ = 0;
free(Σv);
free(Ωv);

Algorithm 2: Hard c-means implementation

The preprocessing algorithm is presented in details in
Algorithm 1. At the point when colBuffer is established,
table hist2col is released, and the color selection process
begins, which excludes those aggregated colors from the later
clustering, which are represented by few pixels. This color
elimination is controlled by input parameter P , which defines
the ratio of pixels to be kept for clustering. A histogram of
aggregated colors is created (colHist): colHist(q) indicates
the number of aggregated colors to which exactly q pixels
belong. This histogram helps us find the threshold θ that
stores the minimum number of pixels an aggregated color
needs to have in order to be kept for the clustering. The
last preprocessing task sets the selection labels σk, for each
aggregated color k = 1 . . . nrCol.

B. Hard or fuzzy clustering of aggregated colors

The c-means clustering is employed to group those ag-
gregated colors, which were selected in the previous stage,

Data: color buffer colBuffer with the exception of
labels λk

Result: labels λk, 1 ≤ k ≤ nrCol; cluster prototypes
vi, i = 1 . . . c

Initialize vi, i = 1 . . . c;
for i = 1 . . . c do

v
(old)
i ← vi;

end
repeat

Σv ← zeros(c, 3);
Ωv ← zeros(c, 1);
for k = 1 . . . nrCol do

if σk = true then
for i = 1 . . . c do

di ← dist(vi, [αk, βk, γk]);
end
q ← arg min

i
{di, i = 1 . . . c)};

if dq = 0 then
for i = 1 . . . c do

ui ← 0;
end
uq ← 1;

end
else

Σu ← 0;
for i = 1 . . . c do

ui ← d
−2/(m−1)
i ;

Σu ← Σu + ui;
end
for i = 1 . . . c do

ui ← ui/Σu;
end

end
for i = 1 . . . c do

Σv(i)← Σv(i) + νku
m
i [αk, βk, γk];

Ωv(i)← Ωv(i) + νku
m
i ;

end
end

end
Φ← 0;
for i = 1 . . . c do

vi ← Σv(i)/Ωv(i);
Φ← Φ + ||vi − v

(old)
i ||;

v
(old)
i ← vi;

end
until Φ < ε;
for k = 1 . . . nrCol do

if σk = true then
λk ← arg min

i
{dist(vi, [αk, βk, γk])};

end
end
free(Σv);
free(Ωv);

Algorithm 3: Fuzzy c-means implementation

196

having their σk flag set to true. Implementation details are
presented in Algorithm 2 for HCM and Algorithm 3 for
FCM. As proposed by Kolen and Hutcheson [11], partition
information is not stored during the iterations. Instead of
that, each cluster with index i (i = 1 . . . c) is associated
with a weighted sum of input color vectors assigned to it
Σv(i) and the number of input pixels assigned to the cluster
Ωv(i). At the end of each loop, the prototype of cluster i
is updated with the ratio of Σv(i) and Ωv(i). FCM needs a
c-element vector u to temporarily store fuzzy memberships
of the currently handled aggregated color, while variable Σu
supports the normalization of fuzzy memberships.

During each iteration, variable Φ counts the number of
labels that change. The algorithm stops when the sum of
changes Φ falls below a previously set threshold value ε. In
case of HCM, the stopping condition may be set to Φ = 0.

At the end of the clustering process, we obtain final
prototypes for each cluster, and a label for each aggregated
color that was selected for clustering.

C. Creating the output image

No matter whether hard or fuzzy clustering was per-
formed, the output image is generated using the labels given
to selected aggregated colors, and final cluster prototypes.
The algorithm is summarized in Algorithm 4. First a label
is associated to all aggregated colors corresponding to the
closest cluster prototype. Finally the new color for each pixel
is extracted from the cluster prototypes using the previously
established pix2col table.

Data: color buffer colBuffer; lookup table pix2col
Result: image f(x, y) with 1 ≤ x ≤ f.width,

1 ≤ y ≤ f.height
for k = 1 . . . nrCol do

if σk = false then
λk ← arg min

i
{dist(vi, (αk, βk, γk))};

end
end
for each pixel (x, y) do

λ← λpix2col(x,y);
f(x, y)← vλ;

end
free(pix2col);

Algorithm 4: Postprocessing for fast color reduction

IV. RESULTS

A. Preprocessing large sets of images

The proposed algorithms have been tested using a ran-
domly chosen set of 500 colored photographs, each created
at the resolution of 10Mpixels. Before being fed to color
reduction, various resized versions were generated for each
image, thus test images ranged from 800×600 to 3648×2736
pixels. The number of aggregated colors were recorded for all
500 images. Images were sorted according to the increasing
number of aggregated colors. Figure 1 reflects the number of

aggregated colors present in these 500 images at the end of
preprocessing, and selected colors in case of various values
of parameter P . Table I shows us the percentage of selected
colors for various values of parameter P , in case of certain
typical images. Table I clearly indicates that we can reduce
the amount of clustered data 2-3 times and ignore only 2%
of the pixels; or making the clustered data set smaller by an
order of magnitude is achievable through ignoring 15% of
the pixels.

Fig. 1. Total runtime vs. aggregated color number, for various number of
clusters

Fig. 2. Number of selected aggregated colors plotted vs. percentage of
pixels included in the clustered data set (P), for various selected images

TABLE I
EFFECT OF PARAMETER P (PIXEL SELECTION RATIO) ON THE NUMBER

OF AGGREGATED COLORS SELECTED FOR CLUSTERING, IN CASE OF

TYPICAL IMAGES WITH LOW, AVERAGE, MEDIAN, AND HIGH AMOUNT

OF AGGREGATED COLORS

Aggregated Pixel selection ratio (P)
color amount 98% 95% 90% 85% 80%

Low 33.81% 20.62% 12.60% 9.68% 8.66%
Average 39.59% 23.26% 13.99% 9.99% 7.21%
Median 40.24% 23.35% 14.15% 10.28% 8.78%

High 52.12% 29.86% 17.94% 12.59% 9.42%

From the initial large set of images we have selected
eight, and denoted them by IMG1 to IMG8, indexed in the
decreasing order of aggregated colors present in the images.
IMG1-IMG3 are colorful images, while IMG6 is the closest
to the image with median number of aggregated colors. Low-
quality, less colorful, blurred images are not present in this

197

Fig. 3. Total runtime vs. number of selected aggregated colors, disregarding the input image and the percentage of pixels covered. Each plot represents
the case of a different number of clusters. Triangles and circles indicate FCM and HCM runtimes, respectively.

reduced image set. These eight images will serve for detailed
benchmarks of the color reduction algorithm.

Figure 2 indicates the amount of selected aggregated
colors that cover P ratio of pixels, plotted against ratio P , in
case of images IMG1-IMG8. It also exhibits two averaged
curves computed from the top 10% and bottom 10% of the
large set of images, and the averaged curve of the whole
large image set. Here we can see that the number of selected
aggregated colors necessary to cover a certain percentage of
image pixels may differ from image to image by order of
magnitude.

B. Efficiency benchmarks

The reduced set of images (IMG1-IMG8) underwent the
efficiency benchmarking process, involving thousands of
runs according to the following scheme:

• Image size varied in six steps from 800×600 to 3648×
2736 pixels.

• The ratio P of included pixels had six different values
between 80% to 100%.

• For the number of clusters c, eleven different values
were chosen between 8 and 256.

• Both HCM and FCM were tested for each image and
each setting. FCM always used fuzzy exponent m = 2.

• For each setting we executed seven different runs,
recorded and sorted the total runtime for each run, and
extracted the average of the middle three values.

All efficiency tests were run on a single core of a quad-
core i7 processor running at 3.4GHz frequency. Figures
reflect benchmark tests on 800 × 600 pixel sized images,
unless otherwise stated.

Figures 3 and 4 report runtime values and make a com-
parison between HCM and FCM. Figure 3 plots runtimes
against the number of selected aggregated colors included in
the clustering process (number of rows in the colBuffer for
which selection flag σk is set true). Triangles indicate FCM
runtimes, while circles stand for HCM ones. These plots do
not indicate which was the input image or what percentage
of the pixels was included in the clustering process. They

only attempt to capture the trend between total runtime and
the cardinality of the clustered data set. Apparently FCM
represents 2-5 times higher computational burden than HCM,
and the ratio is slightly growing if the number of clustered
colors rises. The overall runtime visibly grows with the
number of classes as well.

Fig. 4. Total runtime vs. percentage of included pixels P and cluster
number c, in case of a typical image: FCM and HCM benchmarks on the
left and right side, respectively

Figure 4 exhibits overall runtime values of FCM and HCM
obtained on a typical image (IMG6), for various cluster
numbers c and selected values of the included pixel per-
centage parameter P . It is clearly visible that the exclusion
of a couple percent of the pixels significantly reduces the
computational load of both algorithms. Again, we can see
that HCM is much quicker than FCM. Considering the fact
that the quality of FCM’s output images is not at all better
than the outcome of HCM which was also reported by Celebi
et al [5], in the further efficiency benchmarking we will only
show HCM runtimes.

Figure 5 shows us how the total runtime of the proposed
color reduction algorithm depends on the number of clusters.
A fixed ratio of P = 95% of the pixels were included into the
clustering. The computational load apparently has a linear
growth with the number of clusters. Figure 6 exhibits the
evolution of HCM’s total runtime when the percentage of
selected pixels varies.

198

TABLE II
TOTAL RUNTIME (IN msec) OF THE HCM BASED ALGORITHM, IN CASE OF VARIOUS CLUSTER NUMBERS c AND PIXEL INCLUSION RATIO P , FOR THE

COLORFUL IMAGE IMG2 AND TYPICAL IMAGE IMG6, AT VARIOUS SIZES OF THE INPUT IMAGES

IMG2 at resolution 800× 600 2048× 1536 3648× 2736
Pixel inclusion ratio P 100% 95% 80% 100% 95% 80% 100% 95% 80%

c = 8 33 21 16 130 105 101 329 296 292
c = 16 71 38 17 187 124 103 397 316 298
c = 32 115 58 21 256 147 106 479 339 307
c = 64 197 95 28 387 186 123 638 379 317
c = 128 353 161 32 638 263 127 940 455 338
c = 256 654 293 54 1118 407 153 1525 606 369

IMG6 at resolution 800× 600 2048× 1536 3648× 2736
Pixel inclusion ratio P 100% 95% 80% 100% 95% 80% 100% 95% 80%

c = 8 18 12 11 97 92 91 294 281 280
c = 16 26 15 11 106 93 92 302 285 283
c = 32 30 17 12 127 95 94 320 287 286
c = 64 42 19 13 143 99 95 349 293 291
c = 128 74 26 16 202 104 101 437 301 304
c = 256 171 35 21 333 114 109 601 321 313

Fig. 5. Total runtime of HCM vs. number of clusters, at fixed P = 95%,
in case of the 8 selected images

Fig. 6. Total runtime of HCM vs. pixel inclusion rate, at fixed number of
clusters c = 32 (left) and c = 128 (right), in case of the 8 selected images

The total runtime linearly grows with the number of colors,
when the images have low resolution. On the other hand,
excluding no more than 5 percent of the pixels from the
clustering process can reduce the total runtime up to 5 times.

Table II shows us how the size of the input image
influences the total runtime in various circumstances. The
runtime is not growing proportionally with the number of
pixels, especially when the number of clusters is high.

C. Accuracy tests

Qualitative testing the accuracy is possible via visual
inspection of output images. Figure 7 exhibits the outcome
of the HCM based algorithm in case of six selected images.
All these tests were run using pixel inclusion rate P = 95%,
while the number of clusters varied in range of 32-96. One
has to look at minor details to recognize the difference
between the input and output images. On the other hand, the
FCM based algorithm distorts the colors in the output image,
which can be explained with the fact that all pixels of the
image have nonzero fuzzy memberships with respect to each
cluster, thus contributing to the all cluster prototypes and
producing clusters that have the prototypes of HCM shifted
towards the grand mean (average color of the image).

To provide quantitative evaluation of the algorithm, we
computed the averaged color distance (ACD) between the
original input images and the final color reduced images in
various scenarios, employing the formula:

ACD =
1

n

n∑
k=1

||xk − vλpix2col(x,y)
|| , (4)

where xk is the color vector of pixel at position (x, y) and
all other variables are those introduced in Section III. Figure
8 exhibits a logarithmic plot of the variation of ACT with
respect to the cluster number c, for the typical image IMG6
and the colorful image IMG1, at limit values of the pixel
inclusion ratio. The most important thing to see here is the
closeness of the two limits, showing that ratio P (inside
the studied interval) does not really affect the accuracy of
the color reduction. The latter fact is confirmed in Fig. 9,
which indicates the variation of ACD with respect to pixel
inclusion ratio P for the same two images and various cluster
count c. The difference between the input and output images
decreases as the number of clusters grows. If we create 256-
color palette for a typical image, the average color distance
between input and output will be below 5 intensity units on
the 0-255 scale.

199

Fig. 7. Some examples with input images in the top row, result images with reduced colors in bottom row: (a) colorful image IMG2 reduced to 48 colors,
(b) colorful image IMG3 reduced to 96 colors, (c) typical image IMG5 reduced to 48 colors, (d) colorful image IMG4 reduced to 32 colors, (e) typical
image IMG6 reduced to 48 colors, (f) image IMG8 reduced to 64 colors.

Another quantitative test of accuracy could be possible by
comparing the cluster prototypes obtained by the proposed
quick method with the ones given by the conventional
slow HCM clustering algorithm. The numerical evaluation
criterion is given as:

E =
c∑
i=1

||vi − v
(conv)
i || , (5)

where v
(conv)
i is the cluster prototype given by the conven-

tional HCM clustering which best corresponds to vi. The
smaller the value of E, the better approximation is given by
the proposed method. Providing such an evaluation stands
beyond the scope of this paper.

Fig. 8. Average color difference vs. cluster number c

V. DISCUSSION

The first and last stage of the processing, namely the
histogram extraction and generation of output image, respec-
tively, have the theoretical complexity of O(n), where n
represents the number of pixels in the image. The second
stage, which performs the clustering of aggregated colors,
is O(cQ)-complex, where Q < nrCol is the number of
those aggregated colors that were selected for the clustering
process. Earlier we have seen that the total runtime does
not grow proportionally with the number of input pixels,
and neither with the number of clusters. There exist settings,

Fig. 9. Average color difference vs. pixel inclusion ratio P

when one of these parameters is virtually proportional with
total runtime, but never do both. When the input image has
several millions of pixels, but the number of aggregated
colors selected for clustering is low, the 1st and 3rd stage
of the proposed algorithm require the majority of the total
runtime. Alternately, when the input image is small but
colorful, and especially when the chosen number of clusters
is also high, the 2nd stage of the algorithm will be dominant
in terms of computational load. Table III gives us some hints
in this sense, showing the time necessary for the 1st and
3rd, and the 2nd stage separately, in various scenarios, using
HCM based clustering for the color reduction of a typical
image. The 1st and 3rd stage roughly need constant time for
the same image, they hardly depend on parameters like c and
P . On the other hand, the execution time of the 2nd stage
is strongly influenced by the same parameters.

During the numerical evaluation of the proposed method-
ology we concentrated on obtaining accurate results. HCM
reaches convergence right after the first iteration in which
no changes happen in the partition. During our tests this
usually occurred after 30-70 iterations. However, we max-
imized the number of performed loops at 50, considering
that the changes occurred thereafter would hardly affect the
output image. Earlier solutions (e.g. [5]) suggested stopping
after 20 iterations in order to reduce the execution time.

200

TABLE III
DURATION (IN msec) OF O(n)-COMPLEX 1ST AND 3RD STAGE AND O(cQ)-COMPLEX 2ND STAGE OF THE HCM BASED ALGORITHM APPLIED TO A

TYPICAL IMAGE, IN CASE OF CLUSTER NUMBER c ∈ {32, 128} AND VARIOUS PIXEL INCLUSION RATIOS P

IMG6 at resolution 800× 600 1200× 900 1600× 1200 2048× 1536 2892× 2169 3648× 2736
Cluster count c 32 128 32 128 32 128 32 128 32 128 32 128

1st and 3rd stage 11 27 50 86 171 280
2nd stage at P = 100% 21 66 30 93 34 112 38 120 40 135 42 154
2nd stage at P = 98% 8 18 9 20 10 20 11 25 14 27 15 31
2nd stage at P = 95% 7 15 9 14 9 15 10 19 11 20 12 22

The efficiency tests performed in this study revealed the
superiority (speed-up ratio in range 2-3) of the proposed
method compared with the recent solution given in [5].

Some advantages of the proposed methodology are listed
below:

1) It can be applied to reduce the number of colors in
an image to virtually any integer number c ≥ 2. This
means higher flexibility compared to simply cutting
least significant bits in every channel of the image.

2) There is space for further improvement of execution
time via parallel computation, which can be easily em-
ployed in the O(n)-complex stages of the algorithm,
when performed on a multi-core PC.

3) The proposed framework is suitable to employ any
kind of c-means clustering algorithm. For example,
some generalized suppressed FCM algorithms [7], [18]
tend to favor clusters of reduced size and are close to
HCM to run sufficiently fast.

Limitations of the proposed method include:
1) It is well known that the initialization of the cluster

prototypes can strongly influence the results of c-
means clustering [1]. We need to employ a static proce-
dure, which quickly provides 3D grid points that cover
the whole color space as much as possible. Context
sensitive intelligent procedures are prohibitively slow.

2) A few percent of the pixels are ignored by the color
clustering process. This may slightly shift optimal
cluster prototypes, which is a price to pay to get rid
of a significant part of computational burden.

3) A fully automated optimal color reduction procedure
would also need a mean to automatically find the right
number of cluster for each image.

VI. CONCLUSIONS
In this paper we have introduced a fast color reduction

algorithm based on c-means clustering. The proposed meth-
ods first performs a static color quantization followed by a
histogram based color selection scheme and employs HCM
to extract optimal reduced colors. The algorithm uses as key
parameter the ratio of pixels included into the clustering pro-
cess. Dropping properly chosen 2−5% of the input data can
significantly reduce execution time without losing important
details. Numerical evaluation proved the superiority of the
proposed methodology over recent solutions in the field. The
proposed algorithm allows for parallel implementation of key
parts, which can further reduce execution time without losing

any part of the accuracy. Further works will aim at getting
benefit from parallel execution.

REFERENCES

[1] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” Proc. 18th Ann. ACM-SIAM Symp. Discr. Alg., 2007, pp.
1027–1035.

[2] A. Atsalakis, and N. Papamarkos, “Color reduction and estimation
of the number of dominant colors by using a self-growing and self-
organized neural gas,” Engineering Applications of Artificial Intelli-
gence, vol. 19, pp. 769–786, 2006.

[3] J. C. Bezdek, Pattern recognition with fuzzy objective function algo-
rithms, New York: Plenum, 1981.

[4] J. P. Braquelaire and L. Brun, “Comparison and optimization of
methods of color image quantization,” IEEE Transactions on Image
Processing vol. 6, pp. 1048–1052, 1997.

[5] M. E. Celebi, “Improving the performance of k-means in color
quantization,” Image and Vision Computing, vol. 29, pp. 260–271,
2011.

[6] G. Dong and M. Xie, “Color clustering and learning for image
segmentation based on neural networks,” IEEE Transactions on Neural
Networks vol. 16, pp. 925–936, 2005.

[7] J. L. Fan, W. Z. Zhen and W. X. Xie, “Suppressed fuzzy c-means
clustering algorithm,” Pattern Recognition Letters, vol. 24, pp. 1607–
1612, 2003.

[8] A. T. Ghanbarian, E. Kabir and N. M. Charkari, “Color reduction based
on ant colony,” Pattern Recognition Letters, vol. 28, pp. 1383–1390,
2007.

[9] I. S. Hsieh, K. C. Fan, “An adaptive clustering algorithm for color
quantization,” Pattern Recognition Letters, vol. 21, pp. 337–346, 2000.

[10] K. Kanjanawanishkul and B. Uyyanonvara, “Novel fast color reduction
algorithm for time-constrained applications,” Journal of Visual Com-
munication and Image Representation vol. 16, pp. 311–332, 2005.

[11] J. F. Kolen and T. Hutcheson, “Reducing the time complexity of the
fuzzy c-means algorithm,” IEEE Transactions on Fuzzy Systems vol.
10, pp. 263–267, 2002.

[12] A. Mojsilovic and E. Soljanin, “Color quantization and processing by
Fibonacci lattices ,” IEEE Transactions on Image Processing vol. 10,
pp. 1712–1725, 2001.

[13] N. Nikolaou, and N. Papamarkos, “Color reduction for complex
document images,” International Journal of Imaging Systems and
Technologies, vol. 19, pp. 14–26, 2009.

[14] D. Özdemir, and L. Akarun, “A fuzzy algorithm for color quantization
of images,” Pattern Recognition, vol. 35, pp. 1785–1791, 2002.

[15] J. Rasti, A. Monadjemi and A. Vafaei, “Color reduction using a multi-
stage Kohonen self-organizing map with redundant features,” Expert
Systems with Applications, vol. 38, pp. 13188–13197, 2011.

[16] H. Steinhaus, “Sur la division des corp materiels en parties”, Bulletin
de l’Academie Polonaise des Science, C1 III., vol. IV, pp. 801–804,
1956.

[17] L. Szilágyi, Z. Benyó, S. M. Szilágyi and H. S. Adam, “MR brain
image segmentation using an enhanced fuzzy c-means algorithm,”
Annual International Conference of IEEE EMBS, Cancún, pp. 724–
726, 2003.

[18] L. Szilágyi, S. M. Szilágyi and Cs. Kiss, “A generalized approach to
the suppressed fuzzy c-means algorithm,” Lecture Notes in Computer
Science, vol. 6408, pp. 140–151, 2010.

201

