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Abstract— This paper reports the model based analysis of
Lithium Ion cell ageing and the age-related adaptation of data
driven battery models is addressed. To take account of ageing is
an important issue e. g. for the battery management of (hybrid)
electrical vehicles, in order to provide an exact online estimate
of the state of charge (SoC). As a first step, ageing data analysis
based on the architecture of local model networks (LMNs) is
presented using data from a large scale ageing experiment of
Lithium Ion cells. Additionally, the topic of time-variant battery
modelling is addressed. Thus, the LMN is adapted in a way
that age-related effects (such as capacity decay and resistance
increase) are taken into account. Such a model can further be
used for the design of a combined observer for SoC and state
of health (SoH).

Index Terms— Nonlinear system identification, battery age-
ing, fuzzy observer, state of charge, state of health

I. INTRODUCTION

AGEING performance testing of Lithium Ion cells and
the associated model parameterisation as well as studies

on ageing mechanisms have become an increasingly impor-
tant issue in recent years. In this paper, the model based
analysis of Lithium Ion cell ageing data is presented and
the age-related adaptation of data driven battery models for
state of charge (SoC) estimation is addressed. Especially in
hybrid electrical vehicles (HEVs), an accurate observation
of the electric power supply is essential in order to extend
battery life and preserve the usable capacity. Accordingly,
a proper online monitoring of the SoC of the battery is
required. Since the SoC cannot be measured directly, the
SoC estimation is one of the most important functions of the
battery management system (BMS).

Various publications have addressed the design of non-
linear SoC observers, see e. g. [1], [2], [3], [4]. Typically,
SoC estimation is based on a nonlinear model using Kalman
filter theory. In [5] the modelling and identification of a
state space structure which includes terms that describe the
dynamic contributions due to open-circuit voltage, ohmic
loss, polarization time constants is described and the SoC
estimation using an extended Kalman filter (EKF) is pro-
posed. The online estimation of the SoC of a lithium ion
cell based on an electrochemical model can be found in
[6]. In [7] a simple resistor-capacitor battery model is used
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where modelling errors caused by the simple model are
compensated by a sliding mode observer. However, in order
to allow for the application of such observers in an HEV,
the actual state of health (SoH) of the cell also has to be
estimated online and considered as well for SoC estimation.
Without an SoH correction or update by the BMS, the driver
will experience an overestimated range or less acceleration,
[8]. Recent publications have addressed the design of a
combined observer for SoC and SoH. In e. g. [8] the design
of a dual filter consisting of a standard Kalman filter and an
unscented Kalman filter based on an equivalent circuit model
is presented. The SoH estimation of valve regulated lead-
acid cells using an equivalent circuit model and an EKF is
described in [9]. However, conventional physical modelling
and/or time efficient parameterisation of these models is
difficult in many situations. To overcome such problems,
in [10] the authors presented a systematic approach for
data driven modelling and the associated nonlinear observer
design for SoC estimation. An important advantage in this
context is that such a purely data driven methodology is
not limited to a certain battery type/chemistry. In [10] the
proposed concepts were validated by means of real measure-
ment data from a Lithium Ion cell. Using a fuzzy observer
architecture an accurate estimation of the SoC is obtained and
the computational complexity of the global filter is greatly
reduced compared to the widely used EKF. While such a
data driven approach enables the application for any type
of battery chemistry, a major disadvantage of these black-
box models is that the physical interpretation of the model
parameters is not easily possible. In the present paper, the
adaptation of data driven black-box models is addressed
since, for the design of a combined observer for SoH and
SoC, a model which takes the age-related capacity decay
and/or internal resistance increase into account, is required.

A schematics of a cascaded observer structure for simul-
taneous SoH and SoC estimation is depicted in Fig. 1. The
inner loop represents the fuzzy observer for SoC estimation,
where the correction is obtained from a comparison of the
actual (measured) terminal voltage of the battery to the
output of the local model network (LMN), see [10]. The
outer loop represents the SoH observer, which estimates the
currently available cell capacity Ĉact. Thus, the LMN has
to be adapted in a way, that the capacity decay of the cell
is taken into account. The actual design of the combined
(cascaded) observer and its convergence analysis are not
addressed in this paper and subject of current research.

In the present paper, as a first step, the model based
analysis of Lithium Ion cell ageing data is presented and
adaptation of the battery model (the LMN) is addressed.
For model based ageing data analysis, the interpretability of
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Fig. 1. Schematics of a combined observer for SoC and SoH

LMNs is of great interest in order to extract information on
the power fade (internal resistance) and capacity fade (energy
content). For that purpose, data from a large scale ageing
experiment [11] are used. In [11] the experiment design for
ageing of Lithium Ion cells is described and the capacity
loss of lab-size Lithium Ion cells is studied to give a more
consistent picture of the cell ageing process.

The remainder of this paper is structured as follows: In
Section II the architecture of LMNs is shortly reviewed. The
LMN based analysis of ageing data is presented in Section
III. The topic age-related model adaptation is addressed in
Section IV.

II. DATA DRIVEN BATTERY MODELLING

This section briefly reviews the LMN architecture and the
data driven construction of the battery model.

Since conventional physical modelling is difficult in many
situations, black-box and grey-box-oriented nonlinear system
identification procedures have emerged as a feasible alter-
native in various applications. In this context, LMNs have
evidenced to be a powerful tool (see also e. g. [12], [13])
since they can adapt to the complexity of the problem in a
highly efficient way. Especially in automotive applications,
these data driven modelling approaches are an important tool
for systematically dealing with the growing complexity of
e. g. combustion engines and hybrid components, see [14],
[15], [16].

An integral part of the SoC observer from [10] is a
mathematical cell model (represented by the LMN), which
describes the dynamic behaviour of the terminal voltage
U(t) based on the charge/discharge current I(t) and other
factors (e. g. temperature and SoC). The LMN interpolates
between different local models, each of which are valid in
a certain region of the input space. Thus, the battery cell
model is based on a partitioning into several local operating
regimes (local linear impedance models), represented by
the dominant influence of the scheduling variables, such
as SoC, temperature, etc. This strategy makes it possible
to capture the highly nonlinear dynamic complexity of the

battery in a computationally efficient way. Additionally, the
architecture of LMNs represents an excellent approach for
the integration of various knowledge sources. Accordingly,
the complexity of the identification procedure can be reduced
significantly when prior knowledge about the underlying
system is available, see e. g. [16].

In general, each local model of the LMN - indicated by
subscript i - consists of two parts: The validity function Φi

and its model parameter vector θi. Thereby, Φi defines the
region of validity of the i-th local model.

The local estimate for the output is obtained by

ŷi(k) = x
T (k)θi, (1)

where xT (k) denotes the regressor vector. In dynamic sys-
tem identification, the regressor vector x(k) comprises past
system inputs and outputs.

All local estimations ŷi(k) are used to form the global
model output ŷ(k) by weighted aggregation

ŷ(k) =

M∑
i=1

Φi(x̃(k))ŷi(k), (2)

where M denotes the number of local linear models.
Thereby, the elements in x̃(k) span the so-called partition
space and are chosen on the basis of prior knowledge about
the process and the expected structure of its nonlinearities.

The computation of the validity functions Φi(x̃(k)) is
based on a logistic discriminant tree. In Fig. 2 a model tree
with three local models is depicted. Each node corresponds
to a split of the partition space into two parts, and the free
ends of the branches represent the actual local models with
their parameter vector θi and their validity functions Φi. The
overall nonlinear model thus comprises M local models and
M − 1 nodes that determine their regions of validity.
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ϕ1 1− ϕ1

ϕ2ϕ2 1− ϕ21− ϕ2

Φ1, θ1Φ1, θ1 Φ3, θ3Φ3, θ3
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Fig. 2. Logistic discriminant tree

Φ1 = ϕ1ϕ2, (3)

Φ2 = 1− ϕ1, (4)

Φ3 = ϕ1(1 − ϕ2). (5)
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For the representation of the discriminant function in the
d-th node, a logistic sigmoid activation function is chosen,
c. f. [17]:

ϕd(x̃(k)) =
1

1 + exp(−ad(x̃(k)))
(6)

with

ad(x̃(k)) =
[
1 x̃T (k)

] [ψd0

ψ̃d

]
. (7)

Here, ψ̃
T

d =
[
ψd1 . . . ψdp

]
denotes the weight vector, and

ψd0 is called the bias term. The discriminant functions ϕd

are used to calculate the validity functions Φi, c. f. [18]. The
validity functions for the layout in Fig. 2 are obtained by (3),
(4) and (5).

The training (i.e. the parametrisation) of the battery model
(the LMN) is then based on a nonlinear optimisation algo-
rithm. For a more detailed description of the iterative opti-
misation algorithm, please refer to [19] and [15]. However,
the results presented in [16] and [10] indicate the excellent
generalisation capabilities of the proposed LMN training
algorithm.

III. MODEL BASED AGEING DATA ANALYSIS

This section describes the model based analysis of ageing
data using the proposed LMN training algorithm.

A. Lithium Ion cell ageing data

Data from a large scale ageing experiment [11] are used
to investigate how ageing affects the data driven battery
model (see Section II). In [11] the experiment design of
load cycles for Lithium Ion cell ageing tests is described.
During these ageing tests, the cycling load as well as calender
ageing was periodically interrupted by specially designed
reference tests. For the cell chosen to be exemplary in this
paper, 17 reference tests were recorded, each representing
the cell at some stage of the ageing process. The temperature
was kept constant for these tests and is thus not considered
in this paper. Fig. 3 shows the age-related capacity decay
Cact/Cinit of the cell over time where each point represents
one reference test.
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Fig. 3. Capacity decay over time

In addition, the capacity decay Cact/Cinit over cycle
count is shown in Fig. 4.
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Fig. 4. Capacity decay over cycle count (full cycle equivalent)
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Fig. 5. Reference test of the new cell (Cact/Cinit = 1)

In Fig. 5 the measured signals from the reference test of
the new cell (i. e. the currently available capacity Cact of the
cell is equal to the nominal capacity Cinit) is depicted.

Please refer to [11] for a more detailed description of the
experiment design of the cycling load and reference tests.

B. Cell modelling and interpretation of the LMNs

Each of the 17 reference tests is now used to create a
new LMN. As described in the previous section, the model
output is the cell terminal voltage and the inputs are the cell
current and SoC. Note that SoC is regarded as an input for
the training of the model, while for the observer design SoC
is a state of the system, resulting in an augmented state space
representation of the nonlinear battery model (please see also
[10]).

As a first step, the interpretability of LMNs is used
to extract information on the steady state gain and the
relationship between open-circuit voltage (OCV) and SoC. In
Fig. 6 the OCV-SoC relationship for each of the 17 models
is depicted. Here the blue line represents the model of the
new cell and the red line is obtained from the reference test
at the end of the ageing experiment. Obviously, the decrease
in capacity is directly visible from the extracted OCV-SoC
curve.

In Fig. 7 the steady state gain (which is closely related to
the internal resistance of the cell) of the 17 different LMNs
is depicted:

KI = lim
z→1

∂U

∂I

∣∣∣∣
SOC=const.

(8)
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Fig. 6. OCV-SoC relationship for 17 reference tests each representing a
different stage of the ageing process (blue = new, ..., red = old)

Again the blue line represents the new cell and the red
line is obtained from the data measured at the end of the
ageing experiment. Accordingly, the different characteristics
in Fig. 7 reflect the increase in internal resistance.
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Fig. 7. Steady state gain for 17 reference tests each representing a different
stage of the ageing process (blue = new, ..., red = old)

As a second step, the extracted characteristics are rescaled
in a way such that the actual age (i. e. the currently available
capacity of the cell, c. f. Fig. 3) is taken into account. In
Fig. 8 the modified OCV-SoC relationship is depicted where
the normalised/rescaled SoC is obtained from SoCnorm =
SoC Cinit

Cact
. Apparently, the 17 OCV-SoC curves match almost

perfectly although all LMNs (i. e. the local model parameters
and the partitioning) were constructed independently (using
different data records).

The resistance increase is taken into account using
KI,norm = KI

Cact

Cinit
. Fig. 9 depicts the rescaled relationship

for the steady state gain where additionally the normalised
state of charge SoCnorm = SoC Cinit

Cact
is taken into account.

Again, using only one parameter a good match between the
different LMNs is obtained.

In Fig. 10 and Fig. 11 the effect of the model adaptation
(i. e. the rescaling) is highlighted again by means of the OCV-
SoC relationship. In addition to Fig. 6 and Fig. 8 also the
calendrical age of the cell is directly visible in these figures.
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Fig. 8. OCV over normalised SoC for 17 LMNs
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Fig. 9. Rescaled steady state gain over normalised SoC for 17 LMNs
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Fig. 10. Open-circuit voltage over time and SOC
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Fig. 11. Open-circuit voltage over time and normalised SOC

IV. MODEL ADAPTATION

In this section the findings/ideas presented in Section III
are used to adapt the data driven battery model. The resulting
time-variant model allows to consider age-related effects.
Thus, one LMN is constructed using data of the new cell
and only a few parameters are used to adapt the LMN such
that it can be used to predict/simulate the nonlinear dynamic
behaviour of the cell at any stage of the ageing process.
In the present application even only one parameter (i. e. the
currently available capacity of the cell which is assumed to
be known) is used to adapt the black-box model.

The simulation results without model adaptation (time-
invariant LMN) using three different reference tests (at
Cact/Cinit = 1, Cact/Cinit = 0.84 and Cact/Cinit =
0.63, respectively) are depicted in Fig. 12. Apparently, the
performance of the model decreases with the age-related
capacity loss of the cell.

Fig. 13 shows the performance of the LMN without adap-
tation at all reference cycles by means of the R2 statistics

R2 = 1−

N∑
k=1

(y(k)− ŷ(k))2

N∑
k=1

(y(k)− ȳ)2
. (9)

As expected, the capacity decay and resistance increase affect
the simulation performance and the LMN (created with data
of the new cell) insufficiently predicts the terminal voltage
of the aged cell (c. f. Fig. 3).

In Fig. 14 a comparison of the LMN without adaptation
to three different variants for model adaptation is presented:

(A) Without adaptation: Time-invariant model (see Fig. 13
and Fig. 12).

(B) Corrected gain: The steady state gain of the local linear
models is adapted, see also Fig. 9.

(C) Normalised SoC: The SoC is rescaled, see also Fig. 8.
(D) Rescaling of SoC and steady state gain: Combination

of (B) and (C) – i. e. SoC is rescaled and the steady
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Fig. 12. Simulation of ageing data without model adaptation (time-invariant
LMN)
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Fig. 13. Simulation of ageing data without model adaptation (time-invariant
LMN)

state gain is adapted based on the age-related capacity
decay.

Obviously, rescaling SoC and the steady state gain helps
to improve the simulation performance significantly. Using
the time-variant model (D) the LMN can be used to simulate
the battery voltage at different stages of the ageing process
almost without any loss of performance. Thus, using only
one adaptation parameter, a simple but effective method for
battery model adaptation is obtained.

The simulation results of the adapted LMN (D) for three
different reference tests (at Cact/Cinit = 1, Cact/Cinit =
0.84 and Cact/Cinit = 0.63, respectively) are depicted in
Fig. 15.
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Fig. 14. Comparison of three different variants for model adaptation and
the model without adaptation
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Fig. 15. Simulation of ageing data with model adaptation (time-variant
model)

V. CONCLUSIONS AND OUTLOOK

The model based analysis of Lithium Ion cell ageing
data and the age-related adaptation of the battery model is
discussed in this paper. First, the interpretability of LMNs
was used to extract information on the steady state gain and
the relationship between OCV and SoC. Then, the extracted
characteristics were rescaled in a way such that the actual
age (i. e. the currently available capacity of the cell which
was assumed to be known) is taken into account. Based
on these findings, the adaptation of the data driven model
was presented in order to consider age-related effects. The
simulation results indicated that the resulting time-variant
LMN allows to predict the battery voltage at any stage of
the ageing process almost without any loss of performance.

Future research will be focused on the design of a
combined observer for SoH and SoC. Based on the ideas

presented in this paper, only one parameter (the currently
available capacity of the cell) has to be adapted and thus
estimated online (in addition to SoC) in order to take ageing
into account.
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