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Abstract— Based on the differently implicational idea, the α-
universal multiple I restriction method is put forward for gen-
eral fuzzy reasoning, which contains the α-multiple I restriction
method as its specific case. First of all, we give the α-universal
multiple I restriction principle, which improves the previous
restriction principle, and then provide the existing condition of
the solutions of the new method. Furthermore, we obtain the
optimal solution of the new method for the fuzzy implications
with residual pair, the R-implications, as well as some particular
fuzzy implications. Finally, it is found that the new method is
more reasonable by contrast with the α-multiple I restriction
method.

I. INTRODUCTION

THE fundamental form of fuzzy reasoning [1]-[3] is the
following fuzzy modus ponens (FMP):

From
Rule: A implies B

and input A∗

—————————————
Compute B∗

(1)

where A,A∗ ∈ F (U), B,B∗ ∈ F (V ), in which F (U), F (V )
respectively represent the set of all fuzzy subsets of U, V . For
providing the solution of FMP, the most famous strategy is
the compositional rule of inference (CRI) method [4]-[7]. To
improve the CRI method, the triple I (the abbreviation of
triple implications) method was presented (in [8], [9]) and
further investigated (see e.g. [10]-[14]). The basic principle
of the triple I method is to find the smallest fuzzy set B∗ ∈
F (V ) making (α ∈ [0, 1])

(A(u)→ B(v))→ (A∗(u)→ B∗(v)) ≥ α (2)

holds for any u ∈ U, v ∈ V , in which → is defined by
a fuzzy implication. It is verified that the triple I method
has many wonderful advantages including strict logic basis,
reversibility and so forth (see [15]-[18]).

As an extension of (1), the general form of fuzzy reasoning

Yiming Tang is with Anhui Province Key Laboratory of Affective Com-
puting and Advanced Intelligent Machine, Hefei University of Technology,
Hefei, 230009, P. R. China (email: ymtang@hfut.edu.cn).

Xiaomei Li is with School of Computer and Information, Hefei University
of Technology, Hefei, 230009, P. R. China.

This work was supported by the National Natural Science Foundation of
China (Grant No. 61203077), the China Postdoctoral Science Foundation
(Grant No. 2012M521218), the National High-Tech Research & Develop-
ment Program of China (863 Program, Grant No. 2012AA011103).

is as follows:

From
Rule 1: A11, A12, · · · , A1n imply B1

Rule 2: A21, A22, · · · , A2n imply B2

· · · · · · · · · · · · · · · · · · · · · · · ·
Rule m: Am1, Am2, · · · , Amn imply Bm

and input A∗
1, A∗

2, · · · , A∗
n

————————————————————
Compute B∗

(3)

where Aij , A
∗
j ∈ F (Uj), Bi, B

∗ ∈ F (V ) (i = 1, · · · ,m; j =
1, · · · , n). For this general fuzzy reasoning, Wang established
a fully implicational multiple I method (see [19]). Later, it
was generalized to the α-multiple I method, which focused
on (uj ∈ Uj , v ∈ V, j = 1, · · · , n):

R→,1 → (R→,2 → (· · · (R→,m → (A∗
1(u1)→

(A∗
2(u2)→ (· · · (A∗

n(un)→ B∗(v)) · · · ) · · · ) ≥ α,
(4)

in which the i-th rule R→,i was as follows (i = 1, · · · ,m):

R→,i = R→,i(u1, · · · , un, v)
= Ai1(u1)→ (Ai2(u2)→ (· · · (Ain(un)→ Bi(v)) · · · )).

Following that, the restriction idea (see [20]) was intro-
duced to analyze the condition opposite to (4), and then
the α-multiple I restriction method was investigated with
discussing its unified forms [21]. In detail, the basic idea of
the α-multiple I restriction method is to seek out the largest
B∗ ∈ F (V ) such that (α ∈ (0, 1])

R→,1 → (R→,2 → (· · · (R→,m → (A∗
1(u1)→

(A∗
2(u2)→ (· · · (A∗

n(un)→ B∗(v)) · · · ) · · · ) < α
(5)

holds for any uj ∈ Uj , v ∈ V (j = 1, · · · , n).
From the point of view of some kind of fuzzy system, it is

unfortunate that the effect of the triple I method is imperfect
because of its inferior response ability and practicability (see
[22]-[24] for more details). Aiming at such problem, we
generalized in [25] the triple I method to the differently
implicational universal triple I method of (1, 2, 2) type (the
universal triple I method for short). The ideal solution of the
universal triple I method takes the smallest B∗ ∈ F (V ) such
that (α ∈ [0, 1])

(A(u)→1 B(v))→2 (A∗(u)→2 B
∗(v)) ≥ α (6)

holds for any u ∈ U, v ∈ V , where →1 and →2 can
employ different fuzzy implications. Furthermore, it was
obtained that the universal triple I method can generate more
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practicable and better fuzzy systems by contrast with the
CRI method and the triple I method (see [25]). Then, we
analyzed the reversibility of universal triple I method for the
problem of fuzzy modus tollens (in which →2 employed
IL), and drew the conclusion that its reversibility seemed
excellent (see [26]). In [27], we put forward the reverse
universal triple I method, and investigated related principles,
solutions, as well as its reversibility. In [28], we investigated
the universal triple I method for the FMP problem (in which
→2 took IFD), which focused on its reversibility properties
and also the corresponding more general fuzzy systems, and
then applied the universal triple I method to textual emotion
polarity recognition. In [29], the universal triple I method
was researched for the FMP problem from the viewpoints of
both fuzzy reasoning and fuzzy controller, which included its
solution, reversibility, and response ability, where involved
the (0,1)-implications, R-implications, together with the ex-
pansion, reduction and other type operators.

Based on these works, we should introduce the differently
implicational idea [25] to the α-multiple I restriction method,
that is, we should investigate the general fuzzy reasoning
derived from (α ∈ (0, 1])

R→1,1 →2 (R→1,2 →2 (· · · (R→1,m →2 (A∗
1(u1)→2

(A∗
2(u2)→2 (· · · (A∗

n(un)→2 B
∗(v)) · · · ) · · · ) < α,

(7)

where the new i-th rule R→1,i is as follows (i = 1, · · · ,m):

R→1,i = R→1,i(u1, · · · , un, v)
= Ai1(u1)→1 (Ai2(u2)→1 (· · · (Ain(un)→1 Bi(v)) · · · )),

which is said to be the α-universal multiple I restriction
method. It evidently contains the α-multiple I restriction
method as its specific case. The aim of this paper is to
establish unified forms of the α-universal multiple I restric-
tion method, which allow different fuzzy implications to be
employed in the same manner.

The rest of this paper is organized as follows: Section II
is the preliminaries. In Sections III, the fundamental char-
acteristics of the α-universal multiple I restriction method
are researched, which include its basic principle, the existing
condition of solutions. In Section IV, the optimal solutions
of the α-universal multiple I restriction method are obtained
for some kinds of fuzzy implications. Section V concludes
this paper.

II. PRELIMINARIES

There are several definitions of fuzzy implications, and
here we choose the acknowledged definition employed in
[1],[30], which is equivalent to the one in [31].

Definition 2.1: A fuzzy implication on [0, 1] is a function
I : [0, 1]2 → [0, 1] satisfying the following three properties:

(P1) I is decreasing in the first variable.
(P2) I is increasing in the second variable.
(P3) I(0, 0) = 1, I(1, 1) = 1, I(1, 0) = 0.

I(a, b) is also written as a→ b for any a, b ∈ [0, 1].
For any fuzzy implication I , obviously I satisfies
(P4) I(0, a) = I(a, 1) = 1 (a ∈ [0, 1])

and obviously I(0, 1) = 1.
Definition 2.2: ([6]) A function T : [0, 1]2 → [0, 1] is

called a triangular norm (t-norm, for short), if T is asso-
ciative, increasing, commutative, and satisfies T (1, a) = a
(a ∈ [0, 1]).

Definition 2.3: ([32]) Let T, I be two [0, 1]2 → [0, 1]
functions, (T, I) is called a residual pair or, T and I are
residual to each other, if the following residual condition
satisfies:

T (a, b) ≤ c if and only if b ≤ I(a, c) (a, b, c ∈ [0, 1]).
(8)

In Definitions 2.3, the function T which is residual to I
is unique, and vice versa.

Proposition 2.1: If I is a fuzzy implication satisfying
(P5) I is right-continuous w.r.t. the second variable,

then the function T : [0, 1]2 → [0, 1] defined by

T (a, b) = inf{x ∈ [0, 1] | b ≤ I(a, x)}, a, b ∈ [0, 1] (9)

is residual to I , and the following formula holds:

I(a, b) = sup{x ∈ [0, 1] | T (a, x) ≤ b}, a, b ∈ [0, 1].
(10)

Proof: Denote Γ = {x ∈ [0, 1] | b ≤ I(a, x)} (a, b ∈
[0, 1]).

(i) Assume that b ≤ I(a, c) (c ∈ [0, 1]). Then c ∈ Γ. Since
T (a, b) = inf Γ, it follows that T (a, b) ≤ c holds.

(ii) Assume that T (a, b) ≤ c (c ∈ [0, 1]). Taking into
account that the fuzzy implication I satisfies (P4), we get
b ≤ 1 = I(a, 1), and thus Γ ̸= ∅. We have two cases
to be considered. (a) For the case T (a, b) < c, it follows
from the definition of infimum that there is x0 ∈ Γ making
x0 < T (a, b) + ε < c for any ε ∈ (0, c − T (a, b)). Noting
that x0 ∈ Γ and that the fuzzy implication I satisfies (P2),
we get b ≤ I(a, x0) ≤ I(a, c). (b) For the case T (a, b) = c,
assume on the contrary that c /∈ Γ. Then in Γ there exist
c0 > c1 > · · · > cn > · · · such that limi→∞ ci = c and
ci > c, so c is the right-limit of {ci} (i = 0, 1, · · · ). Because
I satisfies (P5) and b ≤ I(a, ci) (i = 0, 1, · · · ), it follows
that b ≤ limi→∞ I(a, ci) = I(a, c) (i.e., c ∈ Γ), which is a
contradiction. So we get c ∈ Γ and then b ≤ I(a, c).

To sum up, we obtain that the residual condition (8) holds.
Moreover, because (T, I) is a residual pair, it follows that

sup{x ∈ [0, 1] | T (a, x) ≤ b}
= sup{x ∈ [0, 1] | x ≤ I(a, b)} = I(a, b).

That is, (10) holds.
Definition 2.4: ([1]) A function I : [0, 1]2 → [0, 1] is said

to be an R-implication if there exists a left-continuous t-norm
T such that (10) holds.

The following lemma is from [31],[33].
Lemma 2.1: If I is an R-implication derived from a left-

continuous t-norm T , then (T, I) is a residual pair, and I
satisfies (P5) together with the following properties:

(P6) a ≤ I(b, c)⇐⇒ b ≤ I(a, c),
(P7) I(a, I(b, c)) = I(b, I(a, c)),
(P8) I(T (a, b), c) = I(a, I(b, c)),
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(P9) I(1, a) = a,
(P10) a ≤ b⇐⇒ I(a, b) = 1,
(P11) I(supx∈X x, a) = infx∈X I(x, a),
(P12) I(a, infx∈X x) = infx∈X I(a, x),
(P13) I is left-continuous w.r.t. the first variable,

in which a, b, c, x ∈ [0, 1] and X ⊂ [0, 1], X ̸= ∅.

III. THE FUNDAMENTAL CHARACTERISTICS OF THE
α-UNIVERSAL MULTIPLE I RESTRICTION METHOD

Definition 3.1: Let Z be any nonempty set and F (Z) the
set of all fuzzy subsets on Z, define partial order relation
≤F on F (Z) (on the basis of pointwise order) as follows
(A,B ∈ F (Z)):

A ≤F B if and only if A(z0) ≤ B(z0) for any z0 ∈ Z.
Lemma 3.1: ([34]) < F (Z),≤F> is a complete lattice.
For the general fuzzy reasoning (3), from the viewpoint of

the α-universal multiple I restriction method, we can obtain
the following basic principle:
α-universal multiple I restriction principle: The conclu-
sion B∗ of general fuzzy reasoning (3) is the largest fuzzy
set satisfying (7) in < F (V ),≤F>.

It is obvious that such α-universal multiple I restriction
principle for general fuzzy reasoning improves the previous
α-multiple I restriction principle w.r.t. (5) in [21].

Definition 3.2: Let Aij , A
∗
j ∈ F (Uj), Bi ∈ F (V ), if B∗

(in < F (V ),≤F>) makes (7) hold for any uj ∈ Uj and
v ∈ V (i = 1, · · · ,m; j = 1, · · · , n), then B∗ is called an
α-universal multiple I restriction solution.

Theorem 3.1: Assume that Aij , A
∗
j ∈ F (Uj), Bi ∈ F (V )

(i = 1, · · · ,m; j = 1, · · · , n), α ∈ (0, 1]. Then there exists a
B∗ ∈ F (V ) as an α-universal multiple I restriction solution
if and only if the following inequality holds for any uj ∈
Uj , v ∈ V (j = 1, · · · , n):

R→1,1 →2 (R→1,2 →2 (· · · (R→1,m →2 (A∗
1(u1)→2

(A∗
2(u2)→2 (· · · (A∗

n(un)→2 0) · · · ) · · · ) < α.
(11)

Proof: (i) Suppose that (11) holds. We take B∗(v) ≡ 0,
so B∗ satisfies (7), and thus B∗ is an α-universal multiple I
restriction solution.

(ii) Suppose that there exists a B∗ ∈ F (V ) which is an
α-universal multiple I restriction solution. Then B∗ satisfies
(7). Since the fuzzy implication →2 satisfies (P2), we have
A∗

n(un)→2 B
∗(v) ≥ A∗

n(un)→2 0, and then

α > R→1,1 →2 (R→1,2 →2 (· · · (R→1,m →2 (A∗
1(u1)→2

(A∗
2(u2)→2 (· · · (A∗

n(un)→2 B
∗(v)) · · · ) · · · )

≥ R→1,1 →2 (R→1,2 →2 (· · · (R→1,m →2 (A∗
1(u1)→2

(A∗
2(u2)→2 (· · · (A∗

n(un)→2 0) · · · ) · · · ),

i.e., (11) holds.
Similar to Theorem 3.1, we can prove Proposition 3.1.
Proposition 3.1: Suppose that D1 is an α-universal mul-

tiple I restriction solution, and that D2 ≤F D1 (in which
D1, D2 ∈< F (V ),≤F>). Then D2 is an α-universal multi-
ple I restriction solution.

Remark 3.1: Assume that (11) holds. For an α-universal
multiple I restriction solution D∗

1 for general fuzzy rea-
soning, every fuzzy set D∗

2 which is less than D∗
1 , will

be an α-universal multiple I restriction solution (by virtue
of Proposition 3.1, where D∗

1 , D
∗
2 ∈< F (V ),≤F>). This

implies that there are many α-universal multiple I restriction
solutions, including D∗

3(v) ≡ 0 (v ∈ V ). The last D∗
3 is a

special solution, for which (7) always holds no matter what
Aij , A

∗
j ∈ F (Uj), Bi ∈ F (V ) are adopted. Therefore, when

the optimal α-universal multiple I restriction solution exists,
it should be the largest one; in other words, it should be the
supremum of all solutions.

Proposition 3.2: Let I be a fuzzy implication satisfying
(P5), and T the function residual to I . If T is associative,
then I satisfies

(P14) I(a, I(b, c)) = I(T (b, a), c) (a, b, c ∈ [0, 1]).
Proof: Let any x ∈ [0, 1]. Since T is associative, then

it follows from residual condition (8) that we can get the
following formulas are equivalent to each other:

x ≤ I(a, I(b, c)), T (a, x) ≤ I(b, c),
T (b, T (a, x)) ≤ c, T (T (b, a), x) ≤ c,
x ≤ I(T (b, a), c).

Thus, because x is arbitrary, we get that I(a, I(b, c)) =
I(T (b, a), c) (a, b, c ∈ [0, 1]), i.e., I satisfies (P14).

For a binary operation T , denote

T (x1, x2, · · · , xn) , T (T (x1, · · · , xn−1), xn)

and
T (xn, xn−1, · · · , x2, x1) , Tn

i=1xi,

where xi ∈ [0, 1], i = 1, · · · , n.
Proposition 3.3: If → is a fuzzy implication satisfying

(P5), and its residual function T is associative, then

x1 → (x2 → (· · · (xn → y) · · · )) = (Tn
i=1xi)→ y (12)

holds for any xi, y ∈ [0, 1] (i = 1, · · · , n; n ≥ 1).
Proof: Based on the conditions that T,→ possess, it

follows from Proposition 3.2 that → satisfies (P14). If n =
1, 2, then it is obvious that the conclusion holds. If n ≥ 3,
then we have
x1 → (x2 → (· · · (xn → y) · · · ))
= x1 → (x2 → (· · · (xn−1 → (xn → y)) · · · ))
= x1 → (x2 → (· · · (T (xn, xn−1)→ y) · · · ))
= x1 → (x2 → (· · · (T (T (xn, xn−1), xn−2)→ y) · · · ))
= x1 → (x2 → (· · · (T (xn, xn−1, xn−2)→ y) · · · ))
= · · · = T (xn, xn−1, · · · , x2, x1)→ y

= (Tn
i=1xi)→ y.

By Proposition 3.3, we can get Theorem 3.2.
Theorem 3.2: If →2 is a fuzzy implication satisfying

(P5), and its residual function T is associative, then (7) and
(11) are equivalent to the following formulas, respectively:

(Tm
i=1R→1,i(u1, · · · , un, v))→2

((Tn
j=1A

∗
j (uj))→2 B

∗(v)) < α,
(13)
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(Tm
i=1R→1,i(u1, · · · , un, v))→2

((Tn
j=1A

∗
j (uj))→2 0) < α,

(14)

IV. OPTIMAL SOLUTION OF THE α-UNIVERSAL
MULTIPLE I RESTRICTION METHOD

Theorem 4.1: If →2 is a fuzzy implication satisfying
(P5), and its residual function T is associative, and (14)
holds, then the supremum of α-universal multiple I restric-
tion solutions can be computed as follows (v ∈ V, i =
1, · · · ,m; j = 1, · · · , n):

B∗(v) = inf
uj∈Uj

{
T (Tn

j=1A
∗
j (uj),

T (Tm
i=1R→1,i(u1, · · · , un, v), α))

}
.

(15)

Proof: Because →2 is a fuzzy implication satisfying
(P5), it follows from Proposition 2.1 that the residual condi-
tion (8) holds for (T,→2).

Let

G1 = {v ∈ V | B∗(v) = 0}, G2 = {v ∈ V | B∗(v) > 0}.

Assume that C ∈ F (V ), and that C(v) = 0 for v ∈ G1,
and that C(v) < B∗(v) for v ∈ G2. We shall verify that
C is an α-universal multiple I restriction solution, that is,
the following inequality holds for any uj ∈ Uj , v ∈ V (j =
1, · · · , n):

(Tm
i=1R→1,i(u1, · · · , un, v))→2

((Tn
j=1A

∗
j (uj))→2 C(v)) < α.

(16)

If v ∈ G1, then it follows from (14) that C(v) = 0 satisfies
(16) for any uj ∈ Uj (j = 1, · · · , n).

If v ∈ G2, then it follows from (15) and C(v) < B∗(v)
that

C(v) < T (Tn
j=1A

∗
j (uj), T (T

m
i=1R→1,i(u1, · · · , un, v), α))

(17)
holds for any uj ∈ Uj (j = 1, · · · , n). Assume on the
contrary that (16) does not hold. Then there exist u◦j ∈ Uj

(j = 1, · · · , n) such that

(Tm
i=1R→1,i(u

◦
1, · · · , u◦n, v))→2

((Tn
j=1A

∗
j (u

◦
j ))→2 C(v)) ≥ α.

Noting that (T,→2) satisfies the residual condition (8), we
get that

T (Tm
i=1R→1,i(u

◦
1, · · · , u◦n, v), α) ≤ (Tn

j=1A
∗
j (u

◦
j ))→2 C(v),

and

T (Tn
j=1A

∗
j (u

◦
j ), T (T

m
i=1R→1,i(u

◦
1, · · · , u◦n, v), α)) ≤ C(v),

which contradicts (17). Together we have that (16) holds for
any uj ∈ Uj , v ∈ V (j = 1, · · · , n). Consequently, C is an
α-universal multiple I restriction solution.

Furthermore, we shall prove that B∗ expressed by (15) is
the supremum of α-universal multiple I restriction solutions.
Assume that D ∈ F (V ) , and that there exists v◦ ∈ V such

that D(v◦) > B∗(v◦). We shall show that D is not an α-
universal multiple I restriction solution. In fact, we get from
(15) that there exist u◦j ∈ Uj (j = 1, · · · , n) such that

D(v◦) > T (Tn
j=1A

∗
j (u

◦
j ), T (T

m
i=1R→1,i(u

◦
1, · · · , u◦n, v◦), α)).

Since (T,→2) satisfies the residual condition (8), it follows
that

T (Tm
i=1R→1,i(u

◦
1, · · · , u◦n, v◦), α)

≤ (Tn
j=1A

∗
j (u

◦
j ))→2 D(v◦),

and thus

α ≤ (Tm
i=1R→1,i(u

◦
1, · · · , u◦n, v◦))→2

((Tn
j=1A

∗
j (u

◦
j ))→2 D(v◦)).

Therefore, D is not an α-universal multiple I restriction
solution.

To sum up, B∗ expressed by (15) is the supremum of
α-universal multiple I restriction solutions.

For an R-implication → derived from left-continuous t-
norm T , then → satisfies (P5), and T is associative (by the
definition of t-norm). Thus it follows from Theorem 4.1 that
we get Corollary 4.1.

Corollary 4.1: If →2 is an R-implication derived from
left-continuous t-norm T , and (14) holds, then the supre-
mum of α-universal multiple I restriction solutions can be
expressed as follows (v ∈ V, i = 1, · · · ,m; j = 1, · · · , n):

B∗(v) = inf
uj∈Uj

{
T (Tn

j=1A
∗
j (uj),

T (Tm
i=1R→1,i(u1, · · · , un, v), α))

}
.

Example 4.1: The following functions are fuzzy impli-
cations satisfying (P5), in which its residual function T is
associative (a, b ∈ [0, 1], and x ′ denotes 1 − x). Here
Iy−0.5, Iep are from [25,35].

IL(a, b) =

{
1, a ≤ b
a ′ + b, a > b

(Łukasiewicz implication),

IG(a, b) =

{
1, a ≤ b
b, a > b

(Gödel implication),

IGo(a, b) =

{
1, a = 0
(b/a) ∧ 1, a ̸= 0

(Goguen implication),

IFD(a, b) =

{
1, a ≤ b
a ′ ∨ b, a > b

(Fodor implication),

IGR(a, b) =

{
1, a ≤ b
0, a > b

(Gaines-Rescher implication),

Iy−0.5(a, b) =

{
1, a ≤ b
1− (

√
1− b−

√
1− a)2, a > b

,

Iep(a, b) =

{
1, a ≤ b
(2b− ab)/(a+ b− ab), a > b

.

Moreover, the functions respectively residual to IL, IG, IGo,
IFD, IGR, Iy−0.5, Iep are as follows.

TL(a, b) =

{
a+ b− 1, a+ b > 1
0, a+ b ≤ 1

,

TG(a, b) = a ∧ b,
TGo(a, b) = a× b,
TFD(a, b) =

{
a ∧ b, a+ b > 1
0, a+ b ≤ 1

,
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TGR(a, b) =

{
a, b > 0
0, b = 0

,

Ty−0.5(a, b) =

{
1− (g(a, b))2, g(a, b) ≤ 1
0, g(a, b) > 1

where

g(a, b) =
√
1− a+

√
1− b,

Tep(a, b) = ab/[2− (a+ b− ab)].
Here Tep is the Einstein product; and Ty−0.5 is the t-norm
of Yager (where ω takes 0.5), which is defined as

Ty−ω(a, b) = 1−min[1, ((1− a)ω + (1− b)ω)1/ω],

in which ω ∈ (0,∞). It is easy to know that TL, TG, TGo,
TFD, Ty−0.5, Tep are left-continuous t-norm, thus IL, IG,
IGo, IFD, Iy−0.5, Iep are R-implications.

Example 4.2: From Theorem 3.1 and Theorem 3.2, we
get that if →2∈ {IL, IG, IGo, IFD, IGR, Iy−0.5, Iep}, then
there exists a B∗ ∈ F (V ) which is an α-universal multiple
I restriction solution if and only if (11) (or (14)) holds.

Proposition 4.1: Suppose that →2∈ {IL, IG, IGo, IFD,
IGR, Iy−0.5, Iep}, and that T is the function residual to →2,
and finally that (14) holds, then the supremum of α-universal
multiple I restriction solutions is as follows, respectively (v ∈
V, i = 1, · · · ,m; j = 1, · · · , n):

(i) If →2 takes IL, then

B∗(v) = inf
uj∈Uj

{(Tn
j=1A

∗
j (uj))+

(Tm
i=1R→1,i(u1, · · · , un, v)) + α− 2}.

(ii) If →2 takes IG, then

B∗(v) = inf
uj∈Uj

{(Tn
j=1A

∗
j (uj))∧

(Tm
i=1R→1,i(u1, · · · , un, v))} ∧ α.

(iii) If →2 takes IGo, then

B∗(v) = inf
uj∈Uj

{(Tn
j=1A

∗
j (uj))×

(Tm
i=1R→1,i(u1, · · · , un, v))× α}.

(iv) If →2 takes IFD, then

B∗(v) = inf
uj∈Uj

{(Tn
j=1A

∗
j (uj))∧

(Tm
i=1R→1,i(u1, · · · , un, v))} ∧ α.

(v) If →2 takes IGR, then

B∗(v) = inf
uj∈Uj

{Tn
j=1A

∗
j (uj)}.

(vi) If →2 takes Iy−0.5, then

B∗(v) = inf
uj∈Uj

{
1−

(√
1− (Tn

j=1A
∗
j (uj))+√

1− (Tm
i=1R→1,i(u1, · · · , un, v)) +

√
1− α

)2}
.

(vii) If →2 takes Iep, then

B∗(v) =

inf
uj∈Uj

{
(Tn

j=1A
∗
j (uj))Ψep

2− (Tn
j=1A

∗
j (uj))−Ψep + (Tn

j=1A
∗
j (uj))Ψep

}

where

Ψep = {α(Tm
i=1R→1,i(u1, · · · , un, v))}

/
{2−

(Tm
i=1R→1,i(u1, · · · , un, v))− α+

α(Tm
i=1R→1,i(u1, · · · , un, v))}.

Proof: If →2∈ {IL, IG, IGo, IFD, IGR, Iy−0.5, Iep},
then it follows from Theorem 4.1 that the supremum of α-
universal multiple I restriction solutions is (v ∈ V ):

B∗(v) = inf
uj∈Uj

{
T (Tn

j=1A
∗
j (uj),

T (Tm
i=1R→1,i(u1, · · · , un, v), α))

}
.

where T is the function residual to →2. Then, we need to
get the specific expression of B∗. We only prove the case of
IL as an example, the remainders can be proved similarly.

Suppose that →2 takes IL. It follows from Example 4.1
that TL is the function residual to IL. By (14), we have that
Tn
j=1A

∗
j (uj) > 0, and

Tm
i=1R→1,i(u1, · · · , un, v) > 1− (Tn

j=1A
∗
j (uj)),

1− (Tm
i=1R→1,i(u1, · · · , un, v)) + 1− (Tn

j=1A
∗
j (uj)) < α

hold for any uj ∈ Uj , v ∈ V (j = 1, · · · , n). We further get

(Tm
i=1R→1,i(u1, · · · , un, v)) + α > 1,

(Tn
j=1A

∗
j (uj)) + (Tm

i=1R→1,i(u1, · · · , un, v)) + α− 1 > 1

hold for any uj ∈ Uj , v ∈ V (j = 1, · · · , n). Thus it follows
from Theorem 4.1 that (v ∈ V )

B∗(v)

= inf
uj∈Uj

T (Tn
j=1A

∗
j (uj), T (T

m
i=1R→1,i(u1, · · · , un, v), α))

= inf
uj∈Uj

T (Tn
j=1A

∗
j (uj), ((T

m
i=1R→1,i(u1, · · · , un, v))+

α− 1))

= inf
uj∈Uj

{(Tn
j=1A

∗
j (uj)) + (Tm

i=1R→1,i(u1, · · · , un, v))+

α− 2}.

Proposition 4.2: If →2∈ {IL, IG, IGo, IFD, IGR, Iy−0.5,
Iep}, and T is the function residual to →2, and (14) holds,
then the condition (which the supremum B∗ of α-universal
multiple I restriction solutions is the maximum) is as follows,
respectively (for any uj ∈ Uj , v ∈ V, i = 1, · · · ,m; j =
1, · · · , n):

(i) Let →2 take IL, then the condition is as follows:

(Tn
j=1A

∗
j (uj)) + (Tm

i=1R→1,i(u1, · · · , un, v)) >
inf

uj∈Uj

{(Tn
j=1A

∗
j (uj)) + (Tm

i=1R→1,i(u1, · · · , un, v))}.

(ii) Let →2 take IG, then the condition is as follows:

(Tn
j=1A

∗
j (uj)) ∧ (Tm

i=1R→1,i(u1, · · · , un, v)) ∧ α >
inf

uj∈Uj

{(Tn
j=1A

∗
j (uj)) ∧ (Tm

i=1R→1,i(u1, · · · , un, v))}.

(iii) Let →2 take IGo, then the condition is as follows:

(Tn
j=1A

∗
j (uj))× (Tm

i=1R→1,i(u1, · · · , un, v)) >
inf

uj∈Uj

{(Tn
j=1A

∗
j (uj))× (Tm

i=1R→1,i(u1, · · · , un, v))}.
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(iv) Let →2 take IFD, then the condition is as follows:

(Tn
j=1A

∗
j (uj)) ∧ (Tm

i=1R→1,i(u1, · · · , un, v)) ∧ α >
inf

uj∈Uj

{(Tn
j=1A

∗
j (uj)) ∧ (Tm

i=1R→1,i(u1, · · · , un, v))}.

(v) Let →2 take IGR, then the condition is as follows:

Tn
j=1A

∗
j (uj) > inf

uj∈Uj

{Tn
j=1A

∗
j (uj)}.

(vi) Let →2 take Iy−0.5, then the condition is as follows:

1−
(√

1− (Tn
j=1A

∗
j (uj))+√

1− (Tm
i=1R→1,i(u1, · · · , un, v)) +

√
1− α

)2
>

inf
uj∈Uj

{
1−

(√
1− (Tn

j=1A
∗
j (uj))+√

1− (Tm
i=1R→1,i(u1, · · · , un, v)) +

√
1− α

)2}
.

(vii) Let →2 take Iep, then the condition is as follows:

(Tn
j=1A

∗
j (uj))Ψep

2− (Tn
j=1A

∗
j (uj))−Ψep + (Tn

j=1A
∗
j (uj))Ψep

>

inf
uj∈Uj

{
(Tn

j=1A
∗
j (uj))Ψep

2− (Tn
j=1A

∗
j (uj))−Ψep + (Tn

j=1A
∗
j (uj))Ψep

}
.

Proof: If the supremum B∗ (of α-universal multiple
I restriction solutions) is an α-universal multiple I restric-
tion solution, then B∗ is the maximum one. Therefore, it
is enough to prove that B∗ is an α-universal multiple I
restriction solution, i.e., B∗ should make (13) hold for any
uj ∈ Uj , v ∈ V (j = 1, · · · , n). We prove the cases of
IL, Iy−0.5 as examples.

(i) Let →2 take IL. From Proposition 4.1, the supremum
of α-universal multiple I restriction solutions is

B∗(v) = inf
uj∈Uj

{(Tn
j=1A

∗
j (uj))+

(Tm
i=1R→1,i(u1, · · · , un, v)) + α− 2}.

By the condition given in (i), we obtain

B∗(v) < α− 2 + (Tn
j=1A

∗
j (uj))+

(Tm
i=1R→1,i(u1, · · · , un, v)).

Note that 0 ≥ α− 2 + (Tm
i=1R→1,i(u1, · · · , un, v)), then

Tn
j=1A

∗
j (uj)

≥ (Tn
j=1A

∗
j (uj)) + α− 2 + (Tm

i=1R→1,i(u1, · · · , un, v))
> B∗(v)

holds. Thus

Tm
i=1R→1,i(u1, · · · , un, v)
≥ α− 1 + (Tm

i=1R→1,i(u1, · · · , un, v))
= 1− (Tn

j=1A
∗
j (uj)) + [α− 2 + (Tn

j=1A
∗
j (uj))+

(Tm
i=1R→1,i(u1, · · · , un, v))]

> 1− (Tn
j=1A

∗
j (uj)) +B∗(v).

To sum up, we get (uj ∈ Uj , v ∈ V, j = 1, · · · , n)

(Tm
i=1R→1,i(u1, · · · , un, v))→2 ((Tn

j=1A
∗
j (uj))→2 B

∗(v))

= (Tm
i=1R→1,i(u1, · · · , un, v))→2 [1− (Tn

j=1A
∗
j (uj))+

B∗(v)]

= 1− (Tm
i=1R→1,i(u1, · · · , un, v)) + 1− (Tn

j=1A
∗
j (uj))+

B∗(v)

< 1− (Tm
i=1R→1,i(u1, · · · , un, v)) + 1− (Tn

j=1A
∗
j (uj))+

[α− 2 + (Tn
j=1A

∗
j (uj)) + (Tm

i=1R→1,i(u1, · · · , un, v))]
= α.

Thus B∗ makes (13) hold for any uj ∈ Uj , v ∈ V (j =
1, · · · , n), and hence it is an α-universal multiple I restriction
solution.

(vi) Let →2 employ Iy−0.5. It follows from Proposition
4.1 that the supremum of α-universal multiple I restriction
solutions is

B∗(v) = inf
uj∈Uj

{
1−

(√
1− (Tn

j=1A
∗
j (uj))+√

1− (Tm
i=1R→1,i(u1, · · · , un, v)) +

√
1− α

)2}
.

It follows from the condition given in (vi) that we have

B∗(v) < 1−
(√

1− (Tn
j=1A

∗
j (uj)) +√

1− (Tm
i=1R→1,i(u1, · · · , un, v)) +

√
1− α

)2
,

which implies√
1−B∗(v) >

√
1− (Tn

j=1A
∗
j (uj)) +

√
1− α +√

1− (Tm
i=1R→1,i(u1, · · · , un, v)).

Then we can respectively obtain Tn
j=1A

∗
j (uj) > B∗(v), and

Tm
i=1R→1,i(u1, · · · , un, v) > 1−

(√
1−B∗(v)−√

1− (Tn
j=1A

∗
j (uj))

)2
,

α > 1−
(√

1−B∗(v)−
√
1− (Tn

j=1A
∗
j (uj))−√

1− (Tm
i=1R→1,i(u1, · · · , un, v))

)2

.

To sum up, we have (uj ∈ Uj , v ∈ V, j = 1, · · · , n)

(Tm
i=1R→1,i(u1, · · · , un, v))→2 ((Tn

j=1A
∗
j (uj))→2 B

∗(v))

= (Tm
i=1R→1,i(u1, · · · , un, v))→2

[
1−

(√
1−B∗(v)−√

1− (Tn
j=1A

∗
j (uj))

)2]
= 1−

(√
1−B∗(v)−

√
1− (Tn

j=1A
∗
j (uj))−

√
1− (Tm

i=1R→1,i(u1, · · · , un, v))

)2

< α.
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Consequently, B∗ lets (13) hold for any uj ∈ Uj , v ∈
V (j = 1, · · · , n), and then it is an α-universal multiple I
restriction solution.

Table 1 shows some results of the α-universal multiple I
restriction method from Proposition 4.1 and Proposition 4.2,
where denote Tm

i=1R→1,i = Tm
i=1R→1,i(u1, · · · , un, v) for

short.
Remark 4.1: It is noted that we can always find better

optimal solution of the α-universal multiple I restriction
method (than the α-multiple I restriction method). For exam-
ple, we take →= IGo in (5) for the α-multiple I restriction
method, then we can choose →2= IGo, →1= IL in (7)
for the α-universal multiple I restriction method. Then by
computing, we can found that, for the same Aij , A

∗
j , Bi, α

(i = 1, · · · ,m; j = 1, · · · , n), the optimal solution of the α-
universal multiple I restriction method (i.e., the supremum of
α-universal multiple I restriction solutions) is larger than the
optimal one from the α-multiple I restriction method (noting
that they are equal only for some extreme cases). From the
viewpoint of the α-universal multiple I restriction principle
(which seeks the largest B∗ satisfying (7)), the α-universal
multiple I restriction method can let the inference closer,
then it is more reasonable than the α-multiple I restriction
method.

Remark 4.2: Aiming at the set of fuzzy implications
{IL, IG, IGo, IFD, IGR, Iy−0.5, Iep}, it follows from the α-
universal multiple I restriction method that there are 7 ∗ 7 =
49 kinds of specific fuzzy reasoning methods for general
fuzzy reasoning, in which 6 ∗ 7 = 42 kinds of actual
specific methods for general fuzzy reasoning exist (noting
that the expressions are the same for the case →2= IG
and →2= IFD, accrording to Table 1). However, from the
α-multiple I restriction method, there are only 7 kinds of
specific methods for general fuzzy reasoning (including 6
kinds of actual specific methods for general fuzzy reasoning),
see Table 2. These further demonstrates that the α-universal
multiple I restriction method is superior to the α-multiple I
restriction method.

As a very hot research field, affective computing (see
[36], [37]) is the research of systems and devices which
are able to recognize, interpret, process, and simulate human
affects, which especially focuses on emotional recognition,
emotional expression as well as emotional interaction. In this
field, the emotional response [36] is a vital research topic for
emotional interaction (for example, one man may be glad
when his good friend is happy).

The emotions of human are uncertain, dynamic and com-
plex, then we can analyze the relationship of main emotions
via fuzzy sets, and obtain related fuzzy rules of normal
emotion responses from the interaction process, and establish
the corresponding rule base. However there exist different
situations in some special cases. For example, when two
people are opposed, the emotion response is not normal (one
may be sad when the other is happy). For such case, we can
carry through the general fuzzy reasoning to get emotion
response with the normal emotion response rule base, which

can be computed by the α-universal multiple I restriction
method. Due to the limit of the length of this paper, we shall
show the details in the further work.

V. CONCLUSIONS

The α-universal multiple I restriction method for general
fuzzy reasoning is put forward. First of all, we provide the
α-universal multiple I restriction principle, which improves
the previous restriction principle, and then prove the existing
condition of α-universal multiple I restriction solutions.
Moreover, we obtain the optimal solution (i.e., the supremum
of solutions) of the α-universal multiple I restriction method
for the fuzzy implications with residual pair, and the R-
implications, and also some specific fuzzy implications. And
then we achieve the condition which the corresponding
supremum is the maximum. Finally, it is verified that the
α-universal multiple I restriction method is superior to the
α-multiple I restriction method.
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TABLE I
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IL
infuj∈Uj{(Tn

j=1A
∗
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i=1R→1,i)+ (Tn
j=1A

∗
j (uj)) + (Tm

i=1R→1,i) >

α− 2} infuj∈Uj{(Tn
j=1A

∗
j (uj)) + (Tm

i=1R→1,i)}

IG
infuj∈Uj{(Tn

j=1A
∗
j (uj)) ∧

(Tm
i=1R→1,i)} ∧ α

((Tn
j=1A

∗
j (uj)) ∧ (Tm

i=1R→1,i)) ∧ α >
infuj∈Uj{(Tn

j=1A
∗
j (uj)) ∧ (Tm

i=1R→1,i)}
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infuj∈Uj{(Tn

j=1A
∗
j (uj))×

(Tm
i=1R→1,i)× α}

(Tn
j=1A

∗
j (uj))× (Tm

i=1R→1,i) >

infuj∈Uj{(Tn
j=1A

∗
j (uj))× (Tm

i=1R→1,i)}
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infuj∈Uj{(Tn

j=1A
∗
j (uj)) ∧

(Tm
i=1R→1,i)} ∧ α

((Tn
j=1A

∗
j (uj)) ∧ (Tm

i=1R→1,i)) ∧ α >
infuj∈Uj{(Tn

j=1A
∗
j (uj)) ∧ (Tm

i=1R→1,i)}
IGR infuj∈Uj{Tn

j=1A
∗
j (uj)} Tn

j=1A
∗
j (uj) > infuj∈Uj{Tn

j=1A
∗
j (uj)}

Iy−0.5

infuj∈Uj

{
1−(√

1− (Tn
j=1A

∗
j (uj)) +√

1− (Tm
i=1R→1,i)+

√
1− α

)2}
1−

(√
1− (Tn

j=1A
∗
j (uj)) +

√
1− (Tm

i=1R→1,i)+

√
1− α

)2
> infuj∈Uj

{
1−

(√
1− (Tn

j=1A
∗
j (uj))+√

1− (Tm
i=1R→1,i) +

√
1− α

)2}
Iep

infuj∈Uj{(Tn
j=1A

∗
j (uj))Ψep

/
[2−

(Tn
j=1A

∗
j (uj))−Ψep+

(Tn
j=1A

∗
j (uj))Ψep]}
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j=1A

∗
j (uj))Ψep
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∗
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∗
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∗
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∗
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