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Abstract— Fuzzy rule interpolation enables fuzzy inference
with sparse rule bases by interpolating inference results,
and may help to reduce system complexity by removing
similar (often redundant) neighbouring rules. In particular,
the recently proposed closed form fuzzy interpolation offers
a unique approach which guarantees convex interpolated
results in a closed form. However, the difficulty in defining
the required precise-valued membership functions still poses
significant restrictions over the applicability of this approach.
Such limitations can be alleviated by employing type-2 fuzzy
sets as their membership functions are themselves fuzzy. This
paper extends the closed form fuzzy rule interpolation using
interval type-2 fuzzy sets. In this way, as illustrated in the
experiments, closed form fuzzy interpolation is able to deal
with uncertainty in data and knowledge with more flexibility.

Keywords - Fuzzy rule interpolation, closed form interpo-
lation, interval type-2 fuzzy sets.

I. INTRODUCTION

The compositional rule of inference [1] offers an effective
mechanism to perform inference based on dense rule bases
(by which an observation is always at least partially covered).
However, for cases where a fuzzy rule base contains ‘gaps’
(i.e., the so-called sparse rule base as termed in [2]), if a
given observation has no overlap with the antecedent values
of any given rule, conventional fuzzy inference methods will
fail. Fortunately, by using fuzzy rule interpolation [3], certain
conclusions may still be obtained. Moreover, with the help
of fuzzy rule interpolation techniques, the complexity of a
rule base can be reduced by omitting those fuzzy rules which
may be approximated from their neighboring ones.

Nevertheless, despite of these advantages, the application
of traditional fuzzy rule interpolation methods may lead
to invalid fuzzy conclusions. Also, the convexity of the
derived fuzzy sets is not guaranteed [4], which is often a
crucial requirement for fuzzy inference in order to attain
better interpretability in the results. In order to overcome
such drawbacks, a number of significant extensions to the
original fuzzy rule interpolation methods have been proposed
in the literature, including [5], [6], [7], [8], [9], [10], [11],
although extensions in other dimensions have also been
proposed, such as [12], [13], [14]. In particular, closed form
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fuzzy interpolation (CFFI) [5] not only guarantees convex
interpolated results, but also does so in a closed form.

The majority of the existing fuzzy interpolation ap-
proaches, including CFFI, are developed based on type-1
fuzzy sets only. Membership functions play an important
role in defining fuzzy sets, and it is sometimes difficult, if
not impossible, to give precise values for such membership
functions. Different types of uncertainty in fuzzy rule-based
systems have been discussed in [15], which include: (1) that
the variables that are used in the antecedents and consequents
of rules may be indiscernible; (2) that the meanings of the
words may be vague because words mean different things to
different people; and (3) that an object can belong to a set
to a given degree, but that degree may itself be uncertain.
Most of such types of uncertainty translate into difficulties
in determining the crisp membership functions of fuzzy sets.

The concept of type-2 fuzzy sets was proposed as an
extension of the concept of type-1 fuzzy sets to address
the above situations. A type-1 fuzzy set has a grade of
membership that is crisp, whereas a type-2 fuzzy set has
grades of membership that are fuzzy. Membership functions
of type-1 fuzzy sets are two-dimensional, whereas member-
ship functions of type-2 fuzzy sets are three-dimensional. It is
the new third-dimension that provides additional degrees of
freedom for handling uncertainty and that is useful under the
circumstances where it is difficult to determine the precise
membership functions [16]. Note that apart from the use of
type-2 fuzzy sets, other extensions have also been developed
to represent various types of uncertainty that are associated
with defining type-1 fuzzy sets, including interval-valued
fuzzy sets [17], R-fuzzy sets [18], and rough-fuzzy sets [19].

Of particular interest herein are the very recent devel-
opments that extend the existing fuzzy rule interpolation
approaches using interval type-2 fuzzy sets [20], [21], [22].
However, common to their type-1 counterparts, all of these
approaches do not perform interpolation in a closed form.
This paper extends the existing CFFI approach with the
use of interval type-2 fuzzy sets, which guarantees valid
interpolated results in a closed form. It also briefly discusses
the important properties of the proposed approach supported
by examples.

The remainder of this paper is structured as follows.
Section II reviews the background, including the existing
closed form fuzzy interpolation for type-1 fuzzy sets, and
type-2 fuzzy sets. Section III presents the proposed extension
based on interval type-2 fuzzy sets. This is followed by an
illustrative example given in Section IV, to show how the pro-
posed approach may help in real-world applications. Section
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V concludes the paper with future research suggested.

II. BACKGROUND

This section firstly summarises CFFI with type-1 fuzzy
sets, starting with an introduction of the underpinning in-
terval rule interpolation. Then, type-2 fuzzy sets, with a
particular focus on interval type-2 fuzzy sets, are reviewed.

A. Closed Form Fuzzy Interpolation

A fuzzy set 𝐴 is said to be convex if and only if 𝜇𝐴(𝑧) ≥
min(𝜇𝐴(𝑥), 𝜇𝐴(𝑦)), ∀(𝑥, 𝑦, 𝑧) ∈ ℜ and 𝑧 ∈ [𝑥, 𝑦]. 𝐴 is
said to be normal if and only if ∃𝑥 ∈ ℜ such that 𝜇𝐴(𝑥) =
1. According to the decomposition principle, a normal and
convex fuzzy set 𝐶 can be represented by a series of 𝛼-cut
intervals, each denoted as 𝐶𝛼, 𝛼 ∈ (0, 1]. The support of a
fuzzy set 𝐴 is denoted by 𝑠𝑢𝑝𝑝(𝐴) = {𝑥∣𝜇𝐴(𝑥) > 0}. The
core of fuzzy set 𝐴 is denoted as 𝑐𝑜𝑟𝑒(𝐴) = {𝑥∣𝜇𝐴(𝑥) = 1}.

Definition 2.1: An interval 𝐶𝑖 is said to be less than
another interval 𝐶𝑗 , denoted as 𝐶𝑖 ≺ 𝐶𝑗 , if inf{𝐶𝑖} <
inf{𝐶𝑗} and sup{𝐶𝑖} < sup{𝐶𝑗}, where inf{𝐴𝑘} and
sup{𝐴𝑘} denote the infimum and the supremum of 𝐴𝑘,
respectively.

Definition 2.2: A normal and convex fuzzy set 𝐶𝑖 is said
to be less than another normal and convex fuzzy set 𝐶𝑗 ,
denoted as 𝐶𝑖 ≺ 𝐶𝑗 , if 𝐶𝑖𝛼 ≺ 𝐶𝑗𝛼, ∀𝛼 ∈ (0, 1].

Definition 2.3: A pair of fuzzy (or closed interval-based)
rules

𝑅𝑖: If 𝑥 is 𝐴𝑖, then 𝑦 is 𝐵𝑖

𝑅𝑗 : If 𝑥 is 𝐴𝑗 , then 𝑦 is 𝐵𝑗
(1)

are said to be neighbouring rules if and only if: i) 𝐴𝑖 ≺ 𝐴𝑗
or 𝐴𝑗 ≺ 𝐴𝑖; and ii) there is no individual rule “If 𝑥 is 𝐴,
then 𝑦 is 𝐵” such that 𝐴𝑖 ≺ 𝐴 ≺ 𝐴𝑗 if 𝐴𝑖 ≺ 𝐴𝑗 , or 𝐴𝑗 ≺
𝐴 ≺ 𝐴𝑖 if 𝐴𝑗 ≺ 𝐴𝑖.
Note that fuzzy rules 𝑅𝑖 and 𝑅𝑗 are jointly numbered as
“Equation 1” for convenient references hereafter.

Definition 2.4: A fuzzy set (or closed interval) 𝐶 is
strictly less than another fuzzy set (or closed inter-
val) 𝐶 ′, denoted as 𝐶 ≺𝑠 𝐶 ′, if and only if 𝑥 <
𝑥′, ∀𝑥 ∈ 𝑠𝑢𝑝𝑝(𝐶) and ∀𝑥′ ∈ 𝑠𝑢𝑝𝑝(𝐶 ′) (or 𝑥 < 𝑥′, ∀𝑥 ∈
𝐶 and ∀𝑥′ ∈ 𝐶 ′, respectively).

Definition 2.5: Given a fuzzy (or closed interval) obser-
vation 𝑥 = 𝐴∗, two neighbouring fuzzy (or closed interval)
rules 𝑅𝑖 and 𝑅𝑗 , as expressed in Equation 1, are said to
strictly flank the given observation vector if 𝐴𝑖 ≺𝑠 𝐴∗ ≺𝑠 𝐴𝑗
or 𝐴𝑗 ≺𝑠 𝐴∗ ≺𝑠 𝐴𝑖.

Definition 2.6: Given a fuzzy (or closed interval) obser-
vation 𝑥 = 𝐴∗, two neighbouring fuzzy (or closed interval)
rules in the form of Equation 1 are said to partially flank the
given observation vector if (𝐴∗

⊀𝑠 𝐴𝑖 and 𝐴𝑗 ⊀𝑠 𝐴∗ when
𝐴𝑖 ≺ 𝐴𝑗) and (𝐴∗

⊀𝑠 𝐴𝑗 and 𝐴𝑖 ⊀𝑠 𝐴∗ when 𝐴𝑗 ≺ 𝐴𝑖).
Obviously, neighbouring rules that strictly flank an obser-

vation 𝑥 = 𝐴∗ also partially flank 𝑥 = 𝐴∗.
Fuzzy sets are an extension of classical crisp sets. If

the membership of all the members of a real-valued fuzzy
set degenerate to 1, the fuzzy set degenerates to a crisp
interval. In order to facilitate the study of closed form

fuzzy interpolation, interval-base rule interpolation (IRI) is
introduced first.

1) Interval Rule Interpolation: The calculation of IRI with
two single antecedent interval-based rules is outlined here,
but the details can be found in [5].

Given an interval observation “𝑥 is 𝐴∗” and two neigh-
bouring interval rules as of Equation 1, the relative placement
factor Λ and the consequence 𝐵∗ are both intervals, which
can be calculated as follows:

Λ = [
min(𝐴∗)−max(𝐴𝑖)

max(𝐴𝑗)−max(𝐴𝑖)
,
max(𝐴∗)−min(𝐴𝑖)

min(𝐴𝑗)−min(𝐴𝑖)
] ∩ [0, 1].

(2)⎧⎨
⎩

min(𝐵∗) =

⎧⎨
⎩
(1−min(Λ))min(𝐵𝑖) + min(Λ)min(𝐵𝑗),

if 𝑚𝑖𝑛(𝐵𝑖) ≤ 𝑚𝑖𝑛(𝐵𝑗)

(1−max(Λ))min(𝐵𝑖) + max(Λ)min(𝐵𝑗),

otherwise

max(𝐵∗) =

⎧⎨
⎩
(1−max(Λ))max(𝐵𝑖) + max(Λ)max(𝐵𝑗),

if 𝑚𝑎𝑥(𝐵𝑖) ≤ 𝑚𝑎𝑥(𝐵𝑗)

(1−min(Λ))max(𝐵𝑖) + min(Λ)max(𝐵𝑗),

otherwise.
(3)

The interpolated consequence 𝐵∗ by IRI satisfies:

𝐵∗ ⊆ [min(𝐵𝑖, 𝐵𝑗),max(𝐵𝑖, 𝐵𝑗)]. (4)

Interpolation with multiple single antecedent interval-
based rules is an extension of the interpolation with two
single antecedent rules as introduced above. Suppose that
there are 𝑛 rules in the rule base with 𝑥 and 𝑦 being the
antecedent and the consequent variable respectively, denoted
by 𝑅𝑖 (If 𝑥 is 𝐴𝑖, then 𝑦 is 𝐵𝑖), 𝑖 ∈ {1, 2, ..., 𝑛}, with
𝐴𝑗 ≺ 𝐴𝑗+1, 1 ≤ 𝑗 ≤ (𝑛 − 1). Let 𝐵∗

𝑗(𝑗+1) be the interpo-
lated result from the neighbouring rules 𝑅𝑗 and 𝑅𝑗+1. The
interpolated result 𝐵∗ by the interval-based rule interpolation
with multiple rules is:

𝐵∗ =

𝑛−1∪
𝑗=1

𝐵∗
𝑗(𝑗+1). (5)

The interpolated result 𝐵∗ in Equation 5 is equivalent to
the interpolated result using the set of rules which contain
only those pairs of neighbouring rules that each partially
flank the given observation. This set is referred to as the
set of rules used for interpolation.

Suppose that rules 𝑅𝑖 (If 𝑥 is 𝐴𝑖, then 𝑦 is 𝐵𝑖), 𝑖 ∈
{1, 2, ..., 𝑛} are the only ones with 𝑥 and 𝑦 being the
antecedent and consequent variables within a given rule
base, where 𝐴𝑗 ≺ 𝐴𝑗+1, 1 ≤ 𝑗 ≤ 𝑛 − 1. Given an
observation 𝐴∗, suppose that the set of rules for interpolation
is 𝕊∗ = {𝑅𝑝, 𝑅𝑝+1, ..., 𝑅𝑞}, 1 ≤ 𝑝 < 𝑞 ≤ 𝑛. All the rules
whose antecedents overlap with 𝐴∗ are contained in this set.
That is, 𝑅𝑘 ∈ 𝕊 if 𝐴𝑘 ∩ 𝐴∗ ∕= ∅. There are only two rules
in this set whose antecedents may not overlap with the given
observation at all, which are 𝑅𝑝 and 𝑅𝑞.

Given an observation and a rule base, suppose that the set
of rules for interpolation with regard to the given observation
is: 𝑅𝑖 (If 𝑥 is 𝐴𝑖, then 𝑦 is 𝐵𝑖), 𝑖 ∈ {𝑝, 𝑝+1, ..., 𝑞}, where 𝑅𝑗

and 𝑅𝑗+1, 𝑝 ≤ 𝑗 ≤ 𝑞−1, are neighbouring rules. Let 𝐵∗
𝑗(𝑗+1)
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be the interpolated result from the neighbouring rules 𝑅𝑗 and
𝑅𝑗+1, then the interpolated result 𝐵∗ by the interval-based
rule interpolation with multiple single-antecedent rules is:

𝐵∗ =

𝑞−1∪
𝑗=𝑝

𝐵∗
𝑗(𝑗+1). (6)

The interpolated result following the interval-based rule
interpolation approach is an interval.

2) Type-1 Fuzzy Rule Interpolation: CFFI can be pre-
formed as an extension of IRI by employing the decomposi-
tion and resolution principles [23]. Let 𝐵∗

𝛼 (𝛼 ∈ (0, 1]) be the
interpolated result using the interval-based rule interpolation
from observation “𝑥 is 𝐴∗

𝛼” and neighbouring rules “If 𝑥 is
𝐴𝑖𝛼, then 𝑦 is 𝐵𝑖𝛼” and “If 𝑥 is 𝐴𝑗𝛼, then 𝑦 is 𝐵𝑗𝛼”. The
interpolated result 𝐵∗ by CFFI with two single-antecedent
rules is equivalent to the composition of the interpolated
results by the interval-based rule interpolation from all 𝛼-
level cut intervals of the corresponding fuzzy sets. That is:

𝐵∗ =
∪

𝛼∈(0,1]

𝛼𝐵∗
𝛼, (7)

This can be further extended for the cases of interpolation
with multiple fuzzy rules. Suppose that there are 𝑛 fuzzy
rules in a given rule base with 𝑥 and 𝑦 being the antecedent
and the consequent variable respectively, which are denoted
as 𝑅𝑖 (If 𝑥 is 𝐴𝑖, then 𝑦 is 𝐵𝑖), 𝑖 ∈ {1, 2, ..., 𝑛}, such that
𝐴𝑗 ≺ 𝐴𝑗+1, 1 ≤ 𝑗 ≤ (𝑛−1). Let 𝐵∗

𝑗(𝑗+1) be the interpolated
result from the neighbouring rules 𝑅𝑗 and 𝑅𝑗+1, 1 ≤ 𝑗 ≤
𝑛−1, then the interpolated result 𝐵∗ by CFFI with multiple
rules is calculated by:

𝐵∗ =

𝑛−1∪
𝑗=1

𝐵∗
𝑗(𝑗+1). (8)

Let (𝐵∗
𝑗(𝑗+1))𝛼

be the interpolated result using the
interval-based rule interpolation from the interval observation
“𝑥 is 𝐴∗

𝛼” and the neighbouring interval rules “If 𝑥 is 𝐴𝑗𝛼,
then 𝑦 is 𝐵𝑗𝛼” and “If 𝑥 is 𝐴(𝑗+1)𝛼, then 𝑦 is 𝐵(𝑗+1)𝛼”. The
interpolated result 𝐵∗ in Equation 8 can then be calculated
as:

𝐵∗ =
∪

𝛼∈(0,1]

𝛼

⎛
⎝𝑛−1∪
𝑗=1

(𝐵∗
𝑗(𝑗+1))𝛼

⎞
⎠ . (9)

The interpolated result 𝐵∗ by CFFI with multiple single-
antecedent rules is convex. The interpolated result 𝐵∗ by
CFFI from a given observation “𝑥 is 𝐴∗” is normal if and
only if there is at least one pair of neighbouring rules 𝑅𝑖

(If 𝑥 is 𝐴𝑖, then 𝑦 is 𝐵𝑖) and 𝑅𝑗 (If 𝑥 is 𝐴𝑗 , then 𝑦 is
𝐵𝑗) which partially flank 𝐴∗ such that ∃𝑥 ∈ 𝑐𝑜𝑟𝑒(𝐴∗),
min(𝑐𝑜𝑟𝑒(𝐴𝑖)) ≤ 𝑥 ≤ max(𝑐𝑜𝑟𝑒(𝐴𝑗)).

B. Type-2 Fuzzy Sets

Type-2 fuzzy sets and systems generalise type-1 fuzzy sets
and systems so that more uncertainty in data and knowledge
representation can be handled. Different from type-1 fuzzy
sets, the membership function of a type-2 fuzzy set is two

dimensional. In other words, the membership grade of each
element of the variable value is a fuzzy number in [0, 1].

Definition 2.7: [24]: A type-2 fuzzy set, denoted 𝐴, is
characterised by a type-2 membership function 𝜇𝐴(𝑥, 𝑢),
where 𝑥 ∈ 𝑋 and 𝑢 ∈ 𝐽𝑥 ⊆ [0, 1], i.e.,

𝐴 = {((𝑥, 𝑢), 𝜇𝐴(𝑥, 𝑢))∣∀𝑥 ∈ 𝑋,∀𝑢 ∈ 𝐽𝑥 ⊆ [0, 1]}, (10)

in which 0 ≤ 𝜇𝐴(𝑥, 𝑢) ≤ 1. 𝐴 can also be expressed as:

𝐴 =

∫
𝑥∈𝑋

∫
𝑢∈𝐽𝑥

𝜇𝐴(𝑥, 𝑢)/(𝑥, 𝑢), 𝐽𝑥 ⊆ [0, 1], (11)

where
∫ ∫

denotes union over all admissible 𝑥 and 𝑢.
Definition 2.8: [25]: When all 𝜇𝐴(𝑥, 𝑢) = 1 then 𝐴 is an

interval type-2 fuzzy set, which is expressed as:

𝐴 =

∫
𝑥∈𝑋

∫
𝑢∈𝐽𝑥

1/(𝑥, 𝑢), 𝐽𝑥 ⊆ [0, 1] (12)

Definition 2.9: [25]: Uncertainty in the primary member-
ships of an interval type-2 fuzzy set, 𝐴, consists of a bounded
region that is called the footprint of uncertainty (FOU). It is
the union of all primary memberships, i.e.,

FOU(𝐴) =
∪
𝑥∈𝑋

𝐽𝑥 (13)

Definition 2.10: [25]: The upper membership function
(UMF), denoted 𝐴, and lower membership function (LMF),
denoted 𝐴, of 𝐴 are two type-1 membership functions that
bound the FOU. The UMF is associated with the upper bound
of FOU(𝐴) and is denoted 𝜇𝐴(𝑥), ∀𝑥 ∈ 𝑋 , and the LMF is
associated with the lower bound of FOU(𝐴) and is denoted
𝜇
𝐴
(𝑥), ∀𝑥 ∈ 𝑋 , i.e.,

𝜇
𝐴
(𝑥) = FOU(𝐴) ∀𝑥 ∈ 𝑋,

𝜇𝐴(𝑥) = FOU(𝐴) ∀𝑥 ∈ 𝑋.
(14)

As indicated above, an interval type-2 fuzzy set 𝐴 can
be represented by the LMF 𝐴 and the UMF 𝐴, i.e., 𝐴 =<

𝐴,𝐴 >. In particular, when triangular membership functions
are used, such an interval type-2 fuzzy set can be illustrated
as shown in Figure 1, where 𝐴 = (�̃�0, �̃�1, �̃�2;𝐻𝐴), 𝐴 =

(�̃�0, �̃�1, �̃�2;𝐻𝐴), with (�̃�0, �̃�1, �̃�2) and (�̃�0, �̃�1, �̃�2) denoting
the three key points of the LMF and those of the UMF,
respectively, and 𝐻𝐴 and 𝐻𝐴 denoting the maximum mem-

bership values of 𝐴 and 𝐴, while �̃�0 ≤ �̃�0, �̃�2 ≤ �̃�2, and
0 < 𝐻𝐴 ≤ 𝐻𝐴 = 1. Clearly, the closer the shapes of 𝐴 and

𝐴 is, the lower the uncertain information contained within
𝐴 is. When 𝐴 coincides with 𝐴, i.e., FOU(𝐴) is empty, the
interval type-2 fuzzy set degenerates to a type-1 fuzzy set.

III. THE EXTENSION

In this section, the extension of the existing CFFI using
interval type-2 fuzzy sets is presented. Note that for simplic-
ity this paper focuses on interpolation with interval type-2
fuzzy sets only, shorten as IT2 fuzzy sets.

A. Interpolation with Two Rules

For completeness, the definition of CFFI with type-1 fuzzy
sets is first summarised as follows:

2186



Fig. 1. Lower membership function 𝐴 and upper membership function 𝐴
of a triangular interval type-2 fuzzy set 𝐴

Theorem 3.1: [5] Given a fuzzy observation “𝑥 is 𝐴∗”
and two neighbouring fuzzy rules, “If 𝑥 is 𝐴𝑖, then 𝑦 is 𝐵𝑖”
and “If 𝑥 is 𝐴𝑗 , then 𝑦 is 𝐵𝑗”, the consequence 𝐵∗ can be
generated by fuzzy rule interpolation such that:

𝜇𝐵∗(𝑦) = sup
𝑦=(1− 𝑥−𝑥𝑖

𝑥𝑗−𝑥𝑖
)⋅𝑦𝑖+ 𝑥−𝑥𝑖

𝑥𝑗−𝑥𝑖
⋅𝑦𝑗 ,

𝑥𝑖<𝑥𝑗 , 𝑥𝑖≤𝑥, 𝑥≤𝑥𝑗 ,
{𝑥,𝑥𝑖,𝑥𝑗}∈𝐷𝑥, {𝑦𝑖,𝑦𝑗}∈𝐷𝑦

min{𝜇𝐴𝑖
(𝑥𝑖),

𝜇𝐴𝑗
(𝑥𝑗), 𝜇𝐵𝑖

(𝑦𝑖), 𝜇𝐵𝑗
(𝑦𝑗), 𝜇𝐴∗(𝑥)}.

(15)

As the type-1 fuzzy sets involved in Equation 15 are
extended to IT2 fuzzy sets, the binary operations 𝑠𝑢𝑝 (used
as s-norm herein) and 𝑚𝑖𝑛 (used as t-norm herein) need
to be accordingly extended in order to handle type-1 fuzzy
sets instead of crisp numbers. In particular, the extension
of s-norm and t-norm operations of type-1 fuzzy sets are
termed as 𝑗𝑜𝑖𝑛 (denoted as ⊔) and 𝑚𝑒𝑒𝑡 (denoted as ⊓),
respectively [26]. Let

∫
𝑥∈𝑋 𝜇𝐴(𝑥)/𝑥 represent a type-1 fuzzy

set 𝐴. The operations of the 𝑗𝑜𝑖𝑛 and 𝑚𝑒𝑒𝑡 to type-1 fuzzy
sets are defined as:

𝐴 ⊔𝐴′ =
∫
𝑥

∫
𝑥′
[𝜇𝐴(𝑥) ∧ 𝜇𝐴(𝑥

′)]/(𝑥 ∨ 𝑥′), (16)

and

𝐴 ⊓𝐴′ =
∫
𝑥

∫
𝑥′
[𝜇𝐴(𝑥) ∧ 𝜇𝐴(𝑥

′)]/(𝑥 ∧ 𝑥′). (17)

In this work, only IT2 fuzzy sets are employed, that is,
the membership of each given primary point is an interval.
Also, only 𝑠𝑢𝑝 and 𝑚𝑖𝑛 are utilised as s-norm an t-norm,
respectively. Therefore, the calculation of 𝑚𝑒𝑒𝑡 and 𝑗𝑜𝑖𝑛
operations can be simplified. The 𝑗𝑜𝑖𝑛 ⊔𝑛𝑛=1𝐴𝑘 of 𝑛 intervals
𝐴1, 𝐴2, ..., 𝐴𝑛 becomes:

⊔𝑛𝑘=1𝐴𝑘 = [min(𝐴1),max(𝐴1)] ⊔ ... ⊔ [min(𝐴𝑛),max(𝐴𝑛)]
= [max(min(𝐴1), ...,min(𝐴𝑛)),max(max(𝐴1), ...,

max(𝐴𝑛))].
(18)

Similarly, the 𝑚𝑒𝑒𝑡 ⊓𝑛𝑛=1𝐴𝑘 of 𝑛 intervals 𝐴1, 𝐴2, ..., 𝐴𝑛
is simplified as:

⊓𝑛𝑘=1𝐴𝑘 = [min(𝐴1),max(𝐴1)] ⊓ ... ⊓ [min(𝐴𝑛),max(𝐴𝑛)]
= [min(min(𝐴1), ...,min(𝐴𝑛)),min(max(𝐴1), ...,

max(𝐴𝑛))].
(19)

Thanks to the closed form representation of CFFI and the
well-developed type-2 arithmetic, CFFI with IT2 fuzzy sets
can then be extended directly from CFFI with type-1 fuzzy
sets.

Theorem 3.2: Given a fuzzy observation “𝑥 is 𝐴∗” and
two neighbouring fuzzy rules, “If 𝑥 is 𝐴𝑖, then 𝑦 is �̃�𝑖”
and “If 𝑥 is 𝐴𝑗 , then 𝑦 is �̃�𝑗”, the consequence �̃�∗ can be
generated by fuzzy rule interpolation as follows:

𝜇�̃�∗(𝑦) = ⊔
𝑦=(1− 𝑥−𝑥𝑖

𝑥𝑗−𝑥𝑖
)⋅𝑦𝑖+ 𝑥−𝑥𝑖

𝑥𝑗−𝑥𝑖
⋅𝑦𝑗 ,

𝑥𝑖<𝑥𝑗 , 𝑥𝑖≤𝑥, 𝑥≤𝑥𝑗 ,
{𝑥,𝑥𝑖,𝑥𝑗}∈𝐷𝑥, {𝑦𝑖,𝑦𝑗}∈𝐷𝑦

⊓ {𝜇𝐴𝑖
(𝑥𝑖),

𝜇𝐴𝑗
(𝑥𝑗), 𝜇�̃�𝑖

(𝑦𝑖), 𝜇�̃�𝑗
(𝑦𝑗), 𝜇𝐴∗(𝑥)}.

(20)

As only IT2 fuzzy sets are considered in this work, the above
equation implies the need for computation of only the upper
and lower membership functions of 𝐴𝑘, i.e. 𝜇𝐴𝑘

and 𝜇
𝐴𝑘

,

respectively. Therefore, �̃� is also an interval type-2 fuzzy
set [27], where the FOU is determined by:

𝜇�̃�(𝑦) = sup
𝑦=(1− 𝑥−𝑥𝑖

𝑥𝑗−𝑥𝑖
)⋅𝑦𝑖+ 𝑥−𝑥𝑖

𝑥𝑗−𝑥𝑖
⋅𝑦𝑗 ,

𝑥𝑖<𝑥𝑗 , 𝑥𝑖≤𝑥, 𝑥≤𝑥𝑗 ,
{𝑥,𝑥𝑖,𝑥𝑗}∈𝐷𝑥, {𝑦𝑖,𝑦𝑗}∈𝐷𝑦

min{𝜇𝐴𝑖
(𝑥𝑖),

𝜇𝐴𝑗
(𝑥𝑗), 𝜇�̃�𝑖

(𝑦𝑖), 𝜇�̃�𝑗
(𝑦𝑗), 𝜇𝐴∗(𝑥)},

(21)

and

𝜇
�̃�
(𝑦) = sup

𝑦=(1− 𝑥−𝑥𝑖
𝑥𝑗−𝑥𝑖

)⋅𝑦𝑖+ 𝑥−𝑥𝑖
𝑥𝑗−𝑥𝑖

⋅𝑦𝑗 ,
𝑥𝑖<𝑥𝑗 , 𝑥𝑖≤𝑥, 𝑥≤𝑥𝑗 ,
{𝑥,𝑥𝑖,𝑥𝑗}∈𝐷𝑥, {𝑦𝑖,𝑦𝑗}∈𝐷𝑦

min{𝜇
𝐴𝑖
(𝑥𝑖),

𝜇
𝐴𝑗

(𝑥𝑗), 𝜇�̃�𝑖
(𝑦𝑖), 𝜇�̃�𝑗

(𝑦𝑗), 𝜇𝐴∗(𝑥)}.
(22)

This means that the CFFI with IT2 fuzzy sets is also able
to be represented in a closed form, which indicates one of
the important features of CFFI compared with other existing
interpolation approaches.

The embedded representation of IT2 fuzzy set has been
widely used in the literature for theoretical derivation [28].
Without losing generality, suppose that the primary variable
x is sampled at 𝑁 values, 𝑥1, 𝑥2, ..., 𝑥𝑁 , and at each of
these values its primary memberships 𝑢𝑖 are sampled at 𝑀𝑖

values, 𝑢𝑖1 , 𝑢𝑖2 , ..., 𝑢𝑖𝑀𝑖
. Let 𝐴𝑗𝑒 denote the 𝑗th embedded

set for IT2 fuzzy set 𝐴, then

𝐴 =

𝑛𝐴∑
𝑗=1

𝐴𝑗𝑒, (23)

where 𝑗 = 1, 2, ..., 𝑛𝐴, and

𝐴𝑗𝑒 =

𝑁∑
𝑖=1

[1/𝑢𝑗𝑖 ]/𝑥𝑖 𝑢𝑗𝑖 ∈ {𝑢𝑖𝑘, 𝑘 = 1, 2, ...,𝑀𝑖}, (24)

and

𝑛𝐴 =

𝑁∑
𝑖=1

𝑀𝑖. (25)

The meaning of embedded representation of IT2 fuzzy
sets as given above is that any IT2 fuzzy set is able to
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be represented as a collection of type-1 fuzzy sets, and
vice verse. To facilitate the description, an embedded type-1
configuration of a pair of neighbouring IT2 fuzzy rules is
a pair of type-1 fuzzy rules where each involved IT2 fuzzy
set is represented by one of its embedded type-1 fuzzy sets,
respectively.

Remark 3.1: Each embedded fuzzy set of the conclusion
using CFFI with IT2 fuzzy sets results from at least one
embedded type-1 fuzzy set of the given observation, based
on at least one type-1 configuration of the given fuzzy
neighbouring rules by the CFFI using type-1 fuzzy sets.
Similarly, given any embedded type-1 fuzzy set of the given
observation and a type-1 configuration of the given fuzzy
neighbouring rules by CFFI using type-1 fuzzy sets, the
interpolated type-1 fuzzy set is an embedded fuzzy set of
the conclusion.

Theorem 3.3: The proposed CFFI with IT2 fuzzy sets
degenerates to CFFI with type-1 fuzzy sets when all the
fuzzy sets in the given observation and the given rule base
degenerate to type-1 fuzzy sets.

This can be readily proven but the proof is omitted due to
lack of space.

Example 3.1: Extend Example 5.1 in [5] using IT2 tri-
angular fuzzy sets to represent uncertain concept. The two
fuzzy rules used for interpolation are “If 𝑥 is 𝐴𝑖, then 𝑦 is
�̃�𝑖” and “If 𝑥 is 𝐴𝑗 , then 𝑦 is �̃�𝑗”, and the given observation
is denoted as 𝐴∗. Suppose that the observation and the fuzzy
sets involved in the two neighbouring rules are given as
follows:

𝐴∗ =< (3.1, 3.4, 3.9; 0.6), (3, 3.5, 4; 1) >;

𝐴𝑖 =< (1.2, 1.6, 1.9; 0.6), (1, 1.5, 2; 1) >;

𝐴𝑗 =< (7.3, 7.9, 8.6; 0.6), (7, 8, 9; 1) >;

�̃�𝑖 =< (1.1, 1.4, 1.8; 0.6), (1, 1.5, 2; 1) >;

�̃�𝑗 =< (6.4, 7.2, 7.9; 0.6), (6, 7, 8; 1) > .

The interpolated result is illustrated in Figure 2.
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Fig. 2. CFFI with IT2 for two rules

B. Interpolation with Multiple Rules

CFFI with multiple rules using IT2 fuzzy sets is an
extension of the CFFI with two rules using IT2 fuzzy sets in

conjunction with CFFI involving multiple single antecedent
rules using type-1 fuzzy sets. Suppose that there are 𝑛
fuzzy rules in a given rule base with 𝑥 and 𝑦 being the
antecedent and consequent variable respectively, which are
denoted as 𝑅𝑖 (If 𝑥 is 𝐴𝑖, then 𝑦 is �̃�𝑖), 𝑖 ∈ {1, 2, ..., 𝑛},
such that 𝐴𝑗 ≺ 𝐴𝑗+1, 1 ≤ 𝑗 ≤ (𝑛 − 1). Let �̃�∗

𝑗(𝑗+1) be the
interpolated result from the neighbouring rules 𝑅𝑗 and 𝑅𝑗+1,
1 ≤ 𝑗 ≤ (𝑛 − 1). The interpolated result �̃�∗ by CFFI with
multiple rules is calculated by:

�̃�∗ =
𝑛−1∪
𝑗=1

�̃�∗
𝑗(𝑗+1). (26)

To implement the above, the union operation of IT2 fuzzy
sets is required. Fortunately, type-2 fuzzy set operations have
been well studied in the literature [25]. In particular, binary
operations on two IT2 fuzzy sets, 𝐴 and 𝐴′, are defined as:

𝐴 ∩𝐴′ = 1/[𝜇
𝐴
(𝑥) ∧ 𝜇

𝐴′(𝑥), 𝜇𝐴(𝑥) ∧ 𝜇𝐴′(𝑥)];

𝐴 ∪𝐴′ = 1/[𝜇
𝐴
(𝑥) ∨ 𝜇

𝐴′(𝑥), 𝜇𝐴(𝑥) ∨ 𝜇𝐴′(𝑥)].
(27)

Example 3.2: Reconsider Example 5.2 in [5] where IT2
fuzzy sets are utilised. The rule base is given as “If 𝑥 is
𝐴𝑖, then 𝑦 is 𝐵𝑖”, where 𝑖 ∈ {1, 2, ..., 7}. Suppose that the
fuzzy sets involved in the given observation and the rules are
defined as follows:

𝐴∗ =< (2.3, 3, 5.1; 0.7), (2.2, 2.6, 5.2; 1) >;

𝐴1 =< (0.5, 0.9, 1.9; 0.7), (0, 1, 2; 1) >;

𝐴2 =< (1.1, 2.1, 3.0; 0.7), (1, 2, 3; 1) >;

𝐴3 =< (2.1, 2.9, 3.8; 0.7), (2, 3, 4; 1) >;

𝐴4 =< (3.2, 4.1, 4.7; 0.7), (3, 4, 5; 1) >;

𝐴5 =< (4.2, 5, 6; 0.7), (4, 5, 6; 1) >;

𝐴6 =< (5, 6.1, 6.8; 0.7), (5, 6, 7; 1) >;

𝐴7 =< (6.1, 7.1, 7.9; 0.7), (6, 7, 8; 1) >;

�̃�1 =< (0.3, 1.3, 2.1; 0.7), (0.2, 1.2, 2.2; 1) >;

�̃�2 =< (0.7, 1.6, 2.3; 0.7), (0.5, 1.5, 2.5; 1) >;

�̃�3 =< (1.1, 2.3, 3; 0.7), (1.1, 2.1, 3.1; 1) >;

�̃�4 =< (2.1, 3, 3.8; 0.7), (2, 3, 4; 1) >;

�̃�5 =< (3.4, 4.2, 5.3; 0.7), (3.3, 4.3, 5.3; 1) >;

�̃�6 =< (5.1, 6.1, 6.9; 0.7), (5, 6, 7; 1) >;

�̃�7 =< (7.4, 8.1, 8.9; 0.7), (7.2, 8.2, 9.2; 1) > .

The interpolation process and the interpolated results are
illustrated in Figure 3. It is clear from this figure that all the
indeterminate (Figures 3(b)-3(f)) and the final interpolated
(Figure 3(h)) are valid IT2 fuzzy sets. Note that the LMFs
of all the fuzzy sets used in each individual example have
a normalised maximum membership. This is deliberately set
up in order to ensure that the LMFs of the consequences
are convex. If each of the IT2 fuzzy sets involved in this
example is degenerated to UMF, this problem becomes the
one given in Example 5.2 [5]. Interestingly, the UMF of the
interpolated result in this example is exactly the same as that
generated in Example 5.2 [5], which forms a special case of
Theorem 3.3.

The strengths of CFFI using IT2 fuzzy sets are mainly
inherited from the original CFFI using type-1 fuzzy sets.
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(b) Interpolated result from 𝑅1 and 𝑅2
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(c) Interpolated result from 𝑅2 and 𝑅3
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(d) Interpolated result from 𝑅3 and 𝑅4
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(e) Interpolated result from 𝑅4 and 𝑅5
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(f) Interpolated result from 𝑅5 and 𝑅6
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(g) Interpolated result from 𝑅6 and 𝑅7
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(h) Interpolated result from all the 7 rules

Fig. 3. CFFI with IT2 fuzzy sets based on multiple rules

Compared to other existing fuzzy interpolation approaches
using IT2 fuzzy sets, the proposed approach not only guar-
antees valid interpolated results, but is represented in a
closed form. Also, in principle, the proposed approach is
not restricted to any particular fuzzy set shapes, although
only triangular fuzzy sets are utilised in this illustration.
Trapezoidal fuzzy sets will be employed to represent the
uncertainty in a real-world application, which is described
in the next section.

IV. EXPERIMENTATION

Research has shown that environmental change influences
disease burden [29]. Great efforts have been made to identify
logical relationships underlying such influences so that the

consequences of a certain environmental change may be pre-
dicted. This is of significant importance in the assessment of
potential impact of such changes upon the environment and
society, before the starting of any large-scale infrastructure
projects.

An investigation has recently been made on measuring
how the construction of a new road or railway in a previously
roadless area may affect the epidemiology of infectious
diseases in northern coastal Ecuador [30]. A simplified
version of this problem has been restudied in [5]. In this
simplified case, the diarrhoeal disease rate of a remote village
is directly affected by two factors. On the one hand, low
social connectedness tends to failure in creating adequate
water and sanitation infrastructure because the residents are
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Variables Fuzzy sets Values

𝑥1 𝐴1 < (0.39, 0.40, 0.42, 0.43; 0.50, 0.50), (0.38, 0.40, 0.42, 0.44; 1.00, 1.00) >

𝑥1 𝐴2 < (0.71, 0.72, 0.74, 0.75; 0.50, 0.50), (0.70, 0.72, 0.74, 0.76; 1.00, 1.00) >

𝑥1 𝐴3 < (0.91, 0.92, 0.94, 0.95; 0.50, 0.50), (0.90, 0.92, 0.94, 0.96; 1.00, 1.00) >

𝑥2 �̃�1 < (0.47, 0.48, 0.50, 0.51; 0.50, 0.50), (0.46, 0.48, 0.50, 0.52; 1.00, 1.00) >

𝑥2 �̃�2 < (0.66, 0.67, 0.69, 0.70; 0.50, 0.50), (0.65, 0.67, 0.69, 0.71; 1.00, 1.00) >

𝑥2 �̃�3 < (0.77, 0.78, 0.80, 0.81; 0.50, 0.50), (0.76, 0.78, 0.80, 0.82; 1.00, 1.00) >

𝑥2 �̃�6 < (0.31, 0.32, 0.34, 0.35; 0.50, 0.50), (0.30, 0.32, 0.34, 0.36; 1.00, 1.00) >

𝑥2 �̃�7 < (0.61, 0.62, 0.64, 0.65; 0.50, 0.50), (0.60, 0.62, 0.64, 0.66; 1.00, 1.00) >

𝑥2 �̃�8 < (0.93, 0.94, 0.96, 0.97; 0.50, 0.50), (0.92, 0.94, 0.96, 0.98; 1.00, 1.00) >

𝑥3 𝐶4 < (0.29, 0.30, 0.32, 0.33; 0.50, 0.50), (0.28, 0.30, 0.32, 0.34; 1.00, 1.00) >

𝑥3 𝐶5 < (0.56, 0.57, 0.59, 0.60; 0.50, 0.50), (0.55, 0.57, 0.59, 0.61; 1.00, 1.00) >

𝑥4 �̃�4 < (0.27, 0.28, 0.30, 0.31; 0.50, 0.50), (0.26, 0.28, 0.30, 0.32; 1.00, 1.00) >

𝑥4 �̃�5 < (0.62, 0.63, 0.65, 0.66; 0.50, 0.50), (0.61, 0.63, 0.65, 0.67; 1.00, 1.00) >

𝑥4 �̃�6 < (0.37, 0.38, 0.40, 0.41; 0.50, 0.50), (0.36, 0.38, 0.40, 0.42; 1.00, 1.00) >

𝑥4 �̃�7 < (0.59, 0.60, 0.62, 0.63; 0.50, 0.50), (0.58, 0.60, 0.62, 0.64; 1.00, 1.00) >

𝑥4 �̃�8 < (0.89, 0.90, 0.92, 0.93; 0.50, 0.50), (0.88, 0.90, 0.92, 0.94; 1.00, 1.00) >

𝑥5 �̃�6 < (0.19, 0.20, 0.22, 0.23; 0.50, 0.50), (0.18, 0.20, 0.22, 0.24; 1.00, 1.00) >

𝑥5 �̃�7 < (0.69, 0.70, 0.72, 0.73; 0.50, 0.50), (0.68, 0.70, 0.72, 0.74; 1.00, 1.00) >

𝑥5 �̃�8 < (0.77, 0.78, 0.80, 0.81; 0.50, 0.50), (0.76, 0.78, 0.80, 0.82; 1.00, 1.00) >

𝑥1 𝐴∗ < (0.70, 0.74, 0.75, 0.76; 0.50, 0.50), (0.69, 0.75, 0.76, 0.77; 1.00, 1.00) >

𝑥3 𝐶∗ < (0.51, 0.51, 0.53, 0.53; 0.50, 0.50), (0.50, 0.51, 0.53, 0.54; 1.00, 1.00) >

TABLE I

THE IT2 FUZZY SETS UTILISED IN THE EXAMPLE

unlikely to know one another well and share social norms,
thereby usually resulting in a high diarrhoeal disease rate. On
the other hand, more frequent contact between the residents
within a village and those outside tends to increasing the
rate of introduction of pathogens, thereby also raising the
diarrhoeal disease rate.

All factors considered in this example are represented
as system variables and each relation between two directly
connected factors is represented as a rule associating the
relevant variables. In summary, there are five variables in
the problem: contact outside of village, reintroduction of
pathogenic strains, social connectedness, hygiene and san-
itation infrastructure, and infections disease rate, denoted as
𝑥1, 𝑥2, ..., 𝑥5, respectively.

In the work of [5], all the object values are represented as
type-1 fuzzy sets, which may provide difficulties in defining
these values as exact membership values are required. To
ease this, IT2 fuzzy sets are utilised herein. Note that dif-
ferent variables are defined on different domains. To simply
knowledge representation, variable domains are mapped onto
the real line and normalised. Their values which are utilised
in the rules and observations are listed in Table I and the
part of the rule base employed is given as follows:
𝑅1: If 𝑥1 is 𝐴1, then 𝑥2 is �̃�1;

𝑅2: If 𝑥1 is 𝐴2, then 𝑥2 is �̃�2;
𝑅3: If 𝑥1 is 𝐴3, then 𝑥2 is �̃�3;
𝑅4: If 𝑥3 is 𝐶4, then 𝑥4 is �̃�4;
𝑅5: If 𝑥3 is 𝐶5, then 𝑥4 is �̃�5;
𝑅6: If 𝑥2 is �̃�6 and 𝑥4 is �̃�6, then 𝑥5 is �̃�6;
𝑅7: If 𝑥2 is �̃�7 and 𝑥4 is �̃�7, then 𝑥5 is �̃�7;
𝑅8: If 𝑥2 is �̃�8 and 𝑥4 is �̃�8, then 𝑥5 is �̃�8.

The interpolated results following the present work are
illustrated in Figure 4. It is clear from this figure that the
interpolated results generated from CFFI with IT2 are all
valid IT2 fuzzy sets without any modification, which forms
one of the main advantages of the present approach.

V. CONCLUSION

This paper reports on the work that extends the existing
CFFI approach through the use of interval type-2 fuzzy sets,
which offers a better way to deal with the uncertainty in fuzzy
rule interpolation. Thanks to the closed form representation
of the approach, the extension is relatively straightforward
compared to the existing type-2 extensions for other fuzzy
rule interpolation methods, given that type-2 fuzzy arith-
metics and operations have been well studied in the literature.
It is this simplicity which presents the primary advantage
of the current research. This ensures that the approach may
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Fig. 4. Rule base, observations and interpolated results

be readily evolved along with the development of fuzzy set
theory and fuzzy logic. Illustrative examples have been pro-
vided to demonstrate the approach, with a realistic real-world
application also presented. The investigation indicates that
the proposed approach is of natural appeal for interpolation
while dealing with the uncertainty that the conventional CFFI
may otherwise be difficult to handle.

Although the work is promising, much can be improved.
In particular, only interval type-2 fuzzy sets are considered
for interpolation in this work. It is beneficial to investigate
how the approach may be further generalised to general
type-2 fuzzy sets, although the application of such fuzzy
sets are still at their early stage in general. It would also
be interesting to compare the interpolated results of the
proposed approach with those generated by existing interval
type-2 fuzzy rule interpolation methods. In addition, scaled-
up real-world applications are required to further evaluate the
potential of this work.
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[3] L. Kóczy and K. Hirota, “Approximate reasoning by linear rule
interpolation and general approximation,” Int. J. Approx. Reason.,
vol. 9, no. 3, pp. 197–225, 1993.

[4] S. Yan, M. Mizumoto, and W. Qiao, “Reasoning conditions on Kóczy’s
interpolative reasoning method in sparse fuzzy rule bases,” Fuzzy Sets
Syst., vol. 75, no. 1, pp. 63–71, 1995.

[5] L. Yang and Q. Shen, “Closed form fuzzy interpolation,” Fuzzy Sets
Syst., vol. 225, no. 0, pp. 1 – 22, 2013.

[6] Q. Shen and L. Yang, “Generalisation of scale and move
transformation-based fuzzy interpolation,” J. Adv. Comput. Intell.
Intell. Inf., vol. 15, no. 3, pp. 288–298, 2011.

[7] D. Tikk and P. Baranyi, “Comprehensive analysis of a new fuzzy rule
interpolation method,” IEEE Trans. Fuzzy Syst., vol. 8, no. 3, pp. 281–
296, 2000.

[8] Y. Chang, S. Chen, and C. Liau, “Fuzzy interpolative reasoning for
sparse fuzzy-rule-based systems based on the areas of fuzzy sets,”
IEEE Trans. Fuzzy Syst., vol. 16, no. 5, pp. 1285–1301, 2008.

[9] S. Chen and Y. Ko, “Fuzzy interpolative reasoning for sparse fuzzy
rule-based systems based on 𝛼-cuts and transformations techniques,”
IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1626–1648, 2008.

[10] Z. Huang and Q. Shen, “Fuzzy interpolative reasoning via scale and
move transformations,” IEEE Trans. Fuzzy Syst., vol. 14, no. 2, pp.
340–359, 2006.
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