
 
 

 

 

Abstract—This paper is concerned with an improvement on 
fuzzy-model-based stability criteria of nonlinear networked 
control systems (NCSs) with time-varying transmission delays 
and transmission intervals. The real-time distribution of input 
delays is taken into account and modeled as a dependent and 
nonidentically distributed process, which leads to a randomly 
switched Takagi-Sugeno (T-S) fuzzy model with multiple input- 
delay subsystems for the nonlinear NCSs. Based on an improve- 
ed Lyapunov-Krasovskii method, which appropriately exploits 
the real-time distribution of input delays in estimating cross- 
product integral terms and the characteristics of T-S fuzzy mo- 
del, new sufficient conditions are derived for the deterministic 
asymptotical stability of the overall systems. Numerical exam- 
ples are presented to substantiate the effectiveness and advan- 
tage of our results. 

I. INTRODUCTION 

ETWORKED control systems (NCSs) are systems in whi- 
ch control loops are closed over a communication net- 

work which may be share with other applications. NCSs have 
many advantages over point-to-point wired conventional 
control systems, including lower cost, simpler installation and 
maintenance, and better system flexibility. However, data ex- 
change via network inevitably results in transmission delays, 
transmission intervals, packet losses, variable sampling and 
so on, which will degrade system performance and even lead 
to closed-loop instability [1], [2] 

Recently, fuzzy-model-based stabilization of nonlinear 
NCSs with time-varying transmission delays and intervals 
has attracted much attention [3]-[15], where a nonlinear NCS 
is represented as a Takagi-Sugeno (T-S) fuzzy model which 
is a weighted sum of some simple linear subsystems, and then 
parallel distribution compensation scheme can be applied to 
design controller with this model. Input-delay approach was 
found to be widely adopted in existing results [3]-[15].To the 
best of our knowledge, it is still a real challenge to obtain 
effective and less conservative performance conditions based 
on T-S fuzzy model for a nonlinear NCS with time-varying 
transmission delays and intervals. 

This paper is to give an improvement on fuzzy-model-bas- 
ed stabilization of a nonlinear NCS with time-varying trans- 
mission delays and intervals, and the resulting controller de- 
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sign method is formulated as a nonlinear convex optimiza- 
tion problem with LMI constraints. Our improvement comes 
from three aspects. Firstly, the real-time distribution of input 
delays is taken into account. It is worth noting that distribu- 
tion of input delays can be exploited to reduce conservatism 
in the derived results [14], [16-[19]. Here, the real-time dis- 
tribution of input delays is modeled as a dependent and non- 
identically distributed (d.n.d.) process rather than i.i.d. proc- 
esses in each transmission interval, which results in a ran- 
domly switched T-S fuzzy model of the nonlinear NCS. Se- 
condly, the characteristics of T-S fuzzy model are more fully 
considered. We disclose an important characteristic through a 
new form of T-S fuzzy model, which is helpful to obtain a 
tighter estimation in Lyapunov-Krasovskii method. Thirdly, 
an improved Lyapunov-Krasovskii method is proposed to 
take advantage of the real-time distribution of input delays 
and the characteristics of T-S fuzzy model. Compared with 
the mean- square stability and performance conditions ob- 
tained by the existing average-dwell-time approaches [16] 
and direct Lyapunov-Krasovskii methods [14], [17]-[19], our 
derived conditions are of a deterministic sense, independent 
of average dwell time of the switched subsystems, and less 
conservative. 

This paper is organized as follows. The problem formula- 
tion is presented in Section II. The main results are given in 
Section III, which include a random-delay T-S fuzzy model 
of the nonlinear NCS, stability analysis. Numerical examples 
are presented in Section IV to substantiate the effectiveness 
and advantage of our proposed method, and Section V con- 
cludes this paper. 

Notations: Denote ( ) ( )tx x t    where [ ,0]   . 

The infinitesimal operator is denoted as  

0

1
( , , ) lim { ( , , ) ( , , ) }t t t t t t tV t x x V t x x V t x x 




  


     L E
 

where { }t tX x .   ( T ) is an operator located at the left 

(right) side of a matrix for deleting the zero rows (columns) of 
the matrix. 

II. PROBLEM FORMULATION 

Assume in the nonlinear NCS that: a) The sensor is clock- 
or event-driven while the fuzzy controller and the zero-order 
holder (ZOH) are only event-driven, and all of them are con- 
nected through communication network; b) Feedback and 
control signals are transmitted in single packet, respectively, 
and time-varying transmission delays and intervals exist in 
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the closed loop; c) Only new packets are accepted by the con- 
troller and the ZOH, and ( ) 0u t   before the first updating 

instant or when input missing occurs. 
Consider a continuous-time nonlinear system which can be 

described as a T-S fuzzy model. The thi  rule of the model is 
expressed in the following IF-THEN form: 

 iR : IF 1( )t  is 1
iW  and,  , and ( )g t  is i

gW , THEN 

 ( ) ( ) ( )i ix t A x t B u t   (1) 

where 1,2, ,i r   and r  is the number of IF-THEN rules; 

1 2( ) [ ( ), ( ), , ( )]gt t t t      is premise variable vector and 

i
jW  ( 1,2, ,i r  , 1, 2, ,j g  ) are fuzzy sets; ( ) xnx t   

and ( ) unu t   are state and input vectors, respectively; iA  

and iB  are system and input matrices, respectively. Then the 

global dynamics of T-S fuzzy model is given as 

 
1

( ) ( ( ))[ ( ) ( )]
r

i i i
i

x t t A x t B u t 


   (2) 

where ( ( ))i t   denotes the normalized membership funct- 

ion satisfying 

 
1

( ( )) ( ( )) ( ( ))
r

i i j
j

t t t     


  , 
1

( ( )) ( ( ))
g

i ij j
j

t t   


  

with ( ( ))ij j t   being the grade of membership of ( )j t  in 

i
jW . It is seen that ( ( )) 0i t    ( 1, ,i r  ),

1

( ( )) 1
r

i
i

t 


 . 

With the state feedback ( )kx s , where k   denotes the 

number of new data packets received by the ZOH and ks  the 

associated sampling instant, the thj  rule for the fuzzy con- 

troller is given as follows: 
 jR : IF 1( )t  is 1

jW  and,  , and ( )g t  is j
gW , THEN 

 ( ) ( )j ku t K x s , 1[ , )k kt t t   (3) 

where 1,2, ,j r  , and kt  is the thk  updating instant of the 

ZOH. Thus the defuzzified output of the fuzzy controller at 
the ZOH is given by 

 
1

( ) ( ( )) ( )
r

j j k
j

u t t K x s 


  , 1[ , )k kt t t  . (4) 

It follows from the T-S fuzzy model (2) and the fuzzy con- 
troller (4) that: 

 
1 1

( ) ( ( )) ( ( ))[ ( ) ( )]
r r

i j i i j k
i j

x t t t A x t B K x s   
 

   (5) 

where 1[ , )k kt t t  . 

For 1[ , )k kt t t  , let k k kt s    denote the associated 

time-varying transmission delays, ( )k kt t s    the input de- 

lays induced by time-varying transmission delays and inter- 
vals, and 1k k kt s    the maximum input delays. It is a 

standing assumption that there exist scalars 0  , 0   

and 0   such that 

 k    , ( )k k kt        . (6) 

Then the T-S fuzzy model (5) is rewritten as follows 

 
1 1

( ) ( ( )) ( ( ))[ ( ) ( ( ))]
r r

i j i i j k
i j

x t t t A x t B K x t t    
 

    (7) 

where 1[ , )k kt t t  . 

Before developing main results, we introduce the follow- 
ing lemmas. 

Lemma 1 [20]: For any constant matrix 0M  , scalars 

2 1 0   , and vector function 2 1: [ , ] xnt t R      su- 

ch that the following integral is well defined, then 

 

1

2
2 1

1 1

2 2

( ) ( ) ( )

( ) ( )
.

( ) ( )*

t T

t

T

s M s ds

t tM M

t tM




   

   
   




 

     
          

  

 

Lemma 2 [20]: For any constant matrix 0M  , scalars 

2 1( ) 0t     , and vector function 2 1: [ , ]t t      

xnR  such that the following integral is well defined, then 

 

1

2
2 1

1 11 12 1

2 2

( ( ) ( )

( ) 0 ( )

( ( )) * 3 (1 ) ( ( ))

( ) * * (1 ) ( )

t T

t

T

s M s ds

t t

t t M M t t

t M t




   

   
    
    




 

        
              
             

  ）

 

where 1 2 1( ( ) ) ( ) [0,1]t        . 11 (2 )M    , 

12 (2 )M   . 

III. MAIN RESULTS 

A. A Random-Delay T-S Fuzzy Model of the Nonlinear 
NCS 

For 1[ , )k kt t t  , note that the time series { ( ), [ , ]}k ks s t t   

can be deemed as the realization of a random variable ( )h t  

with a uniform probability density function (PDF) ( ) ( )h tf   on 

[ , ( )]k k t   given as 

 ( ) ( ) 1 ( )h t kf d t t  , [ , ( )]k kd t   . 

Then a d.n.d. stochastic process 1{ ( ), [ , )}k kh t t t t   is obtain- 

ed for every transmission interval 1[ , )k kt t  . It is noted that the 

associated uniform PDFs ( )h tf  are satisfied in real time with 

the evolution of ( )k t  along 1[ , )k kt t t  . With the stochastic 

process 1{ ( ), [ , )}k kh t t t t  , the T-S fuzzy model (7) can be 

rewritten into a more general case as 

 
1 1

( ) ( ( )) ( ( ))[ ( ) ( ( ))]
r r

i j i i j
i j

x t t t A x t B K x t h t   
 

    (8) 

where 1[ , )k kt t t  . 

Remark 1: For the i.i.d. models of input delays in [14], 
[16]-[19], it is obvious that the identical-distribution assum- 
ption can not be met in real time with the evolution of ( )k t  

along 1[ , )t t  , and the independence assumption is also 

inappropriate with respect to the time series { ( ), [ ,k ks s t   
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]}t  where 1[ , )k kt t t  . 

Suppose that: 

 1

11
[ , ) [ , )

m

i ii
   

 , 2

1 111
[ , ) [ , )

m

m i m ii
     

 . (9) 

To exploit the real-time distribution of input delays in theo- 
retical development, we introduce 1 2m m m   indicator 

functions ( ) {1,0}i t  , 1, 2, ,i m  , of the form 

 1

1

1, ( ) [ , )
( )

0, ( ) [ , )
i i

i
i i

h t
t

h t

 


 





  

, 1[ , )k kt t t   (10a) 

to denote the occurrences of 1( ) [ , )i ih t   . For t 1[ , )k kt t  , 

the probability mass functions (PMFs) of ( ) 1i t  , 1, ,i    

m , are given as 

 
1

( ) ( ) .
k

t

i it
k

t s ds
t t

 
  (10b) 

It is seen that ( )i t  are time-varying functions and satisfy 

1
( ) 1

m

ii
t


 . 

Then based on (10), the model (8) is generalized into a ran- 
domly switched T-S fuzzy model of the following form for 

1[ , )k kt t t  : 

 

1 1

1

(| |)

1 1

1

( ) ( ( )) ( ( ))

( )[ ( ) ( ( ))]

( ( )) ( ( ))2

( )[ ( ) ( ( ))]

r r

i j
i j

m

l i i j l
l

r r
sign j i

i j
i j

m

l ij ij l
l

x t t t

t A x t B K x t h t

t t

t A x t B x t h t

   



   



 



 

 





  



  











 (11) 

where ( )ij i jA A sign j i A   , ( )ij i j j iB B K sign j i B K   , 

and 1( ) [ , )l l lh t   , 1, 2, ,l m  , are uncertain bounded 

time-varying variables without distribution information. So 

1( ) [ , )l l lh t    is a more general variable than 1( ) [ ,lh t    

)l . 

Remark 2: The randomly switched T-S fuzzy model in (11) 
integrates the real-time distribution of input delays, and is 
ready to be analyzed by an appropriate Lyapunov-Krasovskii 
method. With the integration of the real-time distribution of 
input delays, the model (11) is more special than the ones in 
(7) and [3]-[7], which helps to reduce the conservatism in the 
derived results. Moreover, the T-S fuzzy model is rewritten in 
a new form in the second equality of (11), which is useful to 
obtain a tighter estimation in Lyapunov-Krasovskii method. 

B. Stability Analysis 

Suppose that [0, )  is divided as follows: 

 0

11
[0, ) [ , )

m

i ii
  

 . (12) 

Based on (9) and (12), a Lyapunov-Krasovskii functional is 
constructed using delay decomposition approach for [ ,kt t  

1)kt   as follows: 

 

0
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0
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t t t t t

T
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t T

t it
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m t T
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m
t T

t i t
i

T
i it
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V t x x t Px t

V t x x s Q x s ds
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V t x x s R x s dsd

x s R x s dsd
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 (13) 

where 0P  , 0 0iQ  , 01, 2, ,i m  , 0iQ  , 1, ,i m  , 

and 0iR  , 0,1,i   2, , m , are of appropriate dimensions, 

and 0 1i i i     , 1i i i     . Based on (13), we have the 

following stability conditions: 
Theorem 1: Given (6), (9), (10), (12) and controller gain 

matrices jK , 1, 2, ,j r  , the T-S fuzzy model (7) is asym- 

ptotically stable, if there exist matrices 0P  , 0 0iQ  , i    

01, 2, , m , 0iQ  , 1,2, ,i m  , 0iR  , i  0,1, ,m  , of 

appropriate dimensions and a scalar 0   such that: 

  2 2 11 2
( ) 1, ( ) 0, 1,2, , , 0

l l

T
t m l

ij
t l l        , 

 11 1, 2, ,l m  , , 1, 2, ,i j r  , i j  (14a) 

 
1 11

1 2 12 2 2 1

( ) 0, 1,2, , ,
( ) ( ) ( ), 1, ,

0
l

l l l m m

i T
t l

m

j
m

t l m

    

 
    

 
   
 
 
 


, 

 , 1, 2, ,i j r  , i j . (14b) 

for all 0,1l  , 1, 2, ,l m  , where 

0

0 0

0 0

0

1 2

1

1

3 4 5 6

11 12

( 2 ) ( 2 )

11

( )
01 01 02 0, 1 0

0 1 1

2 1 2

2

2

0

*
0

*

, [ ,0,

2 , ,

{ ,0, , ,0}]

{ , ,

,0,

x x

x x

ij ij

ij ij
n m n

m m n m m n

ij T
ij ij

sign j i
m m

m

ij ij
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ij T
ij mPPA A P I

Q Q Q Q Q

Q Q

B col I I

Q
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Q
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0 0

0 0

1

( )
3 31 32 32 33 33

( 2 ) 32 ( 2 1) 2 33

32 33
( 2 1) 2 ( 2 1)

31 0 0 0 0 0 0 1 1 1 1 1

, ,0, ,0, }

ˆ ˆ ˆ ˆ2 [ ]

0 0ˆ ˆ,
0 0
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1
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x x x x

m m m

sign j i T T
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Q Q Q

diag R R R R R R     





    

     

  

      

    
      

      
         







1 1 1 1 1 1 1 1 2 2 2 2 2

2 2 2 2 1 1 1 1

32 0 0 1 1 1 1 1 1 1 1

) , 3 , ( 1) (

1) , 3 , , ( 1) (
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Proof: Along the trajectories of the model (11), it follows 
that for 1[ , )k kt t t   

1 2 3( , , ) ( , ) ( , ) ( , )t t t t tV t x x V t x V t x V t x   L L L L  (15a) 

1
1

1

( , ) 2 ( ) ( ( )) ( ( ))
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t i j
i j i

m

l ij ij l
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t A x t B x t h t

   



 





  





L

 (15b) 

0
0

2
1 0

1

0
( , ) ( ) ( )

*

0
( ) ( )

*

i i

i i

m
iT

t
i i

m
iT

i i

Q
V t x t t

Q

Q
t t

Q

 

 

 

 





 
   

 
   





L

 (15c) 
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L E

-
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 (15d) 

where 1( ) { ( ), ( )}
i i it col x t x t     , ( ) { (

i
t col x t    

1), ( )}i ix t   . 

With the model (11), it follows that for 1[ , )k kt t t   
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 (16) 

where ( ) { ( ), ( ( ))}
l

ij
h t col x t x t h t   , ij ijA B     ,  

(| |)2 sign j i  , (| |)2 sign j i     . 
For [ ,kt t 1)kt  , it follows by Lemmas 1 and 2 that for 

01, 2, ,i m   

1 0 0
0 0

0

{ ( ) ( ) } ( ) ( )
*

i

i i
i

t T T
i tt
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x s R x s ds t t
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  (17) 
and for 1,2, ,i m   
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where 1( ) { ( ), ( ( )), ( )}i i i it col x t x t h t x t      , i   

1[( ( ) ) ] [0,1]i i ih t     . 
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Combining (15)-(18) yields that for 1[ , )k kt t t   

 
1

( , , ) ( ( )) ( ( )) ( ) ( )
r r

T ij
t t i j ij ij

i j i

V t x x t t t t     
 

 L  (19) 

where
01 1( ) { ( ), ( ), , ( ), ( ( )),ij mt col x t x t x t x t h t      (x t  

1), , ( ( )), ( )}m mx t h t x t    . For all possible pairs of ks  

and k  under (6): LMIs (14a) guarantee by linear combina- 

tion that 0ij   for [ , ( ) )k k kt t s     , and LMI (15b) 

guarantees that 0ij   for 1[ , )k kt s t    with ( ) 0i t  , 

1, 2,3, ,i   1m , and 
1 1

( ) 1
m

ii m
t

 
 . So LMIs (17) under 

(8) are sufficient to guarantee that 0ij   for 1[ , )k kt t t  . 

Then we obtain from (19) and the real-time PMFs ( )i t , 

1, 2, ,i m  , of input delays that 

 ( , , ) ( , , ) 0t t t tV t x x V t x x   L  

for every 1[ , )k kt t t   along the trajectories of (11), which 

means that 2( , , ) ( , , ) || ( ) ||t t t tV t x x V t x x x t   L  with    

min{ ( ); , 1, 2, , ; } 0ij i j r i j      and guarantees that 

the T-S fuzzy model (7) is asymptotically stable in a deter- 
ministic sense. The proof of Theorem 1 is completed. 
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Remark 3: Compared with the model (7) and the ones in 
[3]-[7] which ignore the real-time distribution of input delays, 

applying the model (11) in ( , , )t tV t  L  helps to reduce the 

conservatism of the derived results for the concerned NCS for 
the presence of the resulting PMFs ( )i t , 1, 2, ,i m   in 

(15b) and (16). 
Remark 4: In (16), the new form of the T-S fuzzy model in 

the second equality of (11) is exploited to obtain a tighter 
bound in estimating { ( ) ( ) }T

tx t x t  E , which is less conser- 

vative than the existing techniques applied in [3]-[15]. 
Remark 5: In (18), a new bounding technique is proposed 

to exploit the real-time distribution of input delays in estima- 

ting cross-product integral terms 
1

{ ( ) ( )
i

i

t T
i it

x v R x v







   E  

}tdv   for 1,2, ,i m  , which is important to ensure the 

effectiveness of the derived results under the model (11). In 
the first equality of (18), ( )ih t  for 1,2, ,i m   are similar- 

ly treated as multiple delays by proportionally dividing the 

integral terms 
1 2 ( ){ ( ) ( ) }

i

i

t v t T
i i tt

e x v R x v dv
 



 


   E  accor- 

ding to i . That is, the first integral term { ( ( ) 1i i t   E  
1 2 ( )( )) ( ) ( ) }

i

i

t v t T
i i i tt

t e x v R x v dv
 


  


     at the right side of the 

equality is related to ( )ih t  while the second one (1 )i   
1 2 ( ){ ( ) ( ) }

i

i

t v t T
i i tt

e x v R x v dv
 



 


   E  is related to ( )jh t  for 

1, ,j i m   . To appropriately bound the first integral term, 

Lemmas 2 and 1 are applied with respect to ( ) 1i t   ( ( )h t   

1[ , )i i  ) and ( ) 0i t   ( 1( ) [ , )i ih t   ), respectively. For 

more about the two bounding techniques, please refer to [20]. 
Here the essential difference of the bounding technique in (18) 
from those in [17]-[20] is that the probabilities of 1( ) [ ,ih t    

)i  and 1( ) [ , )i ih t    are further considered in estimating 

cross-product integral terms. 

IV. NUMERICAL EXAMPLE 

Consider the balancing and swing-up problem of an invert- 
ed pendulum on a cart [11]. The dynamics of the pendulum 
motion are given as 

1 2

2
1 2 1

2 2

( ) ( )

sin( ( )) ( )sin(2 ( )) 2 ( ) ( )
( )

4 3 ( )

x t x t

g x t amlx t x t a t u t
x t

l aml t







   




 

where 1( )x t  denotes the angle (in radians) of pendulum from 

the vertical, and 2 ( )x t  is the angular velocity. 29.8m sg    

is the gravity constant, 1( ) cos( ( ))t x t  , m  is the mass of 

the pendulum, M  is the mass of the cart, 2l  is the length of 
the pendulum, and ( )u t  is the force applied to the cart (in 

Newtons). 1 ( )a m M  . Choose 2.0kgm  , 8kgM  , 

2 1ml  . 

The control objective here is to balance the inverted pendu- 
lum for the appropriate range 1( ) ( 2, 2)x t     in an NCS 

with time-varying transmission delays and intervals. The no- 
nlinear system is represented by a two-rule T-S fuzzy model: 

 1R : IF 1( )x t  is about 0, THEN 1 1( ) ( ) ( )x t A x t B u t   

 2R : IF 1( )x t  is about 1(| ( ) | )
2 2

x t
 

  , THEN 

 2 2( ) ( ) ( )x t A x t B u t   

where  

 1

0 1

0
4 3

A g

l aml

 
   

  

, 2
2

0 1

2
0

(4 3 )

A g

l aml 

 
   
  

 

 1

0

4 3

B a

l aml

 
   

  

, 2
2

0

4 3

B a

l aml




 
   
  

 

and cos(88 )o  . Membership functions for Rules 1 and 2 

are 1 1 1

1
( ( )) 1 ( )

0.5
x t x t


  , and 2 1 1 1( ( )) 1 ( ( ))x t x t   , 

respectively. 
Given that 0  , 0  , 0 0m  , 0  , 1 0m   1K   

 235.3335 66.0171  and  2 1839.9 599.3K  . Assume 

that the interval [ , )   is uniformly decomposed into 2m  

subintervals. It is obtained by Theorem 1 that the maximal va- 
lues of   are 0.0185, 0.0219 , and 0.0223  for 2m  being 1, 2, 

and 4, respectively. Based on Theorem 2 in [11], the maxi- 
mum allowable transmission interval is 0.019  and the asso- 
ciated controller gains 

1 [790.7897 249.0322]K  , 2 [1812.1815 585.0441]K  . 

Then it is seen that our numerical results with 2 2m   are be- 

tter than those of [11]. So our proposed approach is advanta- 
geous. 

Fig. 1 plots the membership functions, and Fig. 2 plots the 
state responses of the closed-loop NCS under the three cases 

with 2 1, 2,4m  , and the initial state 0( ) [ 3,0]Tx t  . It is 

seen that all trajectories are convergent. So it is concluded 
that our derived results are effective. 
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Fig. 1.  Membership functions. 
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Fig. 2.  State responses of the closed-loop system. 

V. CONCLUSIONS 

This paper develops an improvement on fuzzy-model-bas- 
ed stability criteria of nonlinear NCSs with time-varying tra- 
nsmission delays and intervals based on a random delay app- 
roach. The real-time distribution of input delays is taken into 
account and modeled as a d.n.d. process. A randomly switch- 
ed T-S fuzzy system with multiple input-delay systems is pro- 
posed as the closed-loop model of the nonlinear NCSs. An 
improved Lyapunov-Krasovskii method is proposed to appr- 
opriately exploit the real-time distribution of input delays in 
estimating cross-product integral terms and the characteris- 
tics of T-S fuzzy model. New delay-distribution-dependent 
sufficient conditions are derived for the deterministic asym- 
ptotical stability of the nonlinear NCS. Numerical examples 
are presented to substantiate the effectiveness and advantage 
of our derived results. The controller design problem would 
be our future work. 
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