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Abstract— Many interpolation techniques are available for
image reconstruction, with differences in time complexity,
memory complexity and quality. In this article, we compare
the application of bilinear interpolation, nearest neighbor in-
terpolation and the F-transform approximation technique to
the problem of image reconstruction. Based on our results, F-
transform achieves the best results in terms of quality.

I. INTRODUCTION

A typical technique in image reconstruction is resampling
that is specified as up- or downsampling. When we upsample
an image, we obtain many pixels with unknown values, and
when we downsample an image, we must discard many
pixels. Fig. 1 shows a 4× 4 input image and its upsampled
8×8 version. The unknown pixels are marked by ”?”. Their
intensities are not presented in the original image and must
be computed.

(a) (b)

Fig. 1. a) Input image, 4× 4 pixels; b) upsampled image to 8× 8 pixels
in the regular grid.

The most common resampling technique is interpola-
tion [2], [3], [4]. It is often used in, e.g., medical [1] image
processing. In our contribution, we will focus on the problem
of image reconstruction, which is similar to the problem
of upsampling. Both are focused on the replacement of
damaged (reconstruction) or unknown (upsampling) pixels in
an image, with values computed from neighboring pixels. In
reconstruction, if we discard the damaged pixels (saying that
they are “new”), then the computation of their intensities is
performed on the same basis as resampling. Thus, reconstruc-
tion uses pixels from a neighborhood of damaged ones and
techniques of interpolation, extrapolation or approximation.
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In our previous work [17], we showed that the technique
of F-transform is highly suitable for image reconstruction.
We compared it to the technique of RBF -interpolation and
showed its advantages in speed and quality. The aim of this
research is to compare the effectiveness of the F-transform
technique and of simple interpolation techniques such as
the nearest neighbor and bilinear interpolation techniques.
They are often used in upsampling where the known pixels
establish a regular grid. In this contribution, we will extend
these interpolation techniques to the case of a non-regular
grid, which is more common in reconstruction problems.
We will compare the extended interpolation techniques with
the F-transform technique. We compare their qualities by
RMSE1 and SSIM2[5]. The value of RMSE expresses a
distance between the reconstructed and original images. The
value of SSIM is computed on the basis of a more advanced
technique that considers the perception abilities of the human
eye. Let us adopt the following notation and use it throughout
the paper. A partially damaged image u is a discrete function
that is defined on a domain P and damaged on a domain P d.
The characteristic function of P d is called the “mask”. The
goal of image reconstruction is to produce an image û that
is defined on P ∪ P d and coincides with u on P . In other
words, for all (i, j) ∈ P, u(i, j) = û(i, j). Let u(Q) denote
the intensity of pixel Q in the range {0, 1, . . . , 255}.

II. INTERPOLATION

We extend the above interpolation techniques to an irregu-
lar grid. In figures Fig. 1 ”a)” and Fig. 2, we demonstrate two
types of distributions of known pixels: regular and irregular
grids. In the case of a regular grid, computing the intensities
of unknown pixels is easy due to the available analytic
expressions for interpolation or approximation techniques.
For example, if we want to double the size of our image,
there is a given pattern of known pixels, as seen in Fig. 1
”b)”. The extension of an irregular grid will be described
next. As a demonstration, we will use the image of Lena
(USC-SIPI Image Database), which we artificially damaged
(see Fig. 3) with the mask shown in Fig. 9, case a).

A. Nearest neighbor

The new intensities of the pixels are determined as follows

û(i, j) = u(Qop),

1RMSE stands for the root mean square error. The lower the value
of RMSE, the better the quality of the reconstruction is. RMSE = 0
represents identical images.

2SSIM stands for the structural similarity. Its values are in the range [0, 1];
higher values are better.
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Fig. 2. Irregular grid of known pixels.

Fig. 3. Corrupted image of Lena.

where Qop is the nearest known pixel with respect to the
pixel at position (i, j). Because we want to minimize the
complexity of this technique, we will ignore diagonal direc-
tions. Let us assume that we want to compute the intensity
of the (unknown) pixel marked as A in Fig. 2. First, we will
find the nearest two known pixels Q(x, z0) and Q(t0, y) in
the vertical and horizontal directions, respectively, where

z0 = argmin
z

(|A(x, y)−Q(x, z)|),

t0 = argmin
t

(|A(x, y)−Q(t, y)|).

Then, the nearest known pixel Q(x∗, y∗) is chosen as fol-
lows:

Q(x∗, y∗) =
{

Q(x, z0), if |y − z0| ≤ |x− t0|,
Q(t0, y), otherwise .

The result for the example in Fig. 3 is shown in Fig. 4.

B. Bilinear interpolation

Let us assume that we have four given pixels Q00 =
(i0, j0), Q01 = (i0, j1), Q10 = (i1, j0), Q11 = (i1, j1).
Moreover, i0 ≤ i ≤ i1 and j0 ≤ j ≤ j1.

û(i, j) = 1
(i1−i0)(j1−j0) ( u(Q00)(i1 − i)(j1 − j)+

u(Q10)(i− i0)(j1 − j)+
u(Q01)(i1 − i)(j − j0)+
u(Q11)(i− i0)(j − j0))

In the irregular grid, we compute the linear interpolation for
all unknown rows and columns. That is, for every unknown

Fig. 4. Lena after nearest neighbor interpolation of the unknown parts.

pixel, two values are available, one in each direction. The
sum of these two intensities divided by 2 is used as the new
intensity value of the unknown pixel. For our example in
Fig. 2, we compute the linear interpolation for the row with
pixel A as follows

w(x, y) = w(x−1, y)+ Rx − Lx

u(R)− u(L)
; w(Lx, Ly) = u(L)

and for the column as

n(x, y) = n(x, y−1)+
Dy − Uy

u(D)− u(U)
; n(Ux, Uy) = u(U)

, where the subscript x or y stands for the x or y coordinate
of the point. The results of these two interpolation directions
are shown in Fig. 5 for the example image Fig. 3. The whole

(a) (b)

Fig. 5. a) Linear interpolation of the columns; b) linear interpolation of
the rows.

reconstructed image of Lena is in Fig. 6.

III. IMAGE APPROXIMATION

In comparison with image interpolation, image approxi-
mation produces image uapp, which differs from u on the
domain P ∪ P d. It is important that uapp and u are near
each other on P . The final reconstruction û = uapp|Pd .
We propose to apply the F-transform technique [14] to
produce uapp. This technique will then be compared with
the interpolation methods described in the previous sections.
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Fig. 6. Lena after bilinear interpolation of the unknown parts.

A. F-transform

In the last ten years, the theory of F-transforms has
been intensively developed in many directions [6], [7], [8],
[9], [10], [11], [12], [13]. In image processing, it has had
successful applications in image compression and reduction,
image fusion, edge detection and image reconstruction [14],
[6], [15], [16], [17], [18]. The F-transform is a technique
that places a continuous/discrete function in correspondence
with a finite vector of its F-transform components. In image
processing, where images are identified by intensity functions
of two arguments, the F-transform of the latter is given
by a matrix of components. We recall the definition of
the F-transform [14] and provide it for a function of two
variables defined on the set of pixels P = {(i, j) | i, j =
0, 1, . . . , 255}. First, we recall the definition of a fuzzy
partition [14]. In this research, we use the one with the
Ruspini condition. Let us recall that a fuzzy set on X is
identified with its membership function, which is a mapping
from X to [0, 1].

1) Fuzzy partition with Ruspini condition: A fuzzy par-
tition with the Ruspini condition (simply, Ruspini partition)
was introduced in [14]. The Ruspini condition implies the
normality of the respective fuzzy partition, i.e., the “partition-
of-unity”. It then leads to a simplified version of the inverse
F-transform.

Definition 1: Let x1 < . . . < xn be fixed nodes within
[a, b] such that x1 = a, xn = b and n ≥ 2. We say that
the fuzzy sets A1, . . . , An, identified with their membership
functions defined on [a, b], establish a Ruspini partition of
[a, b] if they fulfill the following conditions for k = 1, . . . , n:

1) Ak : [a, b]→ [0, 1], Ak(xk) = 1;
2) Ak(x) = 0 if x 6∈ (xk−1, xk+1), where, for uniformity

of notation, we set x0 = a and xn+1 = b;
3) Ak(x) is continuous;
4) Ak(x), for k = 2, . . . , n, strictly increases on

[xk−1, xk], and Ak(x), for k = 1, . . . , n − 1, strictly
decreases on [xk, xk+1];

5) for all x ∈ [a, b],
n∑

k=1

Ak(x) = 1. (1)

The condition (1) is known as the Ruspini condition. The
membership functions A1, . . . , An are called basic functions.
A point x ∈ [a, b] is covered by the basic function Ak

if Ak(x) > 0. The shape of the basic functions is not
predetermined, and therefore, it can be chosen according to
additional requirements (e.g., smoothness). Let us give exam-
ples of various fuzzy partitions with the Ruspini condition.
In Figure 7, two such partitions with triangular and cosine
basic functions are shown. We say that a Ruspini partition

Fig. 7. Two Ruspini partitions with triangular (left) and cosine (right) basic
functions.

of [a, b] is h-uniform if its nodes x1, . . . , xn, where n ≥ 3,
are h-equidistant, i.e., xk = a+ h(k − 1) for k = 1, . . . , n,
where h = (b − a)/(n − 1), and two additional properties
are satisfied:

6) Ak(xk − x) = Ak(xk + x) for all x ∈ [0, h], k =
2, . . . , n− 1,

7) Ak(x) = Ak−1(x − h) for all k = 2, . . . , n − 1 and
x ∈ [xk, xk+1], and
Ak+1(x) = Ak(x − h) for all k = 2, . . . , n − 1 and
x ∈ [xk, xk+1].

An h-uniform fuzzy partition of [a, b] can be determined by
the so called generating function A0 : [−1, 1]→ [0, 1], which
is assumed to be even3, continuous, have a bell shape and
fulfill A0(0) = 1. The basic functions Ak of an h-uniform
fuzzy partition with generating function A0 are shifted copies
of A0 in the sense that Ak(x) = A0(

x−xk

h ), where Ak(x) >
0. From this point forward, we will be using h-uniform fuzzy
partitions only and refer to h as a radius of partition.

B. Discrete F-transform

In this section, we introduce the F-transform of an image
u that is considered as a function u : [0, N ] × [0, N ] →
[0, 1], where N = 255. It is assumed that the image is
gray-scaled and that it is defined at points (pixels) that
belong to the set P = {(i, j) | i, j = 0, 1, . . . , N}.
Let A1, . . . , An and B1, . . . , Bm be basic functions and
A1, . . . , An : [0, N ] → [0, 1] and B1, . . . , Bm : [0, N ] →
[0, 1] be two fuzzy partitions of [0, N ] (not necessarily differ-
ent). Assume that the set of pixels P is sufficiently dense with
respect to the chosen partitions, which means that (∀k)(∃i ∈
[0, N ]) Ak(i) > 0, and (∀l)(∃j ∈ [0, N ]) Bl(j) > 0. We say

3The function A0 : [−1, 1]→ R is even if, for all x ∈ [0, 1], A0(−x) =
A0(x).
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that the n × m-matrix of real numbers [Ukl] is called the
(discrete) F-transform of u with respect to {A1, . . . , An}
and {B1, . . . , Bm} if, for all k = 1, . . . , n, l = 1, . . . ,m,

Ukl =

∑M
j=1

∑N
i=1 u(pi, qj)Ak(pi)Bl(qj)∑M

j=1

∑N
i=1 Ak(pi)Bl(qj)

. (2)

The elements Ukl are called the components of the F-
transform. The inverse F-transform û : P → [0, 1] of the
function u with respect to {A1, . . . , An} and {B1, . . . , Bm}
is defined as follows:

û(i, j) =
n∑

k=1

m∑
l=1

UklAk(i)Bl(j). (3)

The function û approximates the original function u on the
whole domain P = {(i, j) | i, j = 0, 1, . . . , N} with a given
precision. Moreover, the following estimate was established
in [19] for every continuous function u on a domain P and its
inverse F-transform û, computed with respect to h-uniform
fuzzy partitions {A1, . . . , An} and {B1, . . . , Bm} of [0, N ]:

max
t∈P
|û(t)− u(t)| ≤ Cω(h, u), (4)

where C is a constant, t = (i, j) and ω(h, u) is the
modulus of continuity of u on P .4 Formula (4) shows that
the smaller the value of h, the better the estimate of the
difference between u and û is. These facts together justify
the reconstruction methods described below. The result of
the approximation for the example Fig. 3 is shown in Fig. 8.

Fig. 8. Lena after F-transform approximation of the unknown parts.

C. Description of the algorithm

We propose an algorithm to produce a reconstruction as a
result of combining a non-damaged part of an original image
with several inverse F-transforms, computed on a sequence of
uniform fuzzy partitions with increasing radii. The main idea
of the algorithm is as follows: in the first step, we choose the
finest h-uniform fuzzy partition of P , apply the F-transform
and reconstruct the damaged pixels (i, j) ∈ P d that satisfy
the following property:

4Generally, ω(h, f) = max|δ|≤hmaxx∈X |f(x+ δ)− f(x)|.

• there are basic functions Ak and Bl, and there is a pixel
(i′, j′) ∈ P \ P d such that Ak(i) · Ak(i

′) > 0 and
Bl(j) ·Bl(j

′) > 0.
We then recompute the damaged area P d by deleting the
already reconstructed pixels and, if P d is not empty, repeat
the procedure with a larger value of h. The following
describes the reconstruction algorithm that takes u and the
characteristic function mPd of P d (called the mask) as
inputs. The output will be the reconstruction û. The algorithm
uses the notation introduced above.

1) Choose radius h = 2.
2) Establish an h-uniform fuzzy partition A1, . . . , An and

B1, . . . , Bm of P .
3) Compute the inverse F-transform û of image u.
4) Update P d by deleting the reconstructed pixels, and

update the mask mPd .
5) Update the image û. If the mask is NOT identically

equal to 0, then update the radius h := h + 1 and
proceed to Step 2. Otherwise, proceed to Step 7.

6) Print output.

IV. RESULTS

All techniques introduced above were tested on a set of 55
color images5 with three types of damaged parts, according
to their masks shown in Fig. 9. Fig. 10-13 show examples

(a) (b) (c)

Fig. 9. a) Larger contiguous areas; b) smaller contiguous areas; c) noise

of the four images from the testing set damaged by the
masks shown in Fig. 9. There is a clear and visible difference
in the smoothness of the reconstructed parts. The principal
features are as follows: non-connected reconstruction by
nearest neighbor interpolation, long linear stripes in the case
of bilinear interpolation and blurred connections in the case
of the F-transform. Tab. I, II, III show the results of the
comparison between the reconstructed and original images
for three chosen types of damage. Our conclusion is split
into two parts. a)
• From the quality of reconstruction point of view, (mea-

sured by RMSE or SSIM)
– the F-transform is the best technique in all tested

cases, with the largest difference in damage type
”c)” (the best mean values in all tables are marked
by the bold font);

– of the interpolation methods, the bilinear interpola-
tion shows better results than the nearest neighbor

5http://decsai.ugr.es/cvg/dbimagenes/c512.php
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(a) (b) (c)

Fig. 10. Reconstruction of the image anhinga. Rows from top to
bottom show masks a), b) and c) from Fig. 9. The technique used for
reconstruction is the same throughout a column, where a) F-transform, b)
bilinear interpolation and c) nearest neighbor interpolation.

interpolation for all types of damages “a)”, “b)” or
“c)”.

• From the runtime point of view (measured in seconds),
the F-transform is the slowest technique. However, on a
typical computer with a 2.5 GHz CPU and 2 GB RAM,
the reconstructions of 512×512 images with the damage
type “b)” or “c)” is performed in under 1 sec. Damage
type “a)” requires more than 2 seconds.

From the visual perception perspective, the F-transform pro-
vides smooth and clear output in comparison with the above
interpolations.

V. CONCLUSION

We have compared two interpolation techniques, nearest
neighbor and bilinear, with the F-transform technique for the
problem of the reconstruction of damaged areas in images.
A set of 55 color images with size 512 × 512 has been
tested. Three differently distributed types of damaged areas
were applied. The results of reconstruction are compared
in tables I, II and III from the perspectives of quality and
runtime. From the quality perspective (measured by RMSE
and SSIM), we conclude that the F-transform shows the best
results. In detail, the mean values of RMSE (the smaller, the
better) for bilinear interpolation and F-transform for damage
type ”c)” are

bilinear: 19.625; F-transform: 16.836,

and the mean values of SSIM (the higher, the better) are

bilinear: 0.8975; F-transform: 0.9240.

In conclusion, we recommend the F-transform as a solution
for image reconstruction. The F-transform with linear basic

(a) (b) (c)

Fig. 11. Reconstruction of the image athens. Rows from top to bottom show
masks a), b) and c) from Fig. 9. The technique used for reconstruction is the
same throughout a column, where a) F-transform, b) bilinear interpolation
and c) nearest neighbor interpolation.

functions provides smooth output and high quality. Moreover,
the best result in comparison with the above interpolations
is achieved in the case of damage type “noise”. Future
research will focus on comparing the F-transform with other
interpolation techniques.
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based image fusion,” Advances in Fuzzy Systems, 2012.
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(a) (b) (c)

Fig. 13. Reconstruction of the image avion. Rows from top to bottom show
masks a), b) and c) from Fig. 9. The technique used for reconstruction is the
same throughout a column, where a) F-transform, b) bilinear interpolation
and c) nearest neighbor interpolation.

/Larger contiguous areas
SSIM

Stat Nearest Bilinear F-transform
Min. 0.8421 0.8585 0.8684
1st Qu. 0.9061 0.9203 0.9348
Median 0.9245 0.9382 0.9449
Mean 0.9215 0.9349 0.9426
3rd Qu. 0.9416 0.9481 0.9573
Max. 0.9816 0.9802 0.9862

RMSE
Stat Nearest Bilinear F-transform
Min. 8.355 6.707 7.372
1st Qu. 15.010 13.248 12.610
Median 18.051 15.580 14.800
Mean 18.695 16.604 15.735
3rd Qu. 21.432 19.413 17.997
Max. 31.906 31.429 28.753

time (ms)
Stat Nearest Bilinear F-transform
Min. 249.0 124.0 2138
1st Qu. 265.0 125.0 2184
Median 266.0 140.0 2200
Mean 271.7 134.0 2210
3rd Qu. 281.0 140.2 2231
Max. 297.0 156.0 2293

TABLE I
SSIM, RMSE AND RUNTIME FOR DAMAGE TYPE “A)”
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Smaller contiguous areas
SSIM

Stat Nearest Bilinear F-transform
Min. 0.9597 0.9704 0.9735
1st Qu. 0.9801 0.9859 0.9862
Median 0.9882 0.9913 0.9910
Mean 0.9863 0.9897 0.9902
3rd Qu. 0.9927 0.9944 0.9946
Max. 0.9990 0.9988 0.9981

RMSE
Stat Nearest Bilinear F-transform
Min. 3.010 3.184 3.201
1st Qu. 5.288 4.796 4.488
Median 6.966 6.276 6.156
Mean 7.392 6.419 6.237
3rd Qu. 8.670 7.600 7.177
Max. 14.880 12.460 11.812

time (ms)
Stat Nearest Bilinear F-transform
Min. 124.0 124.0 842.0
1st Qu. 125.0 125.0 873.0
Median 140.0 125.0 874.0
Mean 133.4 130.8 879.2
3rd Qu. 140.0 140.0 889.0
Max. 156.0 156.0 920.0

TABLE II
SSIM, RMSE AND RUNTIME FOR DAMAGE TYPE “B)”.

Noise
SSIM

Stat Nearest Bilinear F-transform
Min. 0.7057 0.7461 0.7866
1st Qu. 0.8401 0.8662 0.8960
Median 0.8848 0.9066 0.9354
Mean 0.8783 0.8975 0.9240
3rd Qu. 0.9294 0.9389 0.9641
Max. 0.9755 0.9774 0.9923

RMSE
Stat Nearest Bilinear F-transform
Min. 10.99 9.364 8.485
1st Qu. 16.36 14.429 11.821
Median 21.81 19.046 15.816
Mean 22.51 19.625 16.836
3rd Qu. 26.50 22.932 20.083
Max. 40.45 34.206 32.913

time (ms)
Stat Nearest Bilinear F-transform
Min. 218.0 156.0 827.0
1st Qu. 234.0 171.0 842.0
Median 249.0 172.0 850.5
Mean 244.3 172.1 852.7
3rd Qu. 250.0 172.0 858.0
Max. 266.0 187.0 905.0

TABLE III
SSIM, RMSE AND RUNTIME FOR DAMAGE TYPE “C)”.
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