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Abstract— Most applications of Fuzzy Cognitive Maps (FCM) 
uses static causal links to connect different concepts. However, a 
causal impact may take effect immediately, or accumulate over a 
period of time. Consider two cognitive models with a same causal 
structure, state sets, decision functions and causal linkage 
strengths, if their causal links have different dynamics, they can 
have significantly different or even totally different hidden 
patterns. This paper proposes an easy to use model to represent 
the dynamics of causal relationships in fuzzy cognitive maps. 

Keywords—fuzzy cognitive map, dynamic, causal relationship, 
decision support  

I. INTRODUCTION  

A. Fuzzy Cognitive Maps 
 

Fuzzy Cognitive Map (FCM) [1] is a visualised knowledge 
model representing human beings’ causal knowledge of the 
external world. A fuzzy cognitive map represents factors as 
nodes/vertices and their causal relationships as links/arcs 
among nodes. As Fig. 1.1 shows, both factor A, Diet Energy, 
and factor B, Physical Activity,  have impact on factor C, 
Diabetes Risk.  

 
Fig. 1.1 Diabetes Risk factors  

 
Fuzzy cognitive maps use signed links to indicate whether 

the impact is positive or negative.  

 

Fig. 1.2 Sign and Weight of FCMs  

As shown in Fig.1.2, Diet Energy has positive impact on the 
Diabetes Risk, while Physical Activity has negative impact on 

the Diabetes Risk. To differentiate the strength of the causal 
relationship, causal links are modeled with a weight. 

If   wCA >  wCB   
Diet Energy has a stronger causal relationship with 
the Diabetes Risk than that of Physical Activity; 

If   wCA <  wCB   
Diet Energy has a weaker causal relationship with the 
Diabetes Risk than that of Physical Activity.  

 
The factors in a fuzzy cognitive map can take binary/ternary 

states, or multi-value states [2].  When binary states are used, 
the Diet Energy can be either healthy (-1) or non-healthy (+1).  
When multi-value fuzzy cognitive map model is used, as 
exampled in Fig. 1.3, the state of factor A, Diet, can be  

1   -   Very unhealthy,  
0.5  -  Unhealthy , 
-1  - Very healthy . 
 

 
Fig. 1.3 Multi-value of factor states  

 
Each node of a fuzzy cognitive map has a decision function 

to derive its next state based on the causal impacts it receives. 
The decision function can take any form but usually it is a 
threshold function when binary state is used, or a multi-
threshold function when multiple states are used, or sigmoid 
function if continuous state is used.  

The inference of fuzzy cognitive map is the calculation by 
each node of its next state based on the causal inputs. For 
example,  

uC(k) = xA(k) × wCA  + xB(k) × wCB ; 

xC(k+1) = fC(uC(k) ); 
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where xA(k) is the state of node A at time k, xB(k) is the state 
of node B at time k, uC(k) is the total causal impact node C 
received at time k,  fC is node C’s decision function, which 
decides its next state xC(k+1).  

 
When there are many nodes causally inter-linked, the 

inference will be carried out by the nodes in parallel until a 
static state or a limit cycle is reached.  

 

B. Applications of Fuzzy Cognitive Maps 

In recent years, fuzzy cognitive maps are gaining popularity 
and have been applied in wide areas such as social studies 
(insurgency, anti-terrorism) [3][4][5], emotion modeling [6], 
healthcare [7][8][9][10][11], commerce [12][13] and 
management[14][15] [16]. Lacking proper models for domain 
experts to capture knowledge on dynamics of the causal 
relationships in the fuzzy cognitive map, majority of the 
applications use static linear causal links.   

 

C. Extensions to the Static Weights of Fuzzy Cognitive Maps 

A number of researchers have realized that in many cases, 
the causal relationship has some dynamic characteristics that 
are essential in the modeling but cannot be represented by a 
static weight. Here are some important extensions that have 
been made to fuzzy cognitive map model: 

(I) Extended Fuzzy Cognitive Map [17] has pointed out that 
fuzzy cognitive maps modeled with one-weight-links have 
three drawbacks:  

1) could only model linear relationships between 
concepts/nodes ; 

2) lack of concept of time; and  

3) cannot deal with co-occurrence of multiple causes, 
such as conditions . 

Extended fuzzy cognitive maps uses weight functions instead 
of weights for modeling causal relationships, which it 
generally takes a form of sigmoid function. Theoretically a 
weight function can be in any form thus can model all types of 
relationships. Though, domain experts have difficulties to use 
a general function. Sigmoid function based extended fuzzy 
cognitive maps have a number of issues: 

1) it is much more difficult for domain experts in 
applications to map their familiar weights to sigmoid 
curves; 

2) sigmoid function is monotonous increasing, but in many 
cases the nonlinearity of the causal links are not 
monotonous; 

3) the co-occurrence of multiple causes shall be handled by 
the decision function rather than the causal link weight 
function; 

4) when the weight value is a function of the state value of 
the cause, the weight shall be modeled as a concept and 
together with the cause having the impact on the target 
concept. It is much clearer than being modeled as a 
dependent weight. 

(II) Time modulated weight [18] is another extension to fuzzy 
cognitive maps. In this extension, weights can be modulated 
by the time t:  

if xj(t) >0       wij = w+
ij  × (t max –t ) / t max  ,  

if xj(t) <0         wij =  w -ij  × (t max –t ) / t max  , 

where w+
ij , w-

ij are corresponding to the static weight from 
node j to node i of classic fuzzy cognitive map, t max is a 
constant that related to the causal link, and t is the time.   

Apparently, this extension has limited capability to model 
the dynamics of the causal relationship. It is also monotonous 
like sigmoid function.  

(III) Tangent weight is used in an extension to fuzzy 
cognitive maps to model nonlinear weights [19].  

wji = tan(φ) 

 

where is the φ is a parameter adjusting the nonlinear function 
tangent angle, F’ji is the impact from node j to node i;  Aj is the 
state of the node j, Q, B are two free parameters to adjust the 
shape of the decision function curve.  

 Similarly, tangent weights are monotonous and 
cannot model nonlinearity of multiple segments or non 
monotonous. Also, domain experts may feel difficult to map 
commonly used weights to the tangent function parameters 
such like φ, Q and B.  

(IV) Dynamic casual links have been proposed in DCN [20] 
to model dynamic causal relationship using differential 
functions, transfer functions or state space model. These are 
typical models used in system science to describe dynamics. 
Dynamic casual links of DCN can thus model a wide range of 
dynamics of causal relationships.  

However, there are also a number of drawbacks of 
dynamic causal links in DCN. Firstly differential functions or 
transfer functions are not models widely used in application 
domains except those specialized in dynamics modeling such 
as control systems. It is unlikely that a doctor or a business 
planner would use differential equations or state space 
functions to model dynamics of causal relationships. 
Secondly, fuzzy cognitive maps are mainly for modeling 
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human cognitive knowledge which could involves various 
decisions. The decision related dynamics can have strong 
nonlinearity. It is neither flexible nor easy to model strong 
nonlinear dynamics with DCN dynamic links. Therefore, this 
model has not been widely applied.  

D. Organisation of the Paper  

This paper will propose an easy to use dynamic causal links 
for domain experts to model dynamic causal relationships. It 
will allow domain experts to have direct mapping from their 
observations to link weights so that the modeling is not much 
more difficult than modeling the weight of classic fuzzy 
cognitive maps.  

The rest of the paper is as organized follows: Section 2 
proposes the dynamic causal relationship model. Section 3 
provides the model of typical dynamic causal links and 
Section 4 concludes the paper. 

II. MODELING DYNAMIC CAUSAL RELATIONSHIPS  
A causal impact may take effect immediately, or accumulate 

over a period of time. Consider two cognitive models with a 
same causal map structure, state sets, decision functions and 
causal linkage strengths, if their causal links have different 
dynamics, they can have significantly different hidden 
patterns. Therefore, it is important to model the dynamics of 
the causal relationship in fuzzy cognitive maps.  

A dynamic causal link is not able to be modeled with one 
single weight. To make it easy for domain experts to easily 
map their observations and not increase much difficulty from 
the classic fuzzy cognitive map model, this section will 
propose a multiple weight causal link to model dynamic 
casual relationships.  

A. Fuzzy Cognitive Maps with Dynamic Causal Links  
A fuzzy cognitive map with dynamic causal links has the 

same definition of the map, nodes, state sets and decision 
functions. The only difference is that the links are modeled 
with multiple weights rather than a single weight. Each weight 
is corresponding to some typical characteristics of the 
observed dynamics so that domain experts can easily model it 
from his/her observations. 

 
A fuzzy cognitive map is modeled as a tuple 

 M =<V, A>,      
      (2.1)

  
where V is a set of vertices/nodes representing the concepts 
and A is a set of arcs representing the causal relationships 
among concepts.  

V={< v1, 1vf , S(v1)>, <v2, 2vf , S(v2)> 

,…, <vn, nvf , S(vn)> } ,   

  (2.2) 
A ={< a(vi, vj ) , w (a(vi, vj )) > | vi, vj ∈V }  

       = {< a(vi, vj ) , (
1
jiw  , 2

jiw  , …, jin
jiw ),  yji > | vi, vj ∈V }.  

   (2.3) 

Vertices.  Each vertex in a fuzzy cognitive map corresponds 
to an important factor (concept) in the real application being 
modeled. In the above definition, vi (i=1, 2, …, n) are the 
vertices (concepts); n is the number of vertices/concepts. 

States.  The state of vertex vi at time (or step) k is denoted as 
xi (k), i=1,2, … , n.  The state spaces of concepts are finite 
value sets. S(vi) denotes the finite state set of vi : 

S(vi) = { x 1i , x 2i ,…, in
ix  } ,  i=1, 2, …, n    (2.1.4) 

where n is the number of the concepts, ni is the number of 
state values that concept vi has. For example, a sequence of 
states of vi can be  

xi (0)= x 2i , xi (1)= in
ix , xi (2)= x 1i , xi (3)= x 2i , … . 

Each concept can have its own value set. The definition of 
value sets depends on the needs of the system to be modeled. 
The state space of the fuzzy cognitive map M is defined as the 

production of the vertices’ state space: 
 S(M)= )(1 i

n
i vS∏ =   (2.5) 

Causal Links.  a(vi, vj ) , or simply aij , is the arc from vi to vj  
representing that vertex vi has causal impact on vertex vj. The 
impact at time k is represented as yji (k). 

 

Dynamics of Causal Links. In classic CMs or FCMs, causal 
links are modeled with one weight, which cannot model the 
dynamics of the causal relationship.  To model the dynamics 
of the causal relationships, a dynamic causal link a(vi, vj ) 
consists of a sequence of weights  

w(a(vi, vj )) = { 1
jiw  , 2

jiw  , …, jin
jiw }, 

where nji is the number of weights to represent the dynamics. 
The impact yji is modeled as  

 yji (k) = ∑ −
=

)(
1

mkxw
m
n

i
m
ji

ji  ;  

 i, j=1,2, … , n       (2.6) 

the dynamic impact reaches its stable full impact after nji time 
steps. If xi (k-1)= xi (k-2)= ... = xi (k-m) =1,  yji (k) is the 
normalized stable full impacts, which is termed as the Causal 
Link Strength of aij , or simply the Strength of aij. The strength 
of aij is denoted as w(aji) or simply wji  . It can be proven that 
the wji  is the same as the corresponding FCM weight wji .    
 
   A dynamic causal link is illustrated in Fig. 2.1, where v1 has 
a causal impact on v2, which is a dynamic causal link modeled 
with three weights: 1, 3 and -2.  

 
Fig. 2.1 Multiple weights model for dynamic causal link  
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   Mapping domain experts’ observation to the multiple 
weights is fairly straightforward. The three weights indicating 
that after the cause emerges, the first impact passed onto v2 
was equivalent to a weight of 1, and then a stronger impact 
equivalent to a weight of 3 was added, and so on. More 
detailed mapping steps will be provided in the Section II- B.  
  
Decision Functions. Each vertex or node can still have its 
own decision function. Based on the causal inputs, the 
decision function decides the next state of the concept. The 
decision function of  vi  is denoted as 

ivf  :  

xi (k) = ( ))()()( 21 kykykyf iniivi
  (2.7) 

A typical decision function in the area of a cognitive map is a 
threshold function f :  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<=

<<=
<

=

uUx

UuUx
Uux

uf

p
R

v

1

21
2

1
1

......
)(    ,   (2.8) 

where u is the total impact v receives; normally u = yi1(k) + 
yi2(k) + ...+ yin(k) . It specifies that if the impact falls in a 
certain threshold range, for example 21 UuU <<= ,  the 
corresponding state of the v is x2.  In some cases, the decision 
function is also related to the previous state of the vertex.  

 

B. Mapping Observations to Weights- Dynamics Modeling   

Domain experts have the knowledge on the characteristics 
of the dynamic causal relationships. They normally have 
observed the dynamics often in their work. Mapping this 
knowledge to multiple weights of dynamic causal link is not 
much difficult than that of fuzzy cognitive weight mapping.  
The following two examples illustrate how this mapping is 
constructed. 

Step1: Mapping the causal structure (links) 
If a causal relationship exists between two important 

factors, they can be modeled by the following map: 

 
Fig. 2.2 (a) Mapping the causal relationship  

This step is the same as the mapping of classic fuzzy cognitive 
maps. The state space and decision function of v1 and v2 can 
also be determined similarly. For the simplicity of 
presentation, assume that S(v1) = {0,1},  fv2(u)= u.   

Step2: Mapping the observations to the weights  
Suppose when factor v1 state changes, e.g. x1 turned from 0 
to 1 at k =0, the following impacts on v2 were observed: 

(1)  k = 1, the impact is Y1; 
(2)  k = 2, the impact is Y2; 
(3)  k = 3, the impact is Y3; 

(4) from time 3, the impact has been fully passed onto v2; 
i.e. k > 3, the impact is kept as Y3 . 

The corresponding observations are shown in Fig. 2.2(b).   
  

0

1

2

3

4

-1 0 1 2 3 4 5 6 7

x 1

k   
 

-1

0

1

2

3

4

-1 0 1 2 3 4 5 6 7

y21

k
 

Fig. 2.2 (b) The factor v1 emerges, and observed impacts on v2 .  
 

Firstly, let us review the mapping to FCM weights. As 
FCM has only one weight, the weight will reflect the final full 
impact. Therefore, w21= Y3=4 . 

Dynamic causal link applies multiple weights to describe 
the dynamics of the impact. Mapping the observation to the 
multiple weights is a similar easy modeling as that for classic 
fuzzy cognitive maps.  In this example, the corresponding 
three gains observed are corresponding to the three weights: 

w21
1 =Y1,     w21

2 =Y2 - Y1   and  w21
3 =Y3 – Y2  . 

The corresponding mapping weights are shown in Fig. 2.2 (c). 

Step3: Conclude the impact model corresponding to 
equation (2.6) using the multiple weights  
 
The corresponding impact of the causal link is  

y21(k) = w21
1 ×  x1(k-1) + w21

2 ×  x1(k-2) + w21
3 ×  x1(k-3) , 

  

and v2 decides its state based on the impact from v1:    

x2(k) = f2(y21(k))  . 

In general, v2 decides its state based on all the impacts from 
other nodes, as defined in formula (2.6). 

 

v1 v2 w21 

Factor v1 emerges 

The observed impacts on v2
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Fig 2.2 (c) Mapping of dynamic causal link weights     

  

C. Comparison with Classic FCMs  
The dynamics of causal relationship can play a critical role 

in causal inference.  Consider two cognitive models with a 
same causal structure, state sets, decision functions and causal 
linkage strengths, if their causal links have different dynamics, 
they can have totally different inference outcomes, leading to 
different decision making. The following example illustrates 
the difference.  

Fig. 2.3 (a) shows a FCM-a with dynamic link model and 
Fig. 2.3 (b) shows a classic FCM-b of the same knowledge. 
The only difference is that the classic FCM model does not 
model the dynamics of the causal relationship from v1 to v2 
because it has only one weight.  

(a)    
    

(b)    
  

Fig 2.3 Comparing the FCM with and without dynamic link  
 

Suppose both FCM-a and FCM-b have the same state sets:  

state set of v1 is  

S(v1)={0, 1},   

state set of v2 is  

S(v2)={-4, -3, -2, -1, 0, 1, 2, 3, 4},   and 

state set of v3 is  

S(v3)={-1, 0, 1}.  

Suppose both FCM-a and FCM-b have the same decision 
functions:  

fv2 (u)  = u,  
 
 fv3 (u)  =  1    if   u >=3 ,  

=  0    if   1<=u <3 ,  
=  -1   if   u <1 ,  

The only difference is that FCM-a have a dynamic causal 
link modeled by multiple weights 

w21 = (1, 3, -2), 

where FCM-b has only one weight so it could not model the 
dynamics but only the full impact which is 2: 

w21 = 2. 

Both FCM-a and FCM-b has the same weight for v2 to v3:  

w32 = 1. 

Suppose both FCM-a and FCM-b have the same initial values: 

  x1 (0) = 1, x2 (0) = 0, x3 (0) = 0 . 

The causal inference of FCM –a and FCM-b can be carried 
out similarly except that the FCM-a needs to calculate the 
causal impact using the multiple weights (formula (2.6)). 

For FCM-a 

 x1 (1) = 1, x2 (1) = 1, x3 (1) = 0  

 x1 (2) = 1, x2 (2) = 4, x3 (2) = 0  

 x1 (3) = 1, x2 (3) = 2, x3 (3) = 1  

 x1 (4) = 1, x2 (4) = 2, x3 (4) = 1 

……. 

while for FCM-b 

 x1 (1) = 1, x2 (1) = 1, x3 (1) = 0  

 x1 (2) = 1, x2 (2) = 2, x3 (2) = 0  

 x1 (3) = 1, x2 (3) = 2, x3 (3) = 0  

 x1 (4) = 1, x2 (4) = 2, x3 (4) = 0 

……. 

We can see that because FCM-b cannot model the dynamics 
of the causal relationship, the transit state of v2 , which has 
shot up to 4, was not captured. Thus the state of v3  remained 
at 0.  
 Although FCM-a and FCM-b have the same causal 
structure, state set values, decision functions of all nodes, but 
they have totally different final decision point for v3. Without 
being able to model the dynamics of causal relationship, 
classic fuzzy cognitive map can lead to wrong decision 
making.  

III. TYPICAL CAUSAL RELATIONSHIP DYNAMICS 
Section II has shown that modeling dynamics of causal 

relationship with multiple weights is straightforward and is not 
more difficult for domain experts than modeling with one 
static weight in classic fuzzy cognitive maps. An example has 
shown that without modeling the dynamics, the inference can 

w21
1 

w21
2 

w21
3 
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give a wrong decision support, where v3 had a wrong final 
state. In this section, a number of typical dynamics are given 
for presenting dynamic causal relationships.  

A. Delayed Casual Links  
  Delayed causal links are a type of causal links where impacts 
are passed on after a certain period of delay from the 
emergence of the cause. For a delay impact from factor vi to 
factor vj, domain experts can simply model it with a number of 
zero weights followed by the final weight, which is equivalent 
to a weight and a delay time parameter. For example, if v1 has 
a delayed causal link to v2 with delay time k21 =4. The multiple 
weights are (0, 0, 0, w21) then the impact from v1 to v2 is: 

y21(k) = w21  × x1( k- 4 )  ,    (3.1) 

and the decision making of v2 is : 

x2(k) = f2 (y21(k) ) .    (3.2) 

If k21 =1, it becomes a typical FCM link (The impact is passed 
on in the immediately following step).  Note: we will use fi for 

ivf  in the rest of the paper if no ambiguity is caused.   

 
In general, if the delay time from vi to vj is kji. : 

yji(k) = wji  × xi ( k - kji )  ,    (3.3) 

xj(k) = fj  ( yj1 (k), yj2 (k),  ..., yjn (k)  )  .   (3.4) 

Fig. 3.1 illustrates a causal impact from v1 to v2, with a time 
delay of 4, and w21=1 .  

0

1

2

0 1 2 3 4 5 6 7

x 1

k
     

0

1

2

0 1 2 3 4 5 6 7

y 21

k
 

Fig. 3.1 A causal impact of time delay = 4 
 

B. Gradually built up causal links-Linear links 
In addition to delays, gradually built up causal links are the 

most common type of dynamic impact links. In fact, most of 
the impacts are gradually built up in the real world. If the 
dynamic transition is important in describing the 
characteristics of the causal link, the dynamics should be 
modeled. Using multiple weights to model the dynamics is 
easy and straightforward for domain experts. If the full impact 
can be established in N time slots, then the domain expert 
simply needs N weights to describe the impact gain or loss in 
each time slot. There are four typical gradually built up causal 
links, covered in Section II B, C, D and E.  

Linear dynamic causal links model the dynamics that the 
causal impact builds up at a constant speed. Fig. 3.2 shows the 
transition of a linear dynamic link of total time slots N=3. If 
the total impact weight is w (which is also the FCM weight), 
the mapping of observation to the multiple weights are 
illustrated in Fig. 3.2 (a). The three weights are all equal to 1/3 
w:    

wji
1 =   1/3 w ,   wji

2 =   1/3 w , wji
3 =   1/3 w . 

The impact model is 

yji(k) = 
3
w

 xi ( k- 1) + 
3
w

 xi ( k- 2) + 
3
w

 xi ( k- 3 ) . 

When the weights are negative, the impacts are also negatively 
linear. Fig. 3.2 (b) shows a case of 

 yji(k) = -
3
w

  xi ( k- 1) - 
3
w

 xi ( k- 2) - 
3
w

 xi ( k- 3 ).  

Without losing generality, the rest of the gradually built up 
dynamics will only be illustrated with positive impact cases. 

In general, if the full impact is wji , the total transition period is 
N slots, then each weight is 1/N × wji : 

yji(k) = 
N
1

wji  × xi ( k- 1) + 
N
1

wji  × xi ( k- 2) + 

... + 
N
1

wji  × xi ( k- N ) .  (3.5) 

 
if N=1, it is the same as that in classic FCMs. 

0

1

2

3

4

0 1 2 3 4 5 6 7
 

(a) positive impacts  

w 1 = 1/3  w  

w 2 = 1/3  w 

w 3 = 1/3  w 

yji  (observed) 

k 

w =3   
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-1

0
0 1 2 3 4 5 6 7

 
(b) negative impacts 

Fig. 3.2 Linear dynamic causal impact of 3 slots 
 

C. Convex nonlinear dynamic causal links 
A convex nonlinear dynamic causal link is a gradually built 

up causal link. It represents the dynamic impacts that build up 
rapidly in the initial stage. Fig. 3.3 shows the transition of a 
convex nonlinear dynamic link of total time slots N=3.  

 
The mapping of the observation to multiple weights are 

marked on Fig. 3.3 , where the three weights are: 

wji
1=4,   wji

2=1.5,   and   wji
3=0.5 .  

The impact is modeled as  
yji(k) = 4  × xi ( k- 1) + 1.5 × xi ( k- 2) + 0.5  × xi ( k- 3 ) . 

  (3.6) 

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

 
Fig. 3.3 Convex non-linear dynamic causal impact of 3 slots 

 
In general, a convex nonlinear dynamic causal link can be 
modeled as:  

yji(k) = wji
1  × xi ( k- 1) + wji 2 × xi ( k- 2) + 

... + wji 
N  × xi ( k- N ) .    (3.7) 

 

D. Concave nonlinear dynamic causal links 
A concave dynamic link represents the dynamic impacts 

that build up slowly in the initial stage and speed up later. 
Fig.3.4 shows a transition of a concave nonlinear dynamic link 
of total time slots N=3.  

 
The mapping of the observation to multiple weights is 

marked on Fig. 3.4, where the three weights are: 

wji
1=0.5,  wji

2=1.5,  and  wji
3=4 . 

The impact model is 

yji(k) = 0.5  × xi ( k- 1) + 1.5 × xi ( k- 2) + 4  × xi ( k- 3 ) . 
  (3.8) 
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1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

 
Fig. 3.4 Concave non-linear dynamic causal impact of 3 slots 

 
In general, a concave nonlinear dynamic causal link can be 
modeled as:  

yji(k) = wji
1  × xi ( k- 1) + wji 2 × xi ( k- 2) + 

... + wji 
N  × xi ( k- N ) .    (3.9) 

 

E. Oscillation dynamic causal links 
An oscillation dynamic causal link represents the dynamic 

impacts which have oscillations in the build-up transition. 
Fig.3.5 shows the transition of an oscillation dynamic causal 
link with total time slots N=6. 
 
   The mapping of the observation to multiple weights is 
marked on Fig. 3.5, where the six weights are: 

wji
1= 2, wji

2=2, wji
3= 2, wji

4= - 1, wji
5= - 2, and wji

6 = 1.  

The impact model is 

yji(k) = 6  × xi ( k- 1) + 2 × xi ( k- 2) + 2  × xi ( k- 3 ) - 1  × xi ( k- 
4 ) - 2  × xi ( k- 5 ) + 1  × xi ( k- 6 ). 

    (3.10) 
 

wji
 1  

wji
 2 

w 
ji

3 

wji
1

wji
 2  

yji
  (observed) 

k  

k  

yji  (observed) 

wji
 3  

k  

w 1 = -1/3  w  

w 2 = -1/3  w  

w 3 = -1/3  w 

yji
  (observed) 

k 
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Fig.3.5 A oscillation non-linear dynamic causal impact lasts 6 slots 

 
In general, an oscillation dynamic causal link can be modeled 

as:  

yji(k) = wji
1  × xi ( k- 1) + wji 2 × xi ( k- 2) + 

... + wji 
N  × xi ( k- N ) .   (3.11) 

A typical property of an oscillation dynamic causal link is 
that some of the weights are negative and some are positive. 
The oscillation-type of dynamics widely exists in causal 
impact build up transitions. They can lead to complex 
inference dynamics of the causal system.  

IV. CONCLUSIONS  
Different causal impacts have very different dynamics. The 

dynamics can lead to significantly different causal outcomes. 
Two cognitive models, even with same map graph, same node 
state space, same decision functions and same full impact 
weights, a difference in the causal relationship dynamics can 
lead to totally different inference outcome, which means 
totally different decisions. Classic fuzzy cognitive maps have 
only one weight for causal links thus cannot model the 
dynamic causal relationships. This paper provides an easy to 
use model by using multiple weights to represent the 
dynamics. The weights have a direct mapping with domain 
experts’ knowledge and observations. The new model adds 
little difficulties than modeling in classic fuzzy cognitive 
maps.  
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