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Abstract—To develop a computer-aided diagnosis system for 

neonatal cerebral disorders, some literatures have shown 

atlas-based methods for segmenting parenchymal region in MR 

images. Because neonatal cerebrum deforms quickly by natural 

growth, we desire an atlas growth model to improve the 

accuracy of segmenting parenchymal region. This paper 

proposes a method for generating fuzzy object growth model 

(FOGM), which is an extension of fuzzy object model (FOM). 

FOGM is composed of some growth index weighted FOMs. To 

define the growth index, this paper introduces two methods. The 

first method calculates the growth index from revised age. 

Because the growth index will be different from person to 

person even through the same age, the second method estimates 

the growth index from cerebral shape using Manifold learning. 

To evaluate the proposed methods, we segment the parenchymal 

region of 16 subjects (revised age; 0-2 years old) using the 

synthesized FOGM. The results showed that FOGM was 

superior to FOM, and the Manifold learning based method gave 

the best accuracy. And, the growth index estimated with 

Manifold learning was significantly correlated with both of 

revised age and cerebral volume (p<0.001).  

I.  INTRODUCTION 

HE neonatal cerebral disorders have possibility to reduce 

the cerebral function. Therefore, it is required to detect 

and cure in their early stage. And, it leads to improve the 

quality of life (QOL) for patients and also their family [1]. 

One of the diagnosis indexes of the neonatal cerebral 

disorders is deformation of the cerebral shape. For example, 

as for patients suffering from epilepsy, a lot of cases show a 

brain formation disorder [2].  

Segmentation of brain region from magnetic resonance 

(MR) image is needed to quantify brain deformation. Some 

methods for automatic segmentation have been proposed. For 

example, Prastawa et al. proposed a method which segments 

the brain region using MAP estimation [3], and Xue et al. 

proposed a method of cortical segmentation using 

expectation-maximization (EM) algorithm [4].  

We also have proposed a segmentation method using fuzzy 

object model (FOM) [6]. FOM [5] is an atlas model which 

gives a prior knowledge of brain position and shape. FOM is 

generated from training data composed of subjects' MR 

images. To synthesize the consistent FOM, the subjects group 

should be controlled. Because the newborn brain shape 
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deforms quickly by natural growth, we control the subjects by 

the revised age. The method improved the segmentation 

accuracy by using FOM. However, the accuracy will decrease 

when the FOM is applied to a subject whose brain growth age 

is out of the age group. In order to improve the applicability 

of the FOM based method, we desire a method of 

synthesizing growable FOM.  

One of the methods of analyzing developing brain is to 

generate a growth model. Davis et al. have proposed a 

method of generating a growth model using subjects' age [7]. 

Because the growth rate of newborn children will be different 

from person to person even through the same age, Aljaber et 

al. have proposed a method of generating a growth model by 

applying Manifold learning to newborn brain images [8]. The 

method normalizes brain images and applies Manifold 

learning using the change amount of normalization. However, 

it is hard to apply the method to various subjects because the 

normalization method of newborn brain does not establish 

well. Thus, we desire another method which does not use 

normalization.  

In this paper, we propose a fuzzy object growth model 

(FOGM) by extending the conventional FOM. The FOGM is 

defined as a growth index weighted FOM. To estimate the 

growth index, we first employ their revised age. And, we 

propose an estimation method of brain growth index by 

means of Manifold learning using few brain anatomical 

landmarks. To validate the proposed methods, we segment 

the brain region using FOM and FOGM, and evaluate the 

segmentation accuracy.  

II. PRELIMINARIES 

A. Manifold Learning 

Manifold learning is a method of dimensionality reduction 

[8]. We use the Laplacian eigenmaps [9] which is one of the 

Manifold learning techniques. The Laplacian eigenmaps 

makes a neighbor graph in a high dimensional space and 

calculates a graph Laplacian of the neighbor graph to project 

into a low dimensional space.  

Consider k points, a1, …, ak, in a high dimensional space, 

and corresponding points, v1, …, vk, in a low dimensional 

space. The Laplacian eigenmaps have 3 steps to find the 

correspondence of points between the high and the low 

dimensional spaces.  

 

[Step 1] Calculate a weight between all combinations of 

points in the high dimensional space, and obtain a weight 

matrix W. W is defined by Eq. (1). 

 
)exp( ||||

2

2
,

tjiW aa
ji   (1) 

 t is a normalization parameter.  

Fuzzy object growth model for newborn brain  

using Manifold learning 

Ryosuke Nakano, Syoji Kabashi, Kei Kuramoto, Yuki Wakata, Kumiko Ando,  

Reiichi Ishikura, Tomomoto Ishikawa, Shozo Hirota, and Yutaka Hata 

T 

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 
July 6-11, 2014, Beijing, China 

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 1809



 

 

 

[Step 2] Calculate a diagonal matrix  


k

i jiii WD
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, and 

calculate a graph Laplacian .WDL   

[Step 3] Solve a generalized eigenvalue problem formulated 

by Eq. (2), and get non-zero eigenvalue  . The 

eigenvector T

klow vvv ],...,[ 1 corresponding to the 

lowest eigenvalue low  shows corresponding points in 

the low dimensional space.  

 DvLv   (2) 

 

For example, we apply Manifold learning to 3-D data 

which have Gaussian distribution shape as shown in Fig. 1. It 

shows that 3-D data are projected to 2-D space while the 

positional relation of data is preserved.  

B. Subjects and Materials 

This study recruited 16 newborn subjects whose revised 

age was lower than 2 years old. The mean and standard 

deviation of the revised age was 122.13191.62 days. 

Revised age is defined as an age revised by normal fetal 

weeks (40 weeks) for premature babies. Their revised age, 

sex and number of slices are shown by table I. A volume is 

composed by slices. We had obtained informed consent from 

all their parents. According to diagnosis by radiologists, they 

had no significant cerebral disorders at the time of MR image 

acquisition.  

We acquired T2-weighted MR images using 3.0T MR 

scanner (Intera, Philips Medical Systems) with a circularly 

polarized head coil as both the transmitter and receiver. 

T2-weighted MR images were acquired using the following 

parameters: echo time (TE)  which is the necessary time till 

the signal was recognized was 106-165 msec; repetition time 

(TR) which is interval to give pulse was 2000 msec; slice 

thickness, 1.5 mm; space between slices, 0.75 mm; field of 

view (FOV) and number of slices were adjusted by a size of 

target head size (120 - 200 mm), image matrix is 320 × 320 

voxel; resolution is 0.75 × 0.75 × 0.75 mm
3
.  

III. PROPOSED METHODS 

The proposed method synthesizes FOGM using training 

dataset which is composed of MR images acquired from 

different subjects with various growth indexes. To estimate 

the growth index, we propose two methods. The first method 

calculates growth index from revised age. However, the 

neonatal cerebrum deformation by natural growth will be 

different from person to person, and the growth index will not 

same as the revised age. The second method proposes an 

estimation method of growth index using Manifold learning. 

We employ distances among brain anatomical landmarks to 

calculate a weight matrix among training data. To validate the 

performance of FOGM, we propose anatomical recognition 

method in neonatal brain MR images using FOM and FOGM. 

The flowchart of proposed method is shown by Fig.2. 

In the following subsections, we describe the proposed 

FOGM in Section IIIA, two methods for estimating growth 

index for training datasets in Section IIIB, and Section IIIC 

shows growth index estimation method for evaluation data, 

and the anatomical recognition method. 

A. Fuzzy Object Growth Model  

FOGM is an extension of FOM [4]. FOM is defined by 

voxels, and each voxel has a fuzzy degree between 0 and 1. 

Fuzzy degree means a degree of belonging to a target region 

(i.e., brain region) should be recognized. 1 fuzzy degree 

means that the position is completely inside the target region, 

and 0 fuzzy degree means that the position is completely 

outside the target region. 

In contrast, each voxel of FOGM has a set of distances 

from the target contour for each training subject, and FOGM 

has a table of growth index of the training subjects. The 

method consists of 4 steps. FOGM is generated only once 

 
(a) 

 
(b) 

Fig. 1.  Example of applying Manifold learning. (a) is 3D data which 
have Gaussian distribution shape. (b) is the result of manifold learning. 

3D data is projected to 2D space while the positional relation of data is 
preserved. 

TABLE I 

DATA OF SUBJECTS 

Data number Sex Revised age Number of slices 

1 M 3m3w 200 

2 M 3w 130 

3 M 4w 200 

4 F 3m2w 220 

5 M 2y 220 

6 M 5w 180 

7 F 10m3w 190 

8 M 1w 120 

9 M 0w 140 

10 M 1m 140 

11 M 2m 160 

12 M 2m1w 170 

13 M 0w 150 

14 M 3m 190 

15 F 0w 180 

16 M 10m3w 200 

 M; male. F; female. y; year. m; month. w; week. 
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from the training subjects, and we do not need to generate 

FOGM again when analyzing evaluating subjects.  

 

[Algorithm] FOGM generation 

[Step 1] For each training subject, experts delineate the brain 

region in MR images manually.  

 [Step 2] Calibrate the pose/position of the brain region to a 

coordinate system because there is variability among 

subjects. The coordinate system used is illustrated in Fig. 

3. The inferior extremity of genu corporis callosi is the 

origin. A line which connects the origin to the inferior 

extremity of splenium corporis callosi is 

anterior-posterior (AP) axis, and the line of fissure 

longitudinalis cerebri is superior-inferior (SI) axis. The 

landmarks are detected manually, and are shown by Fig. 

4.  

[Step 3] For each voxel in all training data, calculate 3-D 

chamfer distance [10] (Figure 5) to the delineated brain 

surface. One voxel has a set of distances whose number 

is the same as the number of training data, n. At a voxel p, 

it is represented by         pdpdpdp n,,, 21 D .   

[Step 4] Estimate growth index using methods described in 

subsection IIIB. It is represented by  nvvv ,,, 21 V .   

[End of algorithm] 

 

After generating FOGM, the method synthesizes FOM at a 

certain growth index when analyzing an evaluation data. 

Consider a FOM generation whose growth index is tv  

( 10  tv ). We define a fuzzy degree for every voxel, p, as 

below.  

First, it calculates weighted average and variance of 

distances at voxel p by;  

 
Fig. 2. Flowchart of propose method. 

  
(a) (b) 

Fig. 5. 3-D Chamfer distance mask. (a) is used in the current slice. (b) is 

used in the previous and the next slice.  

 
Fig. 6. Weighting function for calculate average and variance. This 

function has Gaussian distribution shape.  

 
Fig. 7. Fuzzy membership function. 

 
Fig. 3. Coordinate system for calibration of brain pose/position. A, 
anterior; P, posterior; S, superior; I, inferior; L, left and R, right. 

 

 
Fig.4. Landmarks for calibration of brain pose/position. The red point is 

the inferior extremity of genu corporis callosi, and the blue point is the 

inferior extremity of splenium corporis callosi.  
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K is fuzzification parameter and has positive value. The shape 

of Eq. (5) is illustrated in Fig. 6. If K is the smaller, FOM is 

generated in the range of wider growth index. As K becomes 

the bigger, the range becomes the smaller. The relationship 

between K and half-width of half-maximum (HWHM) is  

 .2ln2HWHMK   (6) 

The fuzzy degree at voxel p is calculated using weighted 

average  pm  and variance  p2  by Eq. (7).  
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(7) 

When a voxel of interest is on the cerebral surface, the 

fuzzy degree takes 0.5. When the voxel leaves outside from 

the cerebral surface, the fuzzy degree will be smaller. And, 

the voxel comes inside the brain, the fuzzy degree will be 

bigger. That is illustrated in Fig. 7. The gradient is determined 

by the variance of distance. The variance becomes bigger, the 

gradient becomes gentle. In contrast, the variance becomes 

smaller, the gradient becomes steep.  

B. Estimation of Growth Index in Training Datasets 

This section introduces two methods for estimating growth 

index in the training data. The first method (m1) applies a 

liner conversion of the revised age as the growth index. The 

growth index of the oldest subject in data is 1, and the growth 

index of the youngest subject is 0. The growth index, Tv , of a 

subject whose revised age is y is defined by; 
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where maxy  and miny  are the oldest revised age and the 

youngest revised age in the training dataset, respectively. 

The second method (m2) estimates the growth index by 

means of Manifold learning. Manifold learning calculates 

distances of all combination of training data in a high 

dimensional space, and resolves eigenvalue of graph 

Laplacian to project the training data to a low dimensional 

space.  

At first, we manually detect Np brain anatomical landmarks 

every each subject in training datasets. Next, the method 

calculates Euclidean distance between all combination of the 

detected landmarks. The calculated distances are used as a 

characteristic vector of the subject i, 

        iaiaiai M,,, 21 a , where M is the number of distances 

and is 
2C

PN
. Using the characteristic vectors, a1, a2,…, ak, all 

subjects in the training dataset is assigned in a high 

dimensional space. The method calculates neighborhood 

relations between them using Eq. (1), and then solves a 

generalized eigenvalue problem to project the high 

dimensional data into 1 dimensional space.  

The eigenvalues in the 1 dimensional space are normalized 

to a value between 0 and 1 by a liner conversion. We define 

the normalize value, v1, …, vk, as growth indexes of subjects 

in the training dataset. The maximum of growth index is 1, 

and the minimum is 0.  

C. Estimation of Growth Index for Evaluation Data 

In case of (m1), the growth index is estimated by Eq. (8) 

using revised age of the evaluating subject.  

In case of (m2), the growth index is estimated as below. 

Generalized eigenvalue problem which is given by Eq. (2) 

can be transformed to Eq. (9) by multiplying 1D  to the both 

side.  

 vLvD 1  (9) 

When the number of subjects in the training datasets is N, 

LDX 1  is a square matrix of N rows and columns, and Eq. 

(9) can be transformed to  

 .)1(1 

 i

N

Ti
i TiT vXv  (10) 

 
Fig. 8. Feature points using Manifold learning. The red point is the 
cross point of superior frontal sulcus and precentral sulcus. The blue 

point is the anterior extremely of temporal lobe.  

TABLE II 

ESTIMATION RESULTS OF GROWTH INDEX 

Subject # Truth 
value 

Estimation 
Result 

Error 

1 0.5145 0.5132 -0.0012 

2 0.3528 0.3486 -0.0042 

3 0.1359 0.1488 0.0129 

4 0.7331 0.8075 0.0744 

5 1.0000 1.0000 0.0000 

6 0.4654 0.4685 0.0031 

7 0.8809 1.0000 0.1191 

8 0.1350 0.0647 -0.0703 

9 0.0000 0.0000 0.0000 

10 0.2950 0.2840 -0.0110 

11 0.2912 0.2801 -0.0111 

12 0.4917 0.4923 0.0006 

13 0.3275 0.3214 -0.0061 

14 0.2246 0.1998 -0.0248 

15 0.1687 0.1130 -0.0556 

16 0.9412 1.0000 0.0588 

anterior extremely of temporal lobe

Cross point of superior frontal sulcus 
and precentral sulcus

S

I

A P
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where vi and   are gotten by Manifold learning for training 

data. W can be calculated by Eq. (1) using a characteristic 

vector of the evaluating subject and the vectors of training 

data. That is, the anatomical landmarks should be detected 

manually. Therefore, we can calculate D and L using W, and 

can estimate the growth index of the evaluating data.  

D. Automated Anatomical Recognition of the Brain 

Region using Fuzzy Object Growth Model 

To evaluate the proposed methods, we applied them to 

segmentation of the brain region. Although there are many 

image segmentation methods, we employ a simple method for 

evaluation of the proposed methods. The segmentation 

method consists of the following steps. 

 

[Step 1] Manually detect anatomical landmarks of the 

evaluation data. 

[Step 2] Estimate growth index of the evaluation data.  

[Step 3] Generate FOM at the growth index.  

[Step 4] Align the generated FOM to the evaluation data.  

[Step 5] Fuzzify the evaluation data by assigning a fuzzy 

degree of the aligned FOM to each voxel of evaluation 

data. It is called a fuzzy voxel map. 

[Step 6] Defuzzify the fuzzy voxel map by thresholding. For 

each voxel, if the fuzzy degree is higher than or equal to a 

threshold, the voxel is labeled as target region, otherwise 

it is labeled as background.  

IV. EXPERIMENTAL RESULTS 

A. Growth index estimation by Manifold learning 

We applied the Manifold based estimation method (m2) to 

16 subjects which were shown by Table I. The brain 

anatomical landmarks used were the inferior extremity of 

genu corporis callosi, the inferior extremity of splenium 

corporis callosi, the right and the left cross points of the 

superior frontal sulcus and the precentral sulcus, the right and 

the left anterior extremely points of temporal lobe (See Fig. 4 

and 8). They were selected because landmark detection in 

MR images was relatively easy. They were detected manually 

using multi-planer reconstruction (MPR) images by 

radiologist. The normalization parameter t of Eq. (1) was 

5000.  

 We compared the estimated growth index with the revised 

age and with the cerebral volume for evaluating the 

performance as shown in Fig. 9. The cerebral volume was 

calculated by segmenting the cerebral region manually. 

Correlation coefficients were 0.814 and 0.956, respectively, 

and there are significant correlation ( 001.0p  for the 

  

(a) (b) 
Fig. 9. Comparison of growth index. (a) compares the growth index with the revised age. The unit of revised age is day. (b) compares the growth index with the 

cerebral volume. The unit of brain volume is cc. The lines are regression lines.  
 

      

 

      

(a) 0.0 (b) 0.2 (c) 0.4 (d) 0.6 (e) 0.8 (f) 1.0  

Fig. 10. Fuzzy object growth model with (upper) the revised age based method, m1, and with (lower) the Manifold learning method, m2. 
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revised age, 810p  for the cerebral volume). The results 

showed that the estimated growth index with Manifold 

learning is compatible to the revised age and the cerebral 

volume.  

Next, we evaluated the estimation method for unknown 

data. We conducted a leave one out cross validation 

(LOOCV) test. We applied Manifold learning to all subjects 

excepting an evaluating subject. After that, we estimated a 

growth index of the evaluating subject. The truth values were 

a growth index estimated by Manifold learning using all data. 

The experimental results are shown in Table II. Mean 

absolute error (MAE) was 0.0283. Accuracies declined a bit 

for subjects whose growth indexes were close to the 

maximum (1.0) or the minimum (0.0). We are considering 

that the accuracy will be declined because it requires 

extrapolation for the subjects. Thus, we expect that the 

accuracy will be improved by increasing the number of 

training subjects.  

B. Fuzzy Object Growth Model 

We generated FOGM by applying the proposed two 

methods. The HWHM was experimentally determined, and 

was 0.1 for m1, and 0.2 for m2. The generated FOGMs are 

shown in Fig. 10. The results showed that the cerebrum 

becomes bigger with increasing the growth index. Figure 11 

shows FOM generated by the previous method described in 

Ref. [6]. The method calculates fuzzy degrees of each voxel 

using the simple average, and selects 8 training subjects 

whose revised ages were under one month. In previous 

method, FOM has the shape which is almost an ellipse. In our 

methods, FOGM has recessed between frontal lobe and 

temporal lobe.  

To evaluate the effectiveness of the proposed methods, we 

segmented the cerebral region using the synthesized FOM. 

The conventional method [6] synthesized FOM using only 

subjects whose revised ages were under one month. To 

compare results among the proposed two methods and the 

  
Fig. 11. Fuzzy object model with the previous method [6]. 

 

 
Fig. 12. Raw MR image. 160th image among 320 axial images of 
Subject 2. 

(a) 

  

(b) 

  

 (c) 

  
Fig. 13. Segmentation result for Subject 2. (a) are results of first method. 

(b) are results of second method. (c) are results of previous method. 
Left images are fuzzification result. Right images are segmentation 

result.  

 

TABLE III 

AUC OF SUBJECTS WHOSE REVISED AGES ARE UNDER A MONTH 

Evaluating 

subject 

Proposed 

method (m1) 

Proposed 

method (m2) 

Conventional 

method 

2 0.99401 0.99367 0.99423 

3 0.99245 0.99297 0.99272 

6 0.97976 0.97910 0.97860 

8 0.99123 0.99156 0.99076 

9 0.99072 0.98965 0.99095 

10 0.99037 0.99001 0.98753 

13 0.98853 0.98716 0.98923 

15 0.98862 0.98923 0.98503 

1814



 

 

 

conventional method, we segmented the cerebral region for 

under one month subjects. Figure 12 shows a raw MR image, 

and Fig. 13 shows fuzzification results and the segmentation 

results. The threshold of defuzzification used was 0.5. The 

results show that all methods recognized the brain region well, 

however, there are some differences. The conventional 

method shown in Fig. 13 (c) tends to produce 

under-segmentation in the frontal edge of the temporal lobe, 

but the proposed methods shown in Fig. 13(a) and (b) 

segmented the region accurately.  

To evaluate the segmentation results quantitatively, we 

calculated sensitivity and false positive volume fraction 

(FPVF). The ground truth was the result of manual 

segmentation. Because the accuracy was changed by the 

threshold parameter, we analyzed that by using a receiver 

operating characteristic (ROC) curve [11] while changing the 

threshold from 0 to 1. When FPVF is small, the accuracy is 

better if sensitivity is bigger. To quantify it, we calculated 

area under the curve (AUC) of the ROC curve. The AUC 

takes a value between 0% and 100%, the higher AUC means 

the better accuracy.  

Table III tabulates AUC of each method, they were 

calculated by using LOOCV. LOOCV test generates FOGM 

using all 16 subjects excepting the evaluating subject. That is, 

all subjects including subjects whose revised ages were over 

one month were used for growth index estimation and FOGM 

generation. AUC (average  standard deviation) of the 

proposed method (m1) was 0.990 0.004, of the proposed 

method (m2) was 0.990  0.005, and of the conventional 

method was 0.989  0.005. The results showed that 

segmentation accuracies of the proposed methods were 

higher than the conventional method.   

Next, we applied the methods to subjects whose revised 

ages were over one month in the same manner. The 

conventional method generated FOM using 8 subjects whose 

TABLE V 

RESULTS OF ESTIMATION GROWTH INDEX WITH THE 4 POINTS METHOD 

Evaluating 

subject 

Truth 

value 

Estimation 

result 

Error 

1 0.63062 0.69402 0.06340 

2 0.16888 0.16445 -0.00443 

3 0.19006 0.19263 0.00257 

4 0.56042 0.59063 0.03021 

5 1.00000 1.00000 0.00000 

6 0.16511 0.16123 -0.00388 

7 0.74269 0.87860 0.13591 

8 0.01519 0.00000 -0.01519 

9 0.00000 0.00000 0.00000 

10 0.23780 0.24087 0.00307 

11 0.20696 0.20746 0.00050 

12 0.05152 0.05612 0.00460 

13 0.16801 0.16371 -0.00430 

14 0.08040 0.05562 -0.02478 

15 0.07657 0.04415 -0.03242 

16 0.60749 0.65714 0.04965 

 
TABLE VI 

COMPARISON OF AUC WITH BETWEEN THE 6 POINTS METHOD AND THE 

4 POINT METHOD 

Evaluating  
subject 

6 points 4 points 

1 0.97082 0.98192 

2 0.99367 0.98782 

3 0.99297 0.99254 

4 0.98115 0.98166 

5 0.98007 0.98478 

6 0.97910 0.98155 

7 0.89693 0.92033 

8 0.99156 0.99101 

9 0.98965 0.98949 

10 0.99001 0.99037 

11 0.98532 0.98384 

12 0.97687 0.97762 

13 0.98716 0.98662 

14 0.98660 0.96717 

15 0.98923 0.98878 

16 0.97206 0.96717 

TABLE IV 

AUC OF SUBJECTS WHOSE REVISED AGES ARE OVER ONE MONTH 

Evaluating 
subject 

Proposed 
method (m1) 

Proposed 
method (m2) 

Conventional 
method 

1 0.96756 0.97082 0.97357 

4 0.98552 0.98115 0.97124 

5 0.96388 0.98007 0.95856 

6 0.65280 0.89693 0.91574 

11 0.98422 0.98532 0.98616 

12 0.97605 0.97687 0.98028 

14 0.98893 0.98660 0.98690 

16 0.79145 0.97206 0.95551 

 

 
(a) 

 
(b)  

Fig. 14. Comparison growth index estimated by 4 points.  (a) is the 

result of comparison between growth index and revised age. The unit of 

revised age is day. (b) is the result of comparison between growth index 

and brain volume. The unit of brain volume is cc. The lines are 

regression lines. 
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revised ages were under one month. Table IV tabulates the 

calculated AUC. AUC (average  standard deviation) of the 

proposed method (m1) was 0.914 0.124, of the proposed 

method (m2) was 0.969  0.030, and of the conventional 

method was 0.966 0.023. The results for one month over 

subjects decreased than those for one month less subjects 

shown in table III. The decrease amount of the proposed 

method (m2) was the smallest among them. The results 

concluded that the Manifold learning based method (m2) 

shows the best performance for any age group. 

V. DISCUSSIONS 

The Manifold learning based (m2) method estimates 

growth index by using some anatomical feature points. There 

is a possibility that the estimation accuracy will depend on the 

number of feature points. In order to validate that, we 

evaluate the performance by the proposed method by using 4 

feature points; inferior extremity of genu corporis callosi, 

inferior extremity of splenium corporis callosi, right and left 

of cross point of superior frontal sulcus and precentral sulcus. 

The normalization parameter t of Eq. (1) was 1000. And, 

HWHM of Eq. (6) was 0.3. Those parameters are 

experimentally determined.  

Figure 14 compares the estimated growth index with the 

revised age and with the brain volume. Correlation 

coefficients were 0.861 and 0.943 respectively. There are 

significant correlation (  for the revised age, 

810p  for the brain volume). Also, we conducted LOOCV 

test for growth index estimation and cerebral region 

segmentation. Comparison of the results between 4 points and 

6 points are shown in Table VI and Table V. MAE of growth 

index estimation with the 4 points method was 0.0238, and 

with 6 points method was 0.0283. The results show that there 

are not large differences of accuracy between the 4 points 

method and the 6 points method. Therefore, the proposed 

method gives a good performance even if less feature points. 

It will be good for users to decrease the number of required 

input points  

VI. CONCLUSION 

This paper has introduced FOGM which is an atlas model 

deformed by natural growth. And, it proposes two methods 

for estimating growth index. The first method (m1) estimated 

the growth index from the revised age. The second method 

(m2) estimated that by means of Manifold learning using 

anatomical feature points. The estimation results with m2 

showed a significant correlation with the brain volume and 

with the revised age. And, it estimated growth index of 

unknown subject with a good accuracy (MAE of 0.0283).  

To validate the performance of FOGM, the proposed 

methods were applied to brain segmentation. The results 

concluded that the use of FOGM and growth index estimation 

with Manifold learning improved the segmentation accuracy, 

And, the Manifold learning method could be applied to large 

range of age. The performance of the proposed method was 

not changed when decreasing to 4 feature points. We used a 

threshold processing as segmentation method in this paper to 

evaluate only the performance of the proposed method. We 

expect that the accuracy of segmentation will increase by 

using the other solicited method such as fuzzy connected 

image segmentation [6].  

Future work is to increase the number of subjects in order 

to investigate the performance of the proposed methods, and 

to consider an analysis parameters, parameter t in Eq. (1) and 

HWHM in Eq. (6).  
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