
Learning from Data Using the R Package “frbs”

Lala Septem Riza, Christoph Bergmeir, Francisco Herrera, and Jose Manuel Beńıtez

Abstract—Learning from data is a process to con-
struct a model according to available training data
so that it can be used to make predictions for new
data. Nowadays, several software libraries are avail-
able to carry out this task. frbs is an R package
which is aimed to construct models from data based
on fuzzy rule based systems (FRBSs) by employing
learning procedures from Computational Intelligence
(e.g., neural networks and genetic algorithms) to
tackle classification and regression problems. For the
learning process, frbs considers well-known methods,
such as Wang and Mendel’s technique, ANFIS, Hy-
FIS, DENFIS, subtractive clustering, SLAVE, and
several others. Many options are available to perform
conjunction, disjunction, and implication operators,
defuzzification methods, and membership functions
(e.g., triangle, trapezoid, Gaussian, etc). It has been
developed in the R language which is an open-source
analysis environment for scientific computing. In this
paper, we also provide some examples on the usage
of the package and a comparison with other software
libraries implementing FRBSs. We conclude that frbs

should be considered as an alternative software library
for learning from data.

I. Introduction

F
UZZY RULE BASED SYSTEMS (FRBSs) are well-
known methods within Computational Intelligence,

based on fuzzy concepts proposed by L. Zadeh [1] to
address complex real-world problems containing uncer-
tainty, imprecision, and non-linearity. They aim at rep-
resenting knowledge in a set of fuzzy rules. Therefore,
FRBSs can be seen as an extension of classical rule-based
systems (also known as production systems or expert
systems). Basically, they are expressed in the form “IF
A THEN B” where A and B are fuzzy sets. A and B are
called the antecedent and consequent parts of the rule,
respectively.

The knowledge represented by a set of rules can be con-
structed by human experts based on their experiences.
However, we may face many difficulties in this approach,
such as there are no available human experts and diffi-
culties in representing their knowledge. Another way that

Authors affiliated with the Department of Computer Science
and Artificial Intelligence, E.T.S. de Ingenieŕıas Informática y
de Telecomunicación, CITIC-UGR, University of Granada (email:
{lala.s.riza, c.bergmeir, herrera, j.m.benitez}@decsai.ugr.es).

This work was partially supported by the Spanish Ministry of
Education, Science and Technology under Project TIN2011-28488,
the Andalusian Research Plan P10-TIC-6858, P11-TIC-7765, and
P11-TIC-9704, and Regional Project P12-TIC-2958. Lala Septem
Riza would like to express his gratitude to the Dept. of Computer
Science, Universitas Pendidikan Indonesia, for supporting him to
pursue the PhD program, and to the Directorate General of Higher
Education of Indonesia, for providing a PhD scholarship.

we consider here is to generate rules automatically from
data by employing learning methods.
The frbs package [2], which we present in this paper,

is an R package not only providing prominent FRBS
models but also implementing widely used learning pro-
cedures in FRBSs. Furthermore, even though we focus
on learning from data by employing various learning
methods, we facilitate users to build an FRBS model
manually from knowledge of human experts. The package
is implemented in the R programming language and is
available from the Comprehensive R Archive Network
(CRAN) [2].

R is a widely used free and open-source analysis envi-
ronment for scientific computing and visualization. It was
introduced by R. Ihaka and R. Gentleman in their paper
in 1996 [3]. R is available under the GNU General Public
License (GPL) and it is maintained and enhanced by the
R Development Core Team [4]. However, a wide range
of institutions, universities, companies, and individual
scientists constributes mainly in the form of packages.

The remainder of this paper is structured as follows.
Section II gives briefly an introduction to R and its
ecosystem. Section III presents the package architecture
and its implementation. Some examples are shown in
Section IV. Also, we compare the package with other
available fuzzy tools in Section V. Finally, Section VI
concludes the paper.

II. R and its Ecosystem

A. Introduction to R

R is an analysis environment introduced by R. Ihaka
and R. Gentleman under the term of the GPL License
used for scientific computing and visualization [3]. It is
able to be installed in various operating system such as
Linux, Mac OS X, Solaris, and MS Windows.

To obtain the R software, we simply go to the site
http://www.r-project.org and then follow the download
instructions. As of this writing, the current version of
R is 3.0.3. Since R is a command-line environment, the
prompt symbol will be shown after installing and running
R. We can operate simple computations (e.g., addition,
multiplication, etc) by typing commands interactively at
the R prompt. Also, we can create a text file containing
the commands or functions. A comprehensive introduc-
tion to the R language can be found in e.g.,[5].

B. R Ecosystem

R is constantly growing and now supplying a wide
variety of statistical and graphical techniques, and in-
cludes many other areas, such as data mining, machine

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 2149

learning, pattern recognition, bioinformatics, etc. The
main characteristics of R are that (i) it is open source, (ii)
available for multiple platforms, and (iii) is easy extended
by the R community in terms of packages.

A major benefit working with R is that it provides
a scientific ecosystem of packages contributed by re-
searchers and practitioners. Now, there are over 5000
packages available which are classified into more than
20 task views. For instance, the task view of Machine
Learning and Statistical Learning contains more than 30
packages for, e.g., neural networks, recursive partitioning,
random forests, support vector machines, and kernel
methods, etc.

Mostly, packages developed in the R framework
are included in CRAN and the Bioconductor project.
They can be found at http://cran.r-project.org/ and
http://www.bioconductor.org/. One remark showing
how packages in R are kept in good quality is that
every package submitted into the repositories is checked
manually and must meet a standard quality, such as
representative documentation, running on any operating
systems (e.g., MS Windows, Mac OS X, Linux), etc.

III. The frbs Package

The frbs package was written in pure R. It provides
over ten learning methods to construct FRBS models in
regression and classification tasks from available data [2].
Currently, frbs is in version 2.2-0.

frbs allows the user to work with several model types.
Examples are (i) the Mamdani model [6], [7] which is
built by linguistic values in both the antecedent and
consequent parts of rules and (ii) the Takagi Sugeno
Kang model [8], [9]. Instead of working on linguistic
values on the consequent part as in the Mamdani model,
the latter one constructs rules whose consequent parts
are represented by a function of input variables. Other
models that are implemented in the package are, e.g.,
approximate Mamdani, fuzzy rule-based classification
systems (FRBCS), and lateral tuning models. The de-
tailed description of the models can be found in [2].

Regarding learning approaches to construct the FRBS
model, frbs classifies them into five groups:

1) FRBS based on space partition: it refers to any
approach using a strategy of splitting the variable
space, and then considering these partitions to ob-
tain parameters of membership functions. We have
implemented Wang and Mendel’s technique (WM)
[10], the FRBCS using Chi’s method (FRBCS.CHI)
[11], and the FRBCS using Ishibuchi’s method with
weight factor (FRBCS.W) [12].

2) FRBS based on gradient descent: it refers to ap-
proaches using the gradient descent approach to
optimize parameters on both the antecedent and
consequent parts of rules, for example fuzzy infer-
ence rules with descent method (FIR.DM) [13] and
the FRBS using heuristics and the gradient descent
method (FS.HGD) [14].

3) FRBS based on genetic algorithms: it refers to
the genetic fuzzy systems (GFS) which is a com-
bination of FRBSs with genetic algorithms where
the genetic algorithms are used to search and op-
timize parameters of membership functions and
of the fuzzy rule construction process [15], [16].
We have implemented the genetic fuzzy system
based on Thrift’s method (GFS.Thrift) [17], the
genetic fuzzy systems for fuzzy rule learning based
on the MOGUL methodology (GFS.FR.MOGUL)
[18], Ishibuchi’s method based on the genetic co-
operative competitive learning (GFS.GCCL) [19],
Ishibuchi’s method based on the hybridization of
genetic cooperative competitive learning (GCCL)
and Pittsburgh (FH.GBML) [20], genetic lateral
tuning and rule selection of linguistic fuzzy systems
(GFS.LT.RS) [21], and the structural learning algo-
rithm on vague environment (SLAVE) [22]. In the
case of the GFS.GCCL and FH.GBML algorithms,
they introduce a new term which is don’t care for
simplification rule bases. Furthermore, FH.GBML
provides the parameter max.num.rule for defining
the maximum number of rules.

4) FRBS based on neural networks: it combines
FRBSs with the neural network framework. In this
group, we have considered the adaptive-network-
based fuzzy inference system (ANFIS) [23] and the
hybrid neural fuzzy inference system (HYFIS) [24].

5) FRBS based on clustering: it refers to FRBSs
constructed by clustering approaches through rep-
resenting cluster centers as fuzzy rules. We have
included the subtractive clustering [25] and the
dynamic evolving neural fuzzy inference system
(DENFIS) [26].

Besides the above algorithms considered in frbs, the
package allows us to assign various values for triangular
norm (t-norm) and s-norm operators, implicator func-
tions, defuzzification methods, and membership func-
tions. For example, we have implemented minimum,
Hamacher, Yager, product, and bounded product as tnorm
operators. Additionally, for performing fuzzification we
have considered triangle, trapezoid, Gaussian, sigmoid,
and general bell to be membership functions.

As we mentioned before, frbs facilitates human experts
to express their knowledge by defining a matrix repre-
senting membership functions and a set of fuzzy rules.
After defining the knowledge, we are able to perform rea-
soning/inference over new data. Also, we can combine an
FRBS model by learning from data and human experts
into a single model to obtain a reasonable result. It is
easy to do since frbs employs the matrix data structure
to represent objects in the FRBS model. In addition,
we are allowed to put hedge linguistics (i.e., extremely,
very, somewhat, and slightly) and the don’t care term in
constructing fuzzy rules.

A key advantage of using frbs is that one can easily

2150

compare the performance of FRBS models against an
extensive set of models already available through other
R packages. They can also be combined to form col-
laborative, improved solutions. Furthermore, because of
the GPL License, other researchers collaborate freely by
giving useful feedbacks, contributing their methods into
the package, and modifying current methods to tackle
their specific problems. From programming perspective,
we can also embed code written in other programming
languages such as C, C++, and FORTRAN into R pack-
ages. Additionally, several packages have implemented
fuzzy theories, for example the sets package implements
the fundamental concepts of the fuzzy theory [27].

IV. Usage Examples

frbs contains many functions to implement a particular
task in FRBSs. The main interface of the package is
rather simple and shown in Table I. So, instead of having
to handle all available functions, common users just need
to take these into account.

TABLE I

The main functions of the package

The function Description
frbs.learn() The main function of the package

to construct an FRBS model auto-
matically from data.

predict.frbs()
(or predict())

This function performs fuzzy rea-
soning to obtain predicted values
for new data, using a given FRBS
model.

frbs.gen() This function can be used to con-
struct the FRBS model manually
from expert knowledge.

summary.frbs() Show a summary of an FRBS
model.

plotMF() Plot the membership functions.

In order to use frbs, basically the following should be
considered.

1) Install and load frbs. We need to install frbs at the
first time use only. We can install it from CRAN
directly or from a local file in, e.g., .zip and .tar.gz
formats.

2) Prepare data. Usually, data are splitted into two
parts: training and testing. Data are not allowed to
contain missing values and should be in a matrix or
data.frame type.

3) Construct an FRBS model. We construct an FRBS
model by executing frbs.learn().

4) Prediction/inference for new data. We predict new
data by calling predict().

5) Report or summarize the model. The package pro-
vides functions to make a summary of the model
and plot the membership functions.

The following examples show the use of frbs in regres-
sion and classification problems. Before using frbs, firstly
we need to install it from CRAN by the following simple
command in the R environment.

R> install.packages("frbs")

After installing the package, in any session using frbs we
need to load it with the command:

R> library(frbs)

which makes any functions of frbs available in the R
environment. We can see a list of functions included in
frbs by typing the following code.

R> library(help=frbs)

All R functions available in frbs are documented in the
R hypertext and pdf format. The manual of frbs in
pdf format can be found in [2]. Furthermore, to get
information of a particular function, we can apply the
help command as follows:

R> help(frbs.learn)

A. Regression

In this section, we describe how to use frbs to predict
real-valued output based on the input variables expressed
by a continuous function. The following is a function
called the four hill function. It involves two input vari-
ables x ∈ [−2, 2] and y ∈ [−2, 2].

f(x, y) =
1

x4 + y4 − 2x2 − 2y2 + 3

We need to generate data according to the function
in a matrix format as follows. Here, we are using step
size 0.14 and assigning the output to z. We will obtain a
matrix containing 841 rows and 3 columns representing
the X, Y , and Z variables.

R> fun <- function(input.xy){

+ z <- 1/(input.xy[1]^4+input.xy[2]^4

+ -2*input.xy[1]^2-2*input.xy[2]^2+3)

+ }

R> input.xy <- expand.grid(seq(-2, 2, by = 0.14),

+ seq(-2, 2, by = 0.14))

R> z <- apply(input.xy, 1, fun)

R> data <- cbind(input.xy, z)

R> colnames(data)<- c("X","Y","Z")

After that, we split the data into two parts: training data
and testing data. We use 80% of the data for training,
and the rest for testing.

R> cut.indx <- round(0.8*nrow(data))

R> data.tra <- data[1:cut.indx,]

R> data.tst <- data[(cut.indx+1):nrow(data),1:2]

R> real.val <- data[(cut.indx+1):nrow(data),3,

+ drop=FALSE]

Then, we need to calculate the interval of each variable
by

R> range.data <-apply(data,2,range)

So, now our data is ready to use.
In order to construct an FRBS model, we need to

assign values to available parameters. All parameters
have default values, if we ignore them. For instance,
we use the Wang and Mendel’s algorithm (”WM”) as
the learning method and assign it to the parameter

2151

method.type. Then, we define other parameters in the
control parameter, for instance the number of linguistic
values, 5. And, we use the center of gravity (”COG”),
”MIN”, ”MAX”, and ”LUKASIEWICZ”to be our defuzzi-
fication method, types of t-norm, s-norm, and implicator
operators, respectively. Finally, let us call our simulation
”fourhill” by assigning the parameter name.

R> method.type <- "WM"

R> control <- list(num.labels = 5,

+ type.mf = "GAUSSIAN", type.defuz = "COG",

+ type.tnorm = "MIN", type.snorm = "MAX",

+ type.implication.func = "LUKASIEWICZ",

+ name="fourhill")

It is a simple way to execute the learning method as
follows.

R> mod.reg <-frbs.learn(data.tra,range.data,

+ method.type,control)

Even though we do not display the resulting model
because of the limited space here, we can summarize our
model by the following command.

R> summary(mod.reg)

The reader can also refer to the project web site
http://dicits.ugr.es/software/FRBS/ in order to see the
model. And, we plot the membership functions as seen
in Figure 1 by

R> plotMF(mod.reg)

The final step is to predict testing data using the
predict() function. It needs two arguments which are
mod.reg and new data. It can be done as follows.

R> res.test <-predict(mod.reg,data.tst)

The predicted values are generated in matrix format.
They can be compared with the real values using the
mean square error (MSE) by

R> err.MSE <- mean((real.val-res.test)^2)

R> print(err.MSE)

[1] 0.07852261

B. Classification

In this example, we are using the iris data set which
is already included in the R environment. The iris data
set is a well-known data set in the pattern recognition
literature. The data set contains 3 classes of 50 instances
each, where each class refers to a type of iris plant. One
class is linearly separable from the other 2; the latter are
not linearly separable from each other. To use it, we just
load the data by the command:

R> data(iris)

To get a relatively good proportion, usually we randomize
the data by

R> set.seed(2)

R> irisShuffled <-iris[sample(nrow(iris)),]

Because the decision attribute, which is in the last col-
umn is represented in a string, we need to convert it into
numerical values. Then, the data are split into two parts

which are tra.iris for training data and tst.iris for testing
ones.

R> irisShuffled[,5] <-unclass(irisShuffled[,5])

R> tra.iris <-irisShuffled[1:105,]

R> tst.iris <-irisShuffled[106:nrow(irisShuffled)

+ ,1:4]

R> real.iris <-matrix(irisShuffled

+ [106:nrow(irisShuffled),5], ncol = 1)

Then, even though frbs by default calculates the range
of the input data, we strongly recommend to define it
manually.

R> range.data.input <-apply(iris[,-ncol(iris)],

+ 2,range)

It should be noted that for classification tasks we only
need to define the range of input data.

As in the regression example, after our data is ready to
use, we need to define some parameters concerning the
used method and its control parameter. For example, we
are using the FRBCS.CHI method and we define three
linguistic values, the trapezoid to be the membership
function, and minimum, maximum and Zadeh for the
types of t-norm, s-norm, and implicator operators, re-
spectively.

R> method.type <-"FRBCS.CHI"

R> control <-list(num.labels = 3,

+ type.mf ="TRAPEZOID", type.tnorm = "MIN",

+ type.snorm = "MAX",

+ type.implication.func = "ZADEH")

We generate an FRBS model through the following com-
mand.

R> mod.class <-frbs.learn(tra.iris,

+ range.data.input, method.type, control)

As in the regression example, we do prediction as
follows:

R> res.test <- predict(mod.class, tst.iris)

Then, we can check the result by calculating the percent-
age error:

R> err = 100*sum(real.iris!=res.test)/

+ nrow(real.iris)

R> print(err)

[1] 4.444444

The plot of membership functions can be seen in Figure 2.
Further information and examples can be found in our
project web site.

V. Comparison with Other Fuzzy Tools

In this section, we review well-known software libraries
implementing FRBS concepts: Xfuzzy [28], Fuzzy Logic
Toolbox for MATLAB [29], Fuzzy Inference System Pro-
fessional (FisPro) [30], Generating Understandable and
Accurate Fuzzy Models in a Java Environment (GUAJE)
[31], and Knowledge Extraction based on Evolutionary
Learning (KEEL) [32], [33]. All of them support learning
from data using various learning procedures.

2152

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.8

x

M
F.
d
e
g
re
e
(x
)

X

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.8

x

M
F.
d
e
g
re
e
(x
)

Y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.8

x

M
F.
d
e
g
re
e
(x
)

Z

Fig. 1

The plot of membership functions in the regression example.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.8

x

M
F.
d
e
g
re
e
(x
)

Sepal.Length

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.8

x

M
F.
d
e
g
re
e
(x
)

Sepal.Width

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.8

x

M
F.
d
e
g
re
e
(x
)

Petal.Length

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.8

x

M
F.
d
e
g
re
e
(x
)

Petal.Width

Fig. 2

The plot of membership functions in the classification example.

Xfuzzy is an open-source framework under the term of
the GPL License based on fuzzy inference-based systems
[28]. The software has an architecture containing several
parts which share the proposed language XFL3. Using
the graphical user interface, these parts have different
functionalities, such as xfedit which can be used to
describe the logical structure needed for the inference
process. It is quite similar to the frbs.gen() function in
frbs to perform inference based on knowledge constructed
manually by human experts. xfsl is a tool used to extract
knowledge from data. Therefore, it is obvious that xfsl
has functionalities similar to frbs.learn() in frbs. Some
learning methods have been considered in this part, such

as gradient descent, second-order, Gauss-Newton, and
statistical algorithms. It can be seen that frbs offers more
algorithms for generating FRBS models. For the infer-
ence process, Xfuzzy provides the xfmt tool which is the
same as predict() in frbs. Other capabilities of Xfuzzy are,
e.g., plotting membership functions and converting codes
using xfc, xfcpp, and xfj into XFL3. Furthermore, many
options for t-norm, s-norm, and implicator operators and
defuzzification methods are available as well.

The Fuzzy Logic Toolbox for MATLAB is a toolkit for
analysis, design, and simulation systems based on fuzzy
logic. It provides Simulink, a graphical user interface
(GUI), and a command line mode to build FRBS models

2153

[29]. It supports standard Mamdani and Sugeno-type
fuzzy inference systems. In order to design an FRBS
model, it allows to use ANFIS, substractive clustering,
and fuzzy C-means. Two of the three methods are pro-
vided in frbs, and we provide several others. Additionally,
in this toolbox, the FISEditor is used to display general
information about a fuzzy inference system while the
Membership Function Editor and Rule Editor are used
to provide functions to display and edit membership
function and rules. Since frbs works with a scripting
interface, editing is a straightforward process by changing
the matrix of the model.

FisPro, built in C++ and Java, implements fuzzy in-
ference systems considering the rule base interpretability
and modularity in an open source software. As frbs, it
provides two modes of FRBS models which are expert
rule design and automatic induction for regression and
classification cases. It implements k-means, hierarchical
fuzzy partitioning (HFP), Wang and Mendel (WM),
fast prototyping algorithm (FPA), and fuzzy decision
trees (FDT) in order to generate fuzzy partitions and
rule bases. Additionally, FisPro provides the aggregation
operators ”MAX” and ”SUM” for conjunction, which are
also available in frbs. FisPro also includes mechanisms for
merging and improving fuzzy rules in a separated part
which is an optimization modul. In contrast, frbs simul-
taneously performs optimization along learning processes
by using learning methods such as genetic fuzzy systems.

GUAJE is an open-source software under the GPL
license that implements fuzzy rule-based systems in Java.
It is an extension of the Knowledge Base Configuration
Tool (KBCT) [34] and aimed to provide interpretable
fuzzy systems. Additionally, it integrates several other
software programs, such as FisPro, ORE, Espresso,
Graphviz, JMetal, and WEKA. From the perspective
of the algorithms used to generate fuzzy rules, GUAJE
adopts the approaches implemented in FisPro. Also, gen-
erated FRBS models can be exported to FisPro, Xfuzzy,
and the Fuzzy Logic Toolbox for MATLAB. Although
GUAJE provides data pre-processing algorithms (e.g.,
feature selection) and implements other approaches, frbs
has the advantage of being built in the R environment
which offers additional benefits since R provides more
comprehensive and complete algorithms for data pre-
processing and other prediction methods.

KEEL is a big and comprehensive software library con-
taining classical knowledge extraction algorithms, pre-
processing techniques (e.g., instance selection, feature
selection, discretization, etc.), learning algorithms for
clustering, regression, and classification problems, and a
statistical test module for comparison [32], [33]. It pro-
vides three important blocks: data management, design
of experiments, and educational experiments. Therefore,
it can be seen that KEEL is intended as a research and
educational tool. From the perspective of FRBSs, it is
focused on implementation of learning methods based

on GFS, such as GFS based on Thrift’s algorithm [17],
SLAVE [22], etc. Some of the algorithms considered in
KEEL are implemented in frbs as well. Even though
KEEL has implemented more than thirty learning algo-
rithms based on FRBSs, it does not provide construction
of FRBS models from human experts as in frbs.

VI. Conclusions

A package that implements fuzzy rule-based systems
for the R programming language, called frbs, has been
presented. It includes the most commonly used types
of FRBSs, namely, Mamdani and Takagi Sugeno Kang
models and several variants, for both classification and
regression tasks. An explanation of the advantages of
using R for analysis and learning from data, especially
in supporting the development of frbs has been given
briefly. Usage examples to get started and a comparison
with other software libraries are illustrated as well.

References

[1] L. A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8,
pp. 338-353, 1965.

[2] L. S. Riza, C. Bergmeir, F. Herrera, and J. M. Benitez, “frbs:
Fuzzy Rule-Based Systems for Classification and Regression
Tasks,” http://CRAN.R-project.org/package=frbs, 2014

[3] R. Ihaka and R. Gentleman, “R: A Language for Data Anal-
ysis and Graphicss,” Journal of Computational and Graphical
Statistics, vol. 5, no. 3, pp. 299-314, 1996.

[4] R Development Core Team, “R: A Language and
Environment for Statistical Computing,” R Foundation
for Statistical Computing, Vienna, Austria, http://www.r-
project.org/foundation/, 2010.

[5] R Development Core Team, “An Introduction to R,” R
Foundation for Statistical Computing, ISBN. 3-900051-12-7,
http://www.R-project.org/, 2008.

[6] E. H. Mamdani, “Applications of Fuzzy Algorithm for Control
a Simple Dynamic Plant,” In Proceedings of the IEEE, vol.
121, pp. 1585-1588, 1974.

[7] E. H. Mamdani and S. Assilian, “An Experiment in Linguistic
Synthesis with a Fuzzy Logic Controller,” Int. J. Man Mach.
Stud, vol. 7, pp. 1-13, 1975.

[8] T. Takagi and M. Sugeno,“Fuzzy Identification of Systems and
Its Applications to Modeling and Control,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. 51, no. 1, pp. 116-132,
1985.

[9] M. Sugeno and G.T. Kang, “Structure Identification of Fuzzy
Model,” Fuzzy Sets Syst., vol. 28, pp. 15-33, 1988.

[10] L. X. Wang and J. M. Mendel, “Generating Fuzzy Rules
by Learning from Examples,” IEEE Trans. Systems. Man
Cybernet., vol. 22, no. 6, pp. 1414-1427, 1992.

[11] Z. Chi, H. Yan, T. Pham, “Fuzzy Algorithms with Applica-
tions to Image Processing and Pattern Recognition,” World
Scientific, ISBN 9810226977.

[12] H. Ishibuchi and T. Nakashima, “Effect of Rule Weights in
Fuzzy Rule-Based Classification Systems,” IEEE Trans. on
Fuzzy Systems, vol. 1, pp. 59-64, 2001.

[13] H. Nomura, L. Hayashi, and N. Wakami, “A Learning Method
of Fuzzy Inference Rules by Descent Method,” IEEE Interna-
tional Conference on Fuzzy Systems, pp. 203-210, 1992.

[14] H. Ishibuchi, K. Nozaki, and H. Tanaka, “Empirical Study on
Learning in Fuzzy Systems by Rice Taste Analysis,”Fuzzy Set
and Systems, vol. 64, no. 2, pp. 129-144, 1994.

[15] O. Cordon, F. Herrera, F. Hoffmann, and L. Magdalena,
“Genetic Fuzzy Systems: Evolutionary Tuning and Learning
of Fuzzy Knowledge Bases,” Singapore: World Scientific Pub-
lishing, 2001.

[16] F. Herrera, “Genetic Fuzzy Systems: Taxonomy, Current Re-
search Trends and Prospects,” Evolutionary Intelligence, vol.
1, pp. 27-46, 2008

2154

[17] P. Thrift, “Fuzzy Logic Synthesis with Genetic Algorithms,”
Proc. of the Fourth International Conf. on Genetic Algorhtms
(ICGA91),” pp.509-513, 1991.

[18] F. Herrera, M. Lozano, and J. Verdegay, “A Learning Process
for Fuzzy Control Rules Using Genetic Algorithms,”Fuzzy Sets
and Systems, vol. 100, pp. 143-158, 1998.

[19] H. Ishibuchi, T. Nakashima, and T. Murata, “Performance
Evaluation of Fuzzy Classifier Systems for Multidimensional
Pattern Classification Problems,” IEEE trans. on Systems,
Man, and Cybernetics - Part B: Sybernetics, vol. 29, no. 5,
pp. 601-618, 1999.

[20] H. Ishibuchi, T. Yamamoto, and T. Nakashima,“Hybridization
of Fuzzy GBML Approaches for Pattern Classification Prob-
lems,” IEEE Trans. on Systems, Man, and Cybernetics-Part
B: Cybernetics, vol. 35, no. 2, pp. 359-365, 2005.

[21] R. Alcala, J. Alcala-Fdez, and F. Herrera, “A Proposal for
the Genetic Lateral Tuning of Linguistic Fuzzy Systems and
Its Interaction with Rule Selection,” IEEE Trans. on Fuzzy
Systems, vol. 15, no. 4, pp. 616-635, 2007.

[22] A. Gonzalez and R. Peréz, “Selection of Relevant Features in
a Fuzzy Genetic Learning Algorithm,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 31,
no. 3, pp. 417-425, 2001.

[23] J. S. R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy In-
ference System,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 23, no. 3, pp.665-685, 1993.

[24] J. Kim and N. Kasabov, “HyFIS: Adaptive Neuro-Fuzzy Infer-
ence Systems and Their Application to Nonlinear Dynamical
Systems,”Neural Networks, vol. 12, no. 9, pp. 1301-1319, 1999.

[25] S. Chiu, “Method and Software for Extracting Fuzzy Classi-
fication Rules by Subtractive Clustering,” Fuzzy Information
Processing Society, NAFIPS, pp. 461-465, 1996.

[26] N. Kasabov and Q. Song, “DENFIS: Dynamic Evolving
Neural-Fuzzy Inference System and Its Application for Time-
Series Prediction,” IEEE Transactions on Fuzzy Systems, vol.
10, no. 2, pp. 144-154, 2002.

[27] D. Meyer and K. Hornik, “Generalized and Customizable Sets
in R,” Journal of Statistical Software, vol. 31, no. 2, pp. 1-27,
2009.

[28] I. Baturone, F. J. Moreno-Velo, S. Sánchez-Solano, A. Barriga,
P. Brox, A. Gersnoviez, and M. Brox, “Using Xfuzzy Environ-
ment for the Whole Design of Fuzzy Systems,” Proc. IEEE
International Conference on Fuzzy Systems, London, pp. 1-6,
2007.

[29] The MathWorks, Inc., “The Fuzzy Logic Toolbox for Use with
MATLAB version 2,”The MathWorks, Inc., 2002.

[30] S. Guillaume and B. Charnomordic, “Learning Interpretable
Fuzzy Inference Systems with FisPro,” Information Sciences,
vol. 181, no. 20, pp. 4409-4427, 2011

[31] J. M. Alonso and L. Magdalena, “Generating Understandable
and Accurate Fuzzy Rule-Based Systems in a Java Environ-
ment,” Lecture Notes in Artificial Intelligence - 9th Interna-
tional Workshop on Fuzzy Logic and Applications, Springer-
Verlag, LNAI6857, pp. 212-219, 2011.

[32] J. Alcalá-Fdez, L. Sánchez, S. Garćıa, M. J. del Jesus, S.
Ventura, J. M. Garrell, J. Otero, C. Romero, J. Bacardit,
V. M. Rivas, J. C. Fernández, and F. Herrera, “KEEL: A
Software Tool to Assess Evolutionary Algorithms to Data
Mining Problems,”Soft Computing, vol. 13, no. 3, pp. 307-318,
2009.

[33] J. Alcalá-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. Garćıa,
L. Sánchez, and F. Herrera, “KEEL Data-Mining Software
Tool: Data Set Repository, Integration of Algorithms and Ex-
perimental Analysis Framework,” Journal of Multiple-Valued
Logic and Soft Computing, vol. 17, no. 2-3, pp. 255-287, 2011.

[34] J. M. Alonso, L. Magdalena, and S. Guillaume, “KBCT: A
knowledge extraction and representation tool for fuzzy logic
based systems,” IEEE International Conference on Fuzzy Sys-
tems, pp. 989–994, 2004.

2155

