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Abstract— A method for stabilization of known equilibria in
recurrent fuzzy systems is presented, which particularly ac-
counts for model uncertainties. Since the dynamics of recurrent
fuzzy systems are defined over a rectangular grid, it is first
observed that for stability analysis, only gradient conditions
at grid points have to be considered given that the inputs
are piecewise constant. Therefore, a robust structure variable
controller is proposed, switching between constant inputs. In
order to prevent the system from deadlock phenomena due to
the switching of the system, the structure variable control is
augmented by a piecewise polynomial controller, guaranteeing
asymptotic stability. The proposed method is applied to the
example of an inverted pendulum.

I. INTRODUCTION

Among the many concepts of utilizing fuzzy logic for
modeling of dynamic processes, two generally different
approaches can be identified: The first is driven by the need
for high precision of the system model, which mostly leads
to dynamic fuzzy models of high complexity. The second
approach tries to incorporate the basic idea of fuzzy logic
to model a system in a transparent and linguistically inter-
pretable way. Recurrent fuzzy systems [1], piecewise bilinear
systems [2] and more generally fuzzy systems with singleton
consequences [3] can be subsumed in the latter class. While
offering a high degree of linguistic interpretability, their
drawback is the inherit model uncertainty stemming from
the approximate nature of these dynamic fuzzy systems.

Nevertheless, given an approximate model, it is desirable
to control the process despite model uncertainties. The ques-
tion on how to stabilize equilibria in recurrent fuzzy systems
by means of fuzzy controllers was already addressed (see,
e.g., [4]), neglecting robustness issues. For the closely related
class of piecewise bilinear systems, [5] presented an ap-
proach based on feedback linearization, taking uncertainties
into account.

This paper now presents a control strategy for recurrent
fuzzy systems based on structure variable control, taking
model uncertainties explicitly into consideration. Because the
dynamics of a recurrent fuzzy system can be interpreted as
being defined piecewise over polytopes, a key observation
concerning stability analysis is that for constant control
inputs, dynamic properties only have to be considered at the
vertices of the polytopes, which reduces the computational
complexity significantly. This observation is akin to a line
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of research (see, e.g., [6]), which studies control to facet
problems on polytopes. In contrast to [6], the dynamics of
recurrent fuzzy systems studied here do not have in general
a constant control vector.

Since the assumption of a piecewise constant controller
is rather restrictive, the synthesis concept does not aim at
determining a constant control input for each rectangle of
the recurrent fuzzy systems, but instead for a finer partition
obtained by a split-and-merge technique. The polytopes of
this refined partition are such that dynamics defined over
them is homogenous to a certain degree. The controller
synthesis then takes general model uncertainties into account
such that robustness is maximized.

Due to the switching control law, the dynamic function
of the recurrent fuzzy system is in general discontinuous,
which possibly might lead to deadlock behavior. Therefore,
the robust controller only guarantees stability in the sense of
Lyapunov. In order to achieve asymptotic stability, additional
local polynomial controllers are computed preventing the
system from deadlock.

The remainder is organized as follows: In Sec. II, recurrent
fuzzy systems are revisited roughly, their general dynamic
function is derived and some notation is introduced. The
analysis of stability is then outlined in Sec. III, whereas the
controller synthesis is then discussed in Sec. IV. In Sec. V,
the proposed control strategy is applied to the inverted
pendulum example and Sec. VI gives concluding remarks.

II. PRELIMINARIES

A. Recurrent Fuzzy Systems

The definition of recurrent fuzzy systems (RFS) is briefly
revisited in this section, additional insights are provided in
[1] and [7]. Their dynamics are defined within the input state
space Z = X × U ⊆ Rn+m, x ∈ [xmin,xmax] and u ∈
[umin,umax], by means of linguistic differential equations

If x = Lx
j and u = Lu

q,

then ẋ = Lẋ
w(j,q).

(1)

Lx
j , Lu

q denote vectors of linguistic values in the state and
input space, whereas Lẋ

w(j,q) denotes vectors of linguistic
values describing gradients. In order to be able to transfer the
linguistic rules into a numerical representation, core position
vectors sxj ∈ Rn, suq ∈ Rm and core position gradients sẋw ∈
Rn are associated with the linguistic vectors. By means of the
rule base, gradients are defined at discrete points (sxj , s

u
q) ∈

Z . This is depicted in Fig. 1, from which it can also be
seen that by definition, the core position vectors induce a
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x2 sẋw(j,q)

sx1
j1−2 sx1

j1

sx2
j2−1

sx2
j2

Fig. 1. Hypersquare partition of RFS with core position derivatives.
Gradients within hypersquares are interpolations of core position derivatives.

rectangular grid in Z . A hypersquare is the convex hull of
core positions being neighbors of a vector (x,u) ∈ Z and
is denoted Hl, where l consists of the lower core position
indices. With slight abuse of notation we write Hx

l := Hl∩X
and Hu

l := Hl ∩ U for hypersquares in the state space and
in the input space, respectively. If ambiguity is excluded, we
also write Hi, Hj to indicate two different hypersquares. The
same shorthand notation is sometimes used for core position
vectors, e.g., sxi , sxj .

In order to assign a degree of membership to core positions
sxiji , supqp , membership functions µxiji (xi), µupqp (up) are intro-
duced for fuzzification. Furthermore, the algebraic product
is used for aggregation and implication, the simple sum for
accumulation of the single rules, and the center of singleton
method for defuzzification [8]. This choice allows for the
representation of the state derivative

ẋ =
∑
j,q

sẋw(j,q) ·
n∏
i=1

µxiji (xi) ·
m∏
p=1

µupqp (up)

=
∑
j,q

sẋw(j,q) · Ξ(j,q)(x,u)

(2)

as summation over core position gradients weighted by the
premise, which is the product of memberships in every
dimension.

B. Further Notation

Throughout the paper, the equilibrium of the RFS to be
stabilized is denoted x∗ and the number of hypersquares
in X is denoted Rn. The facet between two neighboring
hypersquares Hx

i , H
x
j is denoted Fij , with outer normal

vector nij pointing from Hx
i to Hx

j .
The identity matrix is denoted I. The notation � 0,

≺ 0 is used to indicate positive and negative definiteness
of symmetric matrices. The trace of a matrix is denoted
tr (M), diag (m1, . . . ,mn) is a diagonal matrix. The operator
vec(M) rearranges the elements of M column-wise into a
vector.

A multivariate normal distribution with mean m and co-
variance matrix Σ is written N (m,Σ). The signum function
is written as σ (·).

For polynomials p(x) =
∑
i q

2
i (x) being a sum of squares

(SOS), the notation p(x) ∈ Σ[x] is used. Then, from p(x) ∈
Σ[x], p(x) ≥ 0 follows. If ∃ϕ(x) =

∑N
n=1

∑d
i=1 ϕnix

2i
n ,

s.t. p(x) − ϕ(x) ∈ Σ[x], then strict inequality holds (see
[9] for details). For ease of notation, we omit ϕ(x), if strict
inequality is obvious.

III. STABILITY ANALYSIS

The following discussion first considers the stability anal-
ysis of an autonomous RFS, which is then extended to the
special case of an RFS controlled by discontinuous control.
Subsequently, the equilibrium of the system is assumed to
be at the origin and incident with a core position. These
assumptions are not overly restrictive, since the coordinates
of every RFS can be transformed such that x∗ = 0.

The following Theorem provides sufficient conditions for
stability of the equilibrium:

Theorem 1: Consider the dynamics of the autonomous
RFS

ẋ =
∑
j

sẋj

n∏
i=1

µxiji (xi) (3)

with x∗ = 0 being incident with a core position. If there
exists a P � 0, such that for all Hx

k ∈ X , {sxi , sxj } ∈
Hx
k \{0},

(sxi )
T

Psẋi < 0, (4a)

(sxi )
T

Psẋj +
(
sxj
)T

Psẋi
2

< 0 (4b)

and ẋ∗ = 0, then the equilibrium is asymptotically stable on
X .

Proof: By means of the well known Lyapunov theorem,
the existence of V (x) = 1/2 · xTPx > 0, and V̇ (x) <
0,∀x 6= 0, is a sufficient condition for asymptotic stability
of (3).

With abuse of notation, let “j \ 0” denote all indices not
corresponding to the origin. Then, with

x =
∑
j

sxj

n∏
i=1

µxiji (xi) =
∑
j

sxj · Ξj(x)

=
∑
j\0

sxj · Ξj(x) + x∗ · Ξ0(x)︸ ︷︷ ︸
0

(5)

and similar notation for ẋ,

V̇ = xTPẋ

=

∑
j\0

sxj · Ξj(x)

T

P

∑
i\0

sẋi · Ξi(x)


=
∑
j\0

∑
i\0

Ξj(x)Ξi(x) ·
(
sxj
)T

Psẋi

=
∑
i\0

Ξ2
i (sxi )

T
Psẋi +

∑
j\0

∑
i\0,i6=j

ΞjΞi
(
sxj
)T

Psẋi

=
∑
i\0

Ξ2
i · (sxi )

T
Psẋi︸ ︷︷ ︸

<0

+ . . .

+2
∑
j\0

∑
i<j,i\0

ΞjΞi︸ ︷︷ ︸
≥0

(
sxj
)T

Psẋi + (sxi )
T

Psẋj
2︸ ︷︷ ︸
<0

< 0 (6)

follows.
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Note that the final rearrangement of terms in (6) is akin to
[10], by which slightly less conservative inequalities have to
be checked.

The importance of Theorem 1 is in the establishment of a
stability proof for RFS, which is reduced to a check of finitely
many linear inequalities. Therefore a numerical solution can
be obtained efficiently by means of interior point methods.
If strict inequalities in (6) are relaxed to ≤, stability in the
sense of Lyapunov is proven instead of asymptotic stability.

IV. SYNTHESIS OF SWITCHING CONTROLLERS

A. Synthesis of Piecewise Constant Controllers

Consider now the RFS with inputs (2), for which a
piecewise constant controller

u(x) = uj (7)

is sought, such that a constant input is active for each
hypersquare Hx

j .
Lemma 1: The system dynamics within a hypersquare of

an RFS with constant inputs are determined solely by a
convex combination of core position gradients in the state
space.

Proof: The proof is obtained directly from (2). By
letting µu

q =
∏m
p=1 µ

up
qp (up = const.) ,

ẋ =
∑
j,q

sẋw(j,q) ·
n∏
i=1

µxiji (xi) ·
m∏
p=1

µupqp (up) (8)

=
∑
j,q

(
µu
q · sẋw(j,q)

) n∏
i=1

µxiji (xi) (9)

=
∑
j

s̃ẋj

n∏
i=1

µxiji (xi), (10)

from which the statement follows.
This result can be pictured as core position gradients of the
RFS being constant for constant inputs.

As a consequence, synthesis of constant stabilizing control
inputs (7) may again be carried out by solving finitely many
scalar equations similar to (4). In order to obtain more precise
conditions, the explicit dependency of the system dynamics
(2) from the membership functions is removed:

Assumption 1: In the following, triangular and ramp
shaped membership functions µxiji , µ

up
qp of states and inputs

are assumed, i.e.

µxiji (xi) =



xi−sxiji−1

s
xi
ji
−sxiji−1

, xi,min ≤ sxiji−1
≤ xi < sxiji ≤ xi,max

s
xi
ji+1
−xi

s
xi
ji+1
−sxiji

, xi,min ≤ sxiji ≤ xi < sxiji+1
≤ xi,max

1, xi,min ≥ xi ∨ xi ≥ xi,max

0, else. (11)

The benefit of this assumption is threefold: Besides ease
of implementation, membership functions are zero, if x and
sxj are not connected, i.e., if x is in a hypersquare not
bounded by sxj . This locality then allows for the description
of the dynamics (2) within a hypersquare Hx

l by means of

a polynomial. To see this, (11) is substituted into (2). After
some math, the multiplication of local affine functions leads
to the local dynamics

ẋ = al
0 +

n∑
i=1

al
xixi +

m∑
p=1

al
upup +

n∑
j=2

j−1∑
i=1

al
xijxixj

+
m∑
p=1

up

N∑
j=2

al
xiupxi + · · ·+ al

x1...nu1...m
x1 . . . xnu1 . . . um

(12)

for each hypersquare Hx
l . By rearranging terms,

ẋ = al(x) + Bl(x)Z(u) (13)

is obtained, with the vector of monomials
in the inputs up being denoted as Z(u) =[
u1, u2, u1 · u2, . . . , u1 · · ·um

]
. From (13) it

becomes obvious, that except for m = 1, the system
dynamics are per se non-input affine, which complicates the
controller synthesis.

Proposition 1: The dynamics of every RFS fulfilling As-
sumption 1 can be transformed via dynamic extension and
a change of variables into an equivalent system, whose
dynamics are input-affine.

Proof: By augmenting the system input with an
integrator, new inputs v ∈ Rm, u̇ = v are ob-
tained. By introducing new state variables w = Z(u) =[
u1, u2, u1 · u2, . . . , u1 · · ·um

]T ∈ R2m−1, the dif-
ferential equations of these new states read

ẇ =


u̇1
u̇2

u̇1u2 + u1u̇2
...

 =


v1
v2

v1u2 + u1v2
...

 . (14)

Thus, the state space equations of the prolonged system read[
ẋ
ẇ

]
=

[
al(x) + Bl(x)w

0

]
+

[
0

Z(u)
∂u

]
v, (15)

which is clearly input-affine.
For ease of notation, we assume in the following the RFS

to be input-affine, which is due to Proposition 1 without loss
of generality.

Theorem 2: If for an RFS with x∗ = 0, there exists a
P � 0, and for every hypersquare Hx

k ∈ X , there exist a
Hu

q ∈ U , such that

(sxi )
T

P
(
a(k,q)(s

x
i ) + B(k,q)(s

x
i ) · uk

)
< 0, (16a)

1

2

(
(sxi )

T
P
(
a(k,q)(s

x
j ) + B(k,q)(s

x
j ) · uk

)
+ . . .(

sxj
)T

P
(
a(k,q)(s

x
i ) + B(k,q)(s

x
i ) · uk

) )
< 0 (16b)

holds for all {sxi , sxj } ∈ Hx
k\{0}, i 6= j then x∗ is

asymptotically stable on X .
Thus, by solving (16), a Lyapunov matrix P as well as

constant inputs uk for every Hx
k are obtained. In contrast to
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the stability analysis criterion in Theorem 1, the Rn ·
(

2n

2

)
inequalities (16) are no longer linear in the decision variables.
Due to product terms Pµν ·ukλ of the elements of P and uk,
(16) can be rearranged as bilinear matrix inequality (BMI).
In addition, this feasibility problem is only continuous in
Pµν , ukλ , if assignments Hx

j → Hu
q are given. In the other

case, a mixed integer bilinear program has to be solved,
taking integer variables q as unknowns into account. Still, a
solution may be obtained via branch-and-bound techniques
[11]. Sometimes, a feasible solution may also be obtained by
solving (16) independently for every hypersquare in order to
obtain assignments Hx

j → Hu
q , and in a second step solving

(16) for all Hx
j simultaneously with Hx

j → Hu
q fixed.

Even for known assignments Hx
j → Hu

q , a bilinear matrix
inequality has to be solved, which is non-convex in general.
Two solution strategies are discussed briefly:

1) If a candidate Lyapunov function is known, only a lin-
ear matrix inequality has to be solved. Extending this
concept to alternately fixing first the Lyapunov function
and then the controller leads to the VK-iteration algo-
rithm [12]. Although the guess of a Lyapunov function
does not seem to be mathematically appealing, it may
in practical situations already lead to good results with
least implementation effort. In addition, bounds on the
control input may be regarded directly as additional
inequalities uk,min ≤ uk ≤ uk,max.

2) By means of variable substitutions

R = {Rij} = vec (Pµν) · vec (ukλ)
T
, (17)

(16) is again rendered linear in the variables Pµν and
Rij . Then, by utilizing a rank minimization approach
[13],

min
Pµν ,Rij

tr
(
R(k)

)
− 2

(
r(k−1)

)T
r(k), (18a)

s.t. (16), (18b)[
R(k) r(k)(
r(k)

)T
1

]
≺ 0 (18c)

a solution in the transformed decision variables is
obtained. If limk→∞ tr (R) − rT r → 0, then the
solution to (18) also solves (16). Thus, the unknown
control inputs can be recovered from (17). Although
by means of this approach, P and uk may be obtained
simultaneously, the drawbacks are obvious: Besides
higher complexity of the implementation, (18) has to
be solved iteratively, whereas beforehand there is no
guarantee of convergence such that tr (R)− rT r = 0.
In addition, bounds on the control input can no longer
be regarded directly.

B. Optimization of Robustness

The aforementioned procedure aims at determining con-
stant inputs by means of a feasibility problem (16). There-
fore, the question arises what parameter to optimize in order
to utilize the remaining degree of freedom. Although the

optimization of some performance measure (e.g., the decay
rate) is straightforward, it is more reasonable to account for
parametric uncertainties in the system model, which always
occur due to the approximate nature of RFS.

Since the system model stems either from rough expert
knowledge or measurement data, it is unlikely that further
information is available on how the system is dependent
on the uncertainties. Therefore, they have to be regarded as
general local distortion functions ξj(x) ∈ Rn, such that the
local dynamics of every hypersquare read

ẋ = fl(x,u) + ξl(x). (19)

ξ1

ξ2

−ξl1 ξl1−ξl2

ξl2

Fig. 2. Symmetric region of parametric uncertainties.

For simplicity we assume the uncertainties to be indepen-
dent, symmetric and bounded by some constant |ξj(x)| ≤ ξj.
Then the region of allowed parametric uncertainties is a
symmetric hypersquare Hξ,j around the origin, as shown in
Fig. 2. Instead of assuming ξj as given upper bound, the
volume of Hξ,j is taken as measure of robustness, which is
sought to be optimized. This procedure was carried out in
[14] for linear systems with parametric uncertainties, where
the problem was solved by means of a bisection algorithm.
Here, the polytope volume of allowed uncertain parameters,∑

j

∏n
i=1 ξi,j, is utilized directly as optimization criterion.

By means of the equality

arg
∑
j

max
ξj

n∏
i=1

ξi,j

= arg
∑
j

max
ξj

det diag
(
ξ1,j, . . . , ξn,j

)
= arg

∑
j

min
ξj

− log det Mξ,j (20)

with Mξ,j = diag
(
ξ1,j, . . . , ξn,j

)
, the optimization criterion

is obviously a convex function, since − log det(·) is convex.
Thus, the complete optimization problem for synthesis of

a robust switching controller reads

min
ξj

∑
j

− log det Mξ,j, (21a)

s.t. P � 0, (21b)

(sxi )
T

Ps̃ẋi < 0, (21c)

(sxi )
T

Ps̃ẋj +
(
sxj

)T
Ps̃ẋi

2
< 0, (21d)

Therein, the core position gradients of the controlled RFS
read

s̃ẋi = a(j,q)(s
x
i ) + B(j,q)(s

x
i ) · uj + (2 ·∆λ − I) ξj, (22)
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and ∆λ = diag (b1, . . . , bn) , b ∈ {0, 1}, λ = 1, . . . , 2n.
Thus, (2 ·∆λ − I) permutes over all 2n vertices of Hξ,j.
As a result of (21), stabilizing control inputs uj are obtained
for each hypersquare Hx

j , such that upper bounds ξj on the
uncertainties are maximized.

C. Optimization of State Space Partition

The assumption of a piecewise constant controller u(x) =
uj has the benefit that only finitely many inequalities at
core positions have to be checked. On the other hand,
the assumption of piecewise constant controllers is clearly
conservative, i.e., a common uj for all core positions in
Hx

j might not exist. Instead, the assumption is only plau-
sible, if the dynamics within each hypersquare are quasi-
homogenous, that is, sẋi ≈ sẋj ,∀{sxi , sxj } ∈ Hx

k . Therefore,
the aforementioned controller synthesis method is extended
by introduction of a rectangular state space partition P that is
allowed to be finer than the original hypersquare partition of
the RFS, and in which the dynamics of each region Pi ∈ P
is quasi homogenous.

A solution to this problem can be obtained using a
split and merge technique [15], which aims at recursively
splitting each hypersquare in smaller polytopes depending
on a homogeneity measure hs, and merging neighboring
partitions depending on a homogeneity measure hm. Among
the various ways of utilizing split and merge [16], the
cumulative variance of gradients at corners of polytopes

|Σk| =
1

Nq
·
∑
q

det
( 1

Nj

∑
j

(
sẋ(j,q) −mq

)
· . . .

·
(
sẋ(j,q) −mq

)T )
(23)

with mq = 1
Nj

∑
j sẋ(j,q) is used for deciding, whether a

partition should be split. Hence, a partition is split, if Σk >
θs, where θs is a threshold to be selected.

The decision whether to merge two neighboring partitions
P1, P2 is then carried out by means of a likelihood ratio test:
Core position gradients of each partition are assumed to be
drawn from a normal distribution

p(sẋi ) =
1√

2π|Σ|
exp

(
−1

2

(
sẋi −m

)T
Σ−1

(
sẋi −m

))
.

(24)

Then, by means of the likelihood ratio

L =

(
Σ0

2

Σ1 · Σ2

)2n

(25)

it is tested, whether the gradients are drawn from the same
distribution N (m0,Σ0), or from two different distributions
N (m1,Σ1), N (m2,Σ2).

Again, by choosing a threshold θm, L < θm leads to a
positive merge decision. For simplicity, the merging is only
carried out for siblings of the same branch (see [16] for
further details), such that the final partition P consists only
of hypersquares instead of more complex polytopes.

Algorithm 1: Split and Merge

Set P = ∪jHx
j ;

repeat
foreach Pi ∈ P do

Split Pi, if Σi > θs ;
Merge new subregions of Pi, if L < θm.

until no changes;

The complete split and merge procedure is summarized in
Algorithm 1.

As a result, a new partition P = ∪iPi = ∪jHx
j is

obtained for which the aforementioned controller synthe-
sis method can similarly be applied to. The benefit of
applying the split and merge technique is the option for
an arbitrarily fine partitioning. Thereby, hypersquares with
homogenous dynamics, e.g., almost static dynamic function
are obtained, which increases the chance to find a common
stabilizing constant control input. The drawback is in the
choice of parameters θs, θm, by which the resolution of P
is influenced. In addition, the split and merge technique
with hypersquares may potentially lead to an over fitting.
Therefore the maximum number of split and merge iterations
should be limited in order to limit computational complexity.

D. Auxiliary Polynomial Controllers Preventing Deadlock

Due to the switching control, the dynamic function of
the controlled RFS is in general discontinuous. Therefore,
chattering and deadlock phenomena may occur [17]. The
latter effect is particularly disadvantageous, since a solution
obtained from the aforementioned synthesis method may in
some cases only guarantee stability in the sense of Lyapunov.
Fig. 3 depicts an exemplary situation, where deadlock may
occur on the facet between two hypersquares.

0 0.5 1 1.5 2

0

0.5

1

ui uj

x1

x
2

Fig. 3. Deadlock phenomenon due to switching control.

In order to avoid this undesired effect, auxiliary local
controllers are determined for those partitions Pj ∈ P , in
which deadlock potentially may occur. The synthesis of these
auxiliary controllers is a two step procedure:

1) Partitions are detected, in which deadlock may occur
due to the switching control. By considering any two
neighboring partitions {Pi, Pj}, deadlock occurs on
the facet Fij = Pi ∩ Pj with outer normal vector
nij , if ∃ s̃ẋk ∈ Fij , such that σ

(
nTij s̃

ẋ
k(ui)

)
=

−σ
(
nTij s̃

ẋ
k(uj)

)
.
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2) With help of the previously determined Lyapunov
function, polynomial controllers uh = k(x), u =
uj + uh, are calculated for these partitions based
on sums of squares optimization. In addition to the
constraint −V̇ (x) > 0, the constraint nTij · ẋ > 0,∀x ∈
Fij , is added to ensure that gradients point away
from conflicting facets. Using sums of squares, these
conditions hold, if

−
(
∂V (x)

∂x

)T
· ˙̃x ∈ Σ[x], ∀x ∈ Pj , (26a)

nTij · ˙̃x ∈ Σ[x],∀x ∈ Fij . (26b)

Since these constraints have to hold only locally, the
generalized S-procedure [18] is utilized. Every rectan-
gular partition Pj may be outer approximated by an
ellipse εj(x), which is itself in a polynomial form.
The same holds for every facet Fij , which is outer
approximated by ϕij(x). Then a solution to (26) is
found, if there exists a polynomial controller kj(x)
and auxiliary polynomials t1(x), t2(x), such that

−
(
∂V (x)

∂x

)T
· ˙̃x− t1(x) · εj(x) ∈ Σ[x], (27a)

nTij · ˙̃x− t2(x) · ϕij ∈ Σ[x], (27b)

t1(x), t2(x) ∈ Σ[x]. (27c)

Considering again model uncertainties, the equations

min
ξj

∑
j

− log det Mξ,j , ∀ λ,Hq ∈ U , (28a)

s.t. − ∂V (x)

∂x

T

˙̃x− t1(x)εj(x) ∈ Σ[x] (28b)

nTij · ˙̃x− t2(x)ϕij ∈ Σ[x], (28c)

t1(x), t2(x) ∈ Σ[x], (28d)

Mξ,j = diag
(
ξ1,j , . . . , ξn,j

)
, (28e)

˙̃x = a(j,q)(x)+ B(j,q)(x) (uj + kj(x))+ (2∆λ−I) ξj
(28f)

are finally obtained.
Note that the auxiliary polynomial controllers are only

computed for conflicting partitions, if exist. In all other cases,
only locally constant controllers are applied. Although the
synthesis for polynomial controllers is also possible for every
hypersquare with simultaneous computation of polynomial
controllers and a common Lyapunov function (see [4]), this
usually leads to a much higher computational complexity,
even for small systems. Therefore, we restrict the sum
of squares framework to the computation of the auxiliary
controllers only.

V. NUMERICAL EXAMPLE

To illustrate the controller synthesis method, the inverted
pendulum on a cart as discussed in [19] is considered, with
the motion of the cart not being modeled. All computations

were carried out in MATLAB, using YALMIP [20] and SE-
DUMI [21].

Neglecting friction, the nonlinear system dynamics read

ẋ1 = x2, (29a)
ẋ2 = − sin(x1)− cos(x1)u, (29b)

which will serve as a ground truth model, from which a RFS
is obtained. The control input u is the acceleration of the cart.

The angle x1 of the pendulum as well as the angular
velocity x2 are considered in intervals x1 ∈ [2π/3, 4π/3]
x2 ∈ [−π/3, π/3], whereas the aim will be to stabilize the
upper equilibrium x∗ = [π, 0]T . By defining core positions
at {sx1

j1
} = {π ± π/3, π ± π/6, π ± π/12, π}, {sx2

j2
} =

{±π/3, ±π/6, ±π/12, 0}, {suq } = {±10, 0}, a RFS is
derived from (29). The phase plot of the uncontrolled system
is depicted in Fig. 4, in which the unstable equilibrium can
clearly be seen. Due to the rectangular grid, the RFS is lin-
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Fig. 4. Phaseplot of uncontrolled RFS.

guistically interpretable, since linguistic values Lx1
j1

= Lx2
j2

=
{neg. big/medium/small, zero, pos. small/medium/big} can
be associated with the core positions sx1

j1
, sx2
j2

. For the input
space, Luq = {negative, zero, positive} correspond to core
positions suq .

In order to refine the initial partition of the RFS, Algo-
rithm 1 is applied, choosing θs = 1 as threshold parameter
for the covariance matrix Σi of each partition Pi by which
it is decided whether to split Pi. In addition, θm = 1 is
chosen as threshold for the likelihood ratio test, by which it
is decided whether or not to merge two adjacent partitions
Pi, Pj . The result of the split and merge procedure is shown
in Fig. 5. As can be seen, by choice of the threshold
parameters θs, θm, larger regions are split such that the vector
field fi(x,u) is quasi homogenous within each partition Pi.
This improvement comes at the cost of the loss of linguistic
interpretability of P .

Applying the synthesis concept of robust feedback de-
scribed in Sec. IV-B, a positive definite matrix

P = 10−6 ·
[
5.38 0

0 42.1

]
(30)

as well as constant inputs are obtained for each region Pi,
which are listed in Table I. It also lists the resulting upper
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Fig. 5. Refined partition P of RFS with indices.

bounds ξi of the allowed model uncertainties as well as the
local maximum model error ei = max |ẋRFS− ẋGT|,x ∈ Pi,
between dynamics of the recurrent fuzzy system and the
ground truth model. (Since in this example, ei,1 ≈ 0, only
ei,2 is listed.) Note that throughout this example, model un-
certainties were constraint to ξi ≤ 10 for numerical reasons.
As becomes obvious from Table I, the calculated allowed
bound on model uncertainties ξi is always significantly larger
than the actual model uncertainties ei. In any case, the
knowledge of ξi allows to a certain extent for an evaluation
of the criticality of approximation errors.

TABLE I
CONTROLLERS ui , BOUNDS ON ADMISSIBLE PARAMETRIC

UNCERTAINTIES ξi FOR PARTITIONS Pi AND LOCAL DIFFERENCE ei,2

i ui ξi,1 ξi,2 ei,2 i ui ξi,1 ξi,2 ei,2
1 10 10 2.3 0.22 25 −9.84 0 5.36 0.26
2 10 10 4.77 0.22 26 −9.85 0 7.63 0.08
3 10 7.83 2 0.22 27 −9.88 0 8.25 0.08
4 10 10 4.13 0.22 28 −9.88 0 7.94 0.08
5 10 10 6.82 0.08 29 −9.87 0 6.76 0.08
6 10 10 8.73 0.08 30 −9.9 0 3.59 0.26
7 10 10 9.31 0.09 31 −10 5.87 3 0.27
8 10 10 7.95 0.08 32 −10 10 6.67 0.08
9 10 10 6.34 0.27 33 −10 10 8.67 0.09
10 10 10 4.3 0.27 34 −10 10 8.09 0.08
11 10 10 5.7 0.27 35 −10 10 5.54 0.08
12 10 10 3.45 0.27 36 −10 3.92 2 0.22
13 10 3.92 2 0.22 37 −10 10 3.45 0.27
14 10 10 5.54 0.08 38 −10 10 5.7 0.27
15 10 10 8.09 0.08 39 −10 10 4.3 0.27
16 10 10 8.67 0.09 40 −10 10 6.34 0.27
17 10 10 6.67 0.08 41 −10 10 7.95 0.08
18 10 5.87 3 0.27 42 −10 10 9.31 0.09
19 9.85 0 3.71 0.22 43 −10 10 8.73 0.08
20 9.82 0 7.14 0.08 44 −10 10 6.82 0.08
21 9.81 0 7.9 0.08 45 −10 10 4.13 0.22
22 9.83 0 8.34 0.09 46 −10 7.83 2 0.22
23 9.83 0 7.87 0.08 47 −10 10 4.77 0.22
24 9.78 0 5.08 0.27 48 −10 10 2.3 0.22

Table II shows the influence of the partition on the upper
bound of allowed model uncertainties ξ. For constant θm =
1, the threshold θs for the split decisions of regions is
changed, resulting in different numbers of regions within
the partitions. As can be seen, an increase in the number
of regions and therefore a decreased size of regions may
lead to a higher bound of allowed model uncertainties.

As can be seen from the phase plot Fig. 6, the closed-
loop system is stable in the sense of Lyapunov, but deadlock
occurs for x2 = 0. On the other hand, this means the
pendulum will remain at an angle of x1 6= π. This is

TABLE II
DEPENDENCY OF ROBUSTNESS ON PARTITION SIZE

θs regions minj ξj,1 minj ξj,2
1 48 1.03 · 10−4 2
0.5 72 10 4.13
0.1 132 10 10

only possible, if the wagon, which is not modeled here,
remains at a constant speed. Thus, the entire system can
be considered as unstable in this case and the necessity
for auxiliary controllers guaranteeing asymptotic stability is
clearly motivated.
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Fig. 6. Phaseplot of closed-loop RFS with piecewise constant controller.

By calculating polynomial controllers of fourth order for
conflicting regions according to Sec. IV-D, a final closed-
loop system is obtained as depicted in Fig. 7. For an initial
value of x = [4,−1]T , the development of the states and
the system input is shown in Fig. 8. In addition, the control
law developed for the RFS is applied to the ground truth
model (29) for comparison. Fig. 8 also shows that due to
the inherent approximation error of the RFS, the difference
e = xRFS − xGT between the states of the RFS and the
ground truth model is nonzero in general, but converges to
zero asymptotically.
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Fig. 7. Phase plot of closed-loop RFS. In shaded regions, additional
polynomial controllers were computed preventing deadlock.
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initial value of x0 = [4, −1]T .

VI. CONCLUSIONS

In this paper, a controller synthesis concept for recurrent
fuzzy systems was presented, which makes use of the un-
derlying state space partition of the system class. The key
observation is that dynamical properties within each region
have to be checked at corners only in case of constant inputs.
This motivates the use of a constant input for each region
and thus a piecewise constant controller for the entire system.
To reduce conservatism, the state space partition is refined
by means of split and merge techniques in order to obtain
locally quasi homogenous vector fields. Then, local inputs
are computed by means of bilinear inequalities such that
stability of the controlled system can be guaranteed for model
uncertainties up to a certain boundary, which is sought to be
maximized.

Since recurrent fuzzy systems are approximate models, the
strength of this concept is that model uncertainties can be
taken into consideration. In addition, the switching control
lends itself quite naturally to the hybrid nature of the system.
Since dynamic properties have to be checked at corners
of the regions, the computational complexity remains quite
moderate. This efficiency would hardly be possible with more
complex controllers, e.g., simultaneous computation of local
polynomial controllers and a common Lyapunov function.

On the other hand, the drawback of the switching is
the possibility of deadlock and chattering effects. In order
to account for the first, auxiliary polynomial controllers
can be incorporated in order to prevent the system from
this undesired effect and to guarantee asymptotic stability.
Furthermore, undesired chattering effects can easily be pre-
vented, e.g., by hysteresis switching.

The focus of this paper was on robust control of recurrent
fuzzy systems by locally maximizing a region of allowed
model uncertainties. In this context, chattering effects may
occur due to discontinuities in the dynamic function of the
controlled system, which is here a rather undesired side

effect. On the other hand, explicit sliding-mode controllers
for recurrent fuzzy systems are another approach for robust
control, which will be subject to further research.
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