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ABSTRACT

The class of polynomial fuzzy-model-based (PFMB) control

systems has gained considerable attention in fuzzy control. The

PFMB control system under consideration often assumes that the

Lyapunov functions are quadratic, allowing use of semidefinite

programming and the sum of squares (SOS) decomposition.

This paper introduces a homogeneously polynomial Lyapunov

function for a stabilization problem in which the state feedback

synthesis based on SOS decomposition is proposed. To verify

the analytical theories regarding PFMB stabilization with the

proposed method, two examples are demonstrated to show the

effectiveness of the proposed approach.

Keywords: Polynomial TS Fuzzy Models, Homoge-
neous Lyapunov function, Sum Of Squares (SOS).

I. INTRODUCTION

To complement nonlinear control methodologies that
require rather involved knowledge, TS fuzzy model-
based control scheme provides a simple and effective
design that attracts a great deal of attention over the last
decade. In particular, the research activity in synthesis
and analysis of fuzzy control systems based on linear
matrix inequalities has gained its popularity [1].

Recently, the concept of TS fuzzy models has been
extended to the polynomial systems [2], [3] whose
polynomial subsystems are allowed in the consequent of
the fuzzy rules. Based on the Taylor-series expansion
[4], a systematic approach extended from the sector-
nonlinearity technique [1] to construct the polynomial
fuzzy model was proposed. The sum-of-squares (SOS)
approach [5], [6] was then applied to investigate the
stability of PFMB control systems under the PDC design
approach. Thanks to the Lyapunov stability theory, SOS-
based stability conditions [2] were derived to guarantee
the system stability and facilitate the controller synthesis.

However, it is said in [6], [2] that to avoid introducing
non-convex condition, the proposed scheme assumes
that P (x̃) only depends on state x̃ whose dynamics
is not directly affected by the control input, namely
states whose corresponding rows in B(x) are zero. With
that said, the solution to the stability conditions can
be found numerically with the third-party MATLAB
toolbox SOSTOOLS [7] or YALMIP [8]. With extension
to the PFMB control systems, the drawback of the LMI-
based analysis that the membership-function informa-
tion not being considered is inherent. The work in [4]
produces less-conservative stability analysis results by
considering some constraints of local operating domain
and membership-function-shape information. Others [9],
[10], [11], [12] incorporate membership shape informa-
tion that may relax conservativeness of fuzzy control of
nonlinear systems [13].

With the help of the sum of squares decomposition,
many problems in polynomial control systems analysis
and design have been attacked successfully, due to
the fact that the sum of squares decomposition using
semidefinite programming can be solved reliably and
efficiently on a computer.

In the present paper, it is shown that semidefinite
programming and the sum of squares decomposition can
be also used for the case of homogeneous Lyapunov
functions. This is established using Euler’s homogeneity
relation for positive homogeneous functions.

The organization of this paper is as follows. Fol-
lowing the introduction, Section II will rehearse some
key notions of classical TS models, working lemmas
and theorems, characterized by homogeneous Lyapunov
method. Section III introduces polynomial fuzzy-model-
based system and the relevant Lyapunov results, estab-
lishing the theory applicable to PFMB systems. Section
IV is devoted to numerical simulations, demonstrating
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protruding advantages compared to existing results. Con-
cluding remarks are made in Section V.

Notations: P (x) > 0 denotes a symmetric matrix
function P (x) : Rn → Rn×n which is positive definite
for all x ∈ Rn. Column vector ∇V (x) = ∂V

∂x (x) denotes
the derivative of V with respect to x and ∇2V (x)
denotes the Hessian of V . The time derivative of V
along the vector field f : Rn → Rn is denoted by
∇V (x)′f(x). Also, ·′ denotes transpose operation. The
notation Yμ stands for

∑s
i=1 μiYi where μi ≥ 0 and∑s

i=1 μi = 1 where s is the number of fuzzy rules.
(A+B) + � = (A+B) + (A+B)′.

II. PRELIMINARIES

To rehearse classical TS models, related working
lemmas and theorems, we consider a nonlinear T-S fuzzy
model which is obtained from a nonlinear system using
techniques [1]:

ẋ(t) = Aμx(t) +Bμu(t) (1)

where x = [x1, · · · , xn]′ is the state vector, u =
[u1, · · · , um]′ is the control input. All system matrices
Aμ, Bμ are of real constant matrices, depending on the
time-varying membership vector μ and having appropri-
ate dimensions.

A fuzzy PDC controller is considered here and dis-
played below

u(t) = (

s∑
i=1

μiKi)x(t) = Kμx(t) (2)

where the controller gain matrix Ki ∈ Rm×n is the state
feedback gain to be determined.

Substituting (2) into (1) yields a closed-loop fuzzy
system

ẋ(t) = (Aμ +BμKμ)x(t) = Āμμx(t) (3)

where at any instant the fuzzy system matrices are
given by the convex combination of local T-S models
and the time-varying parameter vector μ belongs to the
unit simplex Ω = {μ ∈ Rs

+(positive real)|μi ≥
0 and

∑s
i=1 μi = 1}.

Recall [14], [15], [16] and reference therein where the
definition for quadratical stability is given and repeated
here for convenience.

Definition 1: (Common P ) The forced, disturbance
free fuzzy system (3) is said to be quadratically stable if
there exists a symmetric matrix 0 < P ∈ Rn×n such that

the following parameter-dependent LMIs (PD-LMIs) are
satisfied for continuous-time systems:

Mμμ = Ā′
μμP + PĀμμ

= (Aμ +BμKμ)
′P + �.

By congruence transformation, we have

Mμμ = (QA′
μ + F ′

μB
′
μ) + � < 0 (4)

where Fμ = KμQ and thus Kμ = FμQ
−1. The result

is readily obtained if the quadratic Lyapunov function
V (x) = x′Q−1x, P = Q−1 > 0 is used.

Now the question arises if one wants to extend the
quadratic Lyapunov function to non-quadratic Lyapunov
function of the form V (x) = x′Q−1(x)x. One has to
ensure that ∇V (x) = Q−1(x)x is a gradient (vector)
function of a positive definite function [17], [18]. This
equality ∇V (x) = Q−1(x)x usually does not hold true
due to chain rule operation in derivation. Yet, paper [19]
implements this condition by adding a set of equality
constraints into SOS. This paper takes a different direc-
tion from the current result [19] and that is the focus
of this paper. Motivated by the result [19], [20], we
investigate homogeneous Lyapunov functions.

Definition 2: A function V (x) : Rn → R is said
to be a (positive) homogeneous Lyapunov function of
degree r, if V is a Lyapunov function and if

V (λx) = λrV (x) (5)

holds for all x ∈ Rn and all λ ≥ 0.
The definition can be easily verified by a simple

example shown below.
Example 1: Let V (x) = ax21 + bx1x2 + cx22 be a

homogeneous function of degree 2, we have

V (3x) = a(3x1)
2 + b(3x1)(3x2) + c(3x2)

2 = 9V (x).

An important property of homogeneous functions is
expressed by an appealing property, namely, by Euler’s
homogeneity relation (Euler’s identity).

Theorem 1: (Euler’s homogeneity relation, [21])
V (x) is a homogeneous function of degree r, if and only
if V (x) satisfies

∇V (x)′x = rV (x). (6)

Proof: The proof is quite simple and follows by
differentiation of (5) w.r.t. λ

∂V (λx)

∂λx1

∂λx1
∂λ

+ · · ·+ ∂V (λx)

∂λxn

∂λxn
∂λ

= rλr−1V (x)
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and setting λ = 1 yields

x′

⎡
⎢⎢⎢⎣

∂V
∂x1
∂V
∂x2

...
∂V
∂xn

⎤
⎥⎥⎥⎦ = x′∇V (x) = ∇V (x)′x = rV (x).

Another useful relation is:
Corollary 1: Let V be a homogeneous function of

degree r, then V satisfies

x′∇2V (x)x = r(r − 1)V (x). (7)

Proof: The proof is quite simple again and follows by
differentiation of (6) w.r.t. x

∇2V (x)x(t) +∇V (x) = r∇V (x).

Multiplying the equation above by x′ yields

x′∇2V (x)x+ x′∇V (x) = rx′∇V (x)

which leads to

x′∇2V (x)x = (r − 1)x′∇V (x). (8)

Since (6), a simple substitution yields

x′∇2V (x)x = r(r − 1)V (x).

Thus, the connection between V (x) and Hessian of
V (x) is shown below

V (x) =
1

r(r − 1)
x′∇2V (x)x.

The equation above confirms that given a homoge-
neous Lyapunov function of degree r, the function can
be formed into a quadratic form via ∇2V (x) having
x, constituting a non-quadratic Lyapunov function as
opposed to fixed/common Lyapunov functions V (x) =
x′Qx where Q > 0 is constant matrix of appropriate
dimension.

Using the relations (6) and (7), the main result of this
paper can be established:

III. POLYNOMIAL FUZZY SYSTEMS

Having established the machinery behind this investi-
gation, we, to apply the analysis shown above, consider
the following polynomial fuzzy system using technique
[4].

ẋ(t) = f(x) + g(x)u(t)

= Aμ(x)x̂(t) +Bμ(x)u(t) (9)

where

• x(t) ∈ Rn is the state vector, and u(t) ∈ Rm is the
control input vector.

• System matrices are defined as Aμ(x) =∑s
i=1 μiAi(x) and Bμ(x) =

∑s
i=1 μiBi(x) where

Ai(x) and Bi(x) are of compatible dimensions and
are function of x.

• x̂(t) = [x̂1, . . . , x̂N ]′ ∈ RN is a vector of monomi-
als in x(t) and N is the number of monomial terms
of a certain degree, say, d. It is assumed that x̂(t)
= 0 if and only if x(t) = 0. (When d = 1, we have
N = n.)

• μi(x(t)), i = 1, 2, . . . , s, are the normalized grades
of membership and exhibit the following properties:
μi(x(t)) ≥ 0 ∀i, and

∑s
i=1 μi(x(t)) = 1.

In this paper, we also consider the class of PFMB
control systems in which the polynomial fuzzy controller
has the following form

u(t) = Kμ(x)x̂(t) (10)

where Kμ(x) =
∑s

i=1 μiKi(x).
The closed-loop system becomes

ẋ(t) =

s∑
i=1

s∑
j=1

μiμj

(
Ai(x) +Bi(x)Kj(x)

)
x̂(t) (11)

where x̂(t) ∈ RN is a vector of monomial of degree d.
For stability analysis, we apply Lyapunov-based anal-

ysis which utilizes the following homogeneously poly-
nomial Lyapunov function of degree r in x.

V (x̂) = x̂′Q−1(x)x̂ (12)

where Q−1(x) is a positive definite polynomial matrix
whose entries are all of degree (r− 2d). It is noted that
for quadratic Lyapunov functions r = 2, then we have
x̂ = x and Q(x) = Q because r − 2d = 2− 2 = 0.

Theorem 2: The closed-loop fuzzy system (11) is
non-quadratically stabilizable by the controller (10), if
there exits a symmetric matrix Q(x) = Q′(x) ∈ RN×N ,
T (x) ∈ RN×n, Fi(x) ∈ Rm×N such the following SOS
are satisfied

x̂′
(
Q(x)− εI

)
x̂ is SOS

−x̂′
(
Mii(x)− ε1I

)
x̂ is SOS

−x̂′
(
Mij(x) +Mji(x)− ε2I

)
x̂ is SOS
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where i, j = 1, . . . s, j < i,

Mij = T (x)
(
Ai(x)Q(x) +Bi(x)Fj(x)

)
+ �

V (x̂) = x̂′(t)Q−1(x)x̂(t)

Q−1(x) = ∇2V (x̂)

=

⎡
⎢⎢⎢⎢⎣

∂2V
∂x̂2

1

∂2V
∂x̂1∂x̂2

· · · ∂2V
∂x̂1∂x̂N

∂2V
∂x̂2

2
· · · ∂2V

∂x̂2∂x̂N

. . .
...

� ∂2V
∂x̂2

N

⎤
⎥⎥⎥⎥⎦

T (x) = [Tij(x)] =

[
∂x̂i
∂xj

]

Fi(x) = Ki(x)Q(x).

Proof: Consider a homogeneously polynomial Lya-
punov function V (x̂) of degree r in x, as shown in (12).
The time derivative of V (x̂) along the trajectory is

V̇ (x̂) =
∂V

∂t

=
∂V

∂x̂1

∂x̂1
∂t

+
∂V

∂x̂2

∂x̂2
∂t

+ · · ·+ ∂V

∂x̂N

∂x̂N
∂t

=
[

˙̂x1 ˙̂x2 · · · ˙̂xN
]
⎡
⎢⎢⎢⎣

∂V
∂x̂1
∂V
∂x̂2

...
∂V
∂x̂N

⎤
⎥⎥⎥⎦

= ˙̂x′(t)∇V(x̂).

Therefore

0 > V̇

=
1

(r − 1)
˙̂x′(t)∇2V(x̂)x̂(t), due to (8)

=
1

(r − 1)
˙̂x′(t)Q−1(x)x̂(t)

=
1

(r − 1)
ẋ′(t)T ′(x)Q−1(x)x̂(t)

=
1

(r − 1)
x̂′(t)

(
Aμ(x) +Bμ(x)Kμ(x)

)′
T ′(x)Q−1(x)x̂(t)

=
1

2(r − 1)
x̂′(t)

((
Aμ(x) +Bμ(x)Kμ(x)

)′

T ′(x)Q−1(x) + �

)
x̂(t).

Notice that the constant factor 1
2(r−1) is irrelevant and

can be removed from stability point of view. To continue,

0 > x̂′
((

Aμ(x) +Bμ(x)Kμ(x)
)′
T ′(x)Q−1(x)

+Q−1(x)T (x)
(
Aμ(x) +Bμ(x)Kμ(x)

))
x̂

= x̂′
(
A′

μ(x)T
′(x)Q−1(x) +Q−1(x)T (x)Aμ(x)

+K ′
μ(x)B

′
μ(x)T

′(x)Q−1(x)

+Q−1(x)T (x)Bμ(x)Kμ(x)

)
x̂.

Multiplying both sides of the equation above by Q(x)
leads to

0 > x̂′
(
Q(x)A′

μ(x)T
′(x) + T (x)Aμ(x)Q(x)

+F ′
μ(x)B

′
μ(x)T

′(x) + T (x)Bμ(x)Fμ(x)

)
x̂

where Fμ(x) = Kμ(x)Q(x). Thus, we have

0 >

s∑
i=1

μ2
i x̂

′
(
T (x)

(
Ai(x)Q(x) +Bi(x)Fi(x)

)

+ �

)
x̂+

s−1∑
i=1

s∑
j=i+1

μiμj

x̂′
(
T (x)

(
Ai(x)Q(x) +Bi(x)Fj(x)

)
+ �

+T (x)
(
Aj(x)Q(x) +Bj(x)Fi(x)

)
+ �

)
x̂

=

s∑
i=1

μ2
i x̂

′Mii(x)x̂

+

s−1∑
i=1

s∑
j=i+1

μiμj x̂
′
(
Mij(x) +Mji(x)

)
x̂.

Thus, a set of sufficient condition is readily obtained
as

x̂′
(
Q(x)− εI

)
x̂ is SOS

−x̂′
(
Mii(x)− ε1I

)
x̂ is SOS

−x̂′
(
Mij(x) +Mji(x)− ε2I

)
x̂ is SOS

where ε, ε1, ε2 > 0 are sufficient small numbers.
It is readily seen that no derivative of Q(x) terms

are involved, and no assumption on input matrix B(x)
are needed. These non-convex assumptions were as-
sumed/needed in [2]. Furthermore, Q−1(x) is known to
be Hessian matrix of the Lyapunov V (x̂).
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IV. ILLUSTRATIVE EXAMPLES

In this section, two examples are demonstrated. The-
orem 2 is tested via SOSTOOLS to show that homoge-
neously polynomial Lyapunov matrices Q(x) exist for
different degrees of 2, 4, and 6.

Example 2: Consider a two-rule T-S fuzzy system
[19] whose system matrices are listed below:

A1 =

[
0 1
−2 −1

]
, A2 =

[
0 1

−2− k −1

]

where a varying parameters k is inserted to generate
different fuzzy system matrices for testing stability via
the proposed methods such that the stability can be
guaranteed.

• Second-order quadratic Lyapunov function, stability
is guaranteed for k ≤ 3.82. When k = 3.82, the
Lyapunov matrix

Q =

[
0.7784 0.1980
0.1980 0.1996

]

is found.
• Homogeneously polynomial Lyapunov function of

degree 4 can be obtained for k ≤ 5.74. When k =
5.74, the following Lyapunov is found.

Q(x) =

[
q1(x) q2(x)
q2(x) q3(x)

]

where

q1(x) = 1.7433x21 + 0.2681x1x2 + 0.1681x22

q2(x) = 0.1340x21 + 0.3362x1x2 + 0.0621x22

q3(x) = 0.1681x21 + 0.1243x1x2 + 0.0809x22.

• Homogeneously polynomial Lyapunov function of
degree 6 can be obtained for k ≤ 6.2. Particularly,
when k = 6.2, the following Lyapunov is found.

Q(x) =

[
q1(x) q2(x)
q2(x) q3(x)

]

where

q1(x) = 1.9140x41 + 0.4225x31x2 + 0.6369x21x
2
2

+0.1451x1x
3
2 + 0.0299x42

q2(x) = 0.1056x41 + 0.4246x31x2 + 0.2177x21x
2
2

+0.1199x1x
3
2 + 0.0147x42

q3(x) = 0.1061x41 + 0.1451x31x2 + 0.1799x21x
2
2

+0.05886x1x
3
2 + 0.0190x42.

It is noted that although the simulation example is
borrowed from [19], the solving technique are totally dif-
ferent. The former requires a set of equality constraints

∇V (x) = x′P be written into the SOS condition whilst
the latter does not require such equality constraints.

Example 3: Consider a two-rule T-S fuzzy system [2]
whose system matrices are listed below:

A1 =

[ −1 + x1 + x21 + x1x2 − x22 1
−1 −1

]

A2 =

[ −1 + x1 + x21 + x1x2 − x22 1
0.2172 −1

]

B1 =

[
x1
0

]
, B2 =

[
x1
0

]
.

For quadratic Lyapunov function, we have

Q =

[
0.4170 .16205e−6

.16205e−6 0.3831

]

and the controller gains are

K1 = [k11 k12], K2 = [k21 k22]

where e−a = 10−a, a > 0

k11 = −0.9 + .2888e−7x1x2 + .3656e−6x22

−1.766x1 − .5598x2 − .1221e−13x21

k12 = .4311e−2 + .3979e−6x1x2 − .1141e−5x22

−.3157x1 + .3144x2 + .3143e−7x21

k21 = −0.9− .1515e−6x1x2 − .1089e−7x22

−1.7697x1 − .5598x2 + .6410e−13x21

k22 = −.4921e−1 − .1185e−7x1x2 − .3324e−6x22

−.2935x1 + .3604x2 − .1649e−6x21.

For homogeneously polynomial Lyapunov function of
order 4, we have Q(x) shown in (13) on page 6. As to
the controller gains, it is omitted here for brevity since
monomial terms are huge for order 4 and higher.

Furthermore, to show that the controller gain does
stabilize the underlying system. Figure 3 shows the con-
vergence of state trajectories at different initial condition.

V. CONCLUSION

By introducing the homogeneous Lyapunov function
of degree r in x, we remove the two constraints inherited
in the existing SOS method where P (x̃) only depends
on state x̃ and whose corresponding rows in B(x) are
zero. Furthermore, to utilize SOS relaxations, we avoid
the NP-hard cooperativity problems, providing a com-
putationally tractable SOS-based scheme searching for
existence of SOS decomposition, thus leading to charac-
terization of solution to non-quadratic stability regarding
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Q =

[
0.3215x21 + 0.2070e−15x2x1 + 0.8867x22 −0.0254x21 − 0.6431x2x1 − 0.1035e−15x22
−0.0254x21 − 0.6431x2x1 − 0.1035e−15x22 0.7549x21 + 0.0508x2x1 + 0.3216x22

]
(13)

where e−a = 10−a, a > 0.

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x
1

x 2

to fuzzy polynomial-based-model control systems. This
is a new result on all the previous SOS in literature.
Numerical examples show promising for the proposed
methods.
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