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Triangular Fuzzy Number Representation of Relations in
Fuzzy Cognitive Maps
Engin Yesil, M. Furkan Dodurka and Leon Urbas

Abstract—In this paper, the conventional Fuzzy Cognitive
Maps (FCMs), which has already achieved success in many
fields, are extended by using triangular fuzzy numbers (TFNs).
The advantage of FCMs is that they are relatively easy to
construct and parameterize and are capable of handling the full
range of  system feedback structure, including
density-dependent effects. However, it is a well-known fact that
there are some limitations inherent in FCM, such as lack of
adequate capability to handle uncertain information and lack of
enough ability to aggregate the information from different
sources. Triangular fuzzy numbers which are represented by a
triplet has the capacity to represent the uncertain relations
between the concepts. In this context, the weight matrix
representing the causal relations are enhanced to a fuzzy weight
matrix that has TFNs as element. As a result of this
improvement, the dynamic reasoning algorithm of the
conventional FCM is improved for the use of the proposed novel
FCM. The proposed FCM is presented via four simulations and
the results are discussed. The results of the simulation study
shows how easily the uncertain information can be represented
and interpreted by the proposed FCM design methodology.

Keywords—Fuzzy Cognitive Maps, Triangular
Numbers, Causal Links, Reasoning, Weight Matrix .
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I. INTRODUCTION

Fuzzy Cognitive Maps (FCMs) are soft computing tools,
which combine elements of fuzzy logic and neural networks.
FCM theory is proposed as an extension of cognitive maps by
applying fuzzy causal functions with real numbers in
[—1, 1] to the connections by Kosko [1]. Therefore, FCMs are
signed directed graphs with feedbacks, and they model the
world as a collection of concepts and causal relations between
concepts. The nodes represent variable concepts, and edges
represent the strength of the causal links among the concepts.
FCMs have been initially used for planning and decision
making in the fields of international relations, social systems
modeling and the study of political developments in the
context of such systems.

One of the most useful aspects of the FCM is its potential
for use in decision support as a prediction tool. For a given
initial state of a system, represented by a set of values of its
constituent concepts, an FCM can simulate its evolution over
time to predict its future behavior [2]. For example, it may
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infer that the system would converge to a point where a
certain state of balance would exist, and no further changes
would take place. This inference is arrived at through a
process of forward chaining. While the prediction capability
of FCMs can be useful in answering what-if questions in a
decision support environment, little research has been done
on the use of FCMs in goal-oriented analysis [3]. In such an
application, the analysis starts with a desired goal, and aims to
identify what initial state can lead to that state. One possible
reason for the lack of reported investigation into
goal-oriented FCM analysis is the difficulty in reversing the
matrix multiplication and non-linear transformations
involved in computing successive FCM states [4]. As
mentioned in [5], there is a vast interest in FCMs and this
interest on the part of researchers and industry is increasing,
especially in the areas of control [4], [6], [7], business [8], [9],
medicine [10]-[12], robotics [13], emotion modeling [14],
environmental science [15], [16], education [17], information
technology [16] and self-tuning controller design [19].

After the original FCM was proposed, several extensions
have been researched [20]-[29]. The aim of these extensions
is to bring more values to concepts including real-valued
concepts, nonlinear weight, and time delays. Although FCM
has achieved success in many fields, there are some
limitations inherent in FCM, such as lack of adequate
capability to handle uncertain information and lack of enough
ability to aggregate the information from different sources.

Recently, three novel studies extended the theory and the
application of FCMs. In [30], a FCM extension, called Fuzzy
Grey Cognitive Maps (FGCMs) has been proposed as an
extension of the FCMs for environments with high
uncertainty, under discrete small and incomplete data sets.
The relationships between nodes in FGCM are represented by
directed edges, which model the grey causal influence of the
causal variable on the effect variable. As a result, the weights
between the nodes are not constants but intervals, which
improve the representation of uncertainties in the knowledge.

In order to bring a better approximation of the human
decision-making model, an extension of the FCM that
involves the degree of hesitation, which the experts may have,
to define the relations between the concepts of the FCM is
proposed in [31]. This is achieved by representing the causal
relations with intuitionistic instead of conventional fuzzy
sets, and by a properly modified reasoning algorithm. The
intuitionistic fuzzy cognitive maps (IFCMs) are extended in
further studies [32], [33] for other medical applications.

Uncertain information fusion has been studied for many
years, indicating that Dempster-Shafer theory (DS theory or
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evidence theory) is an effective framework to represent and
fuse uncertain information. In [34], FCM and evidential
theory is combined and the concept of evidential cognitive
maps, which improves the ability to represent uncertainty and
also the way of aggregating knowledge from different
sources, is proposed.

Experts who are familiar with the system components
and their relations can generate a related FCM which is a very
convenient, simple, and powerful graphical tool to represent
knowledge. This graphical form is represented in a
mathematical form of a weight matrix, which contains all the
connections, and also a state vector made of the current
weights of the concepts in the system. Till now, the elements
of the weight matrix and the values of the concepts are
represented by crisp numbers (fuzzy singletons) or intervals.
Consequently, this way of knowledge representation limited
the description of uncertain information. In this paper, the
causal relationships between the concepts are represented by
triangular fuzzy numbers that has a better capacity to
represent the uncertainty. For this purpose, the iterative
reasoning algorithm is modified and formulated using this
new approach. The efficiency of the proposed method is
shown by various simulation examples. For simulations,
Matlab environment is preferred and a small framework is
developed.

In Section II a brief overview of conventional FCMs is
presented, and in Section III after giving basic definitions and
notations for fuzzy sets and the triangular fuzzy numbers the
proposed novel FCM design is introduced. An illustrative
example is presented, and then the results of four simulations
are discussed in in Section IV. Finally, conclusions are
presented in Section I'V.

II. A BRIEF OVERVIEW OF CONVENTIONAL Fuzzy
COGNITIVE MAPS

A Fuzzy Cognitive Map is a fuzzy diagram that describes
the behavior of an intelligent system in terms of quantifiable
concepts; each concept represents a variable, a state, or a
characteristic of the system. FCM nodes are named by such
concepts forming the set of concepts C =
{C1,C2, ..., C,}.Arcs (C;, ;) are oriented and represent causal
links between concepts; that is how concept C; causes
concept C;. Weights of arcs are associated with a weight value
matrix Wy,,, where each element of the matrix wj; taking
values in [—1,1] ; thus, there are three types of weights:
w;; = 0 indicates no causality; w;; > 0 indicates a causal
increase (i.e., C; increases as C; increases, and (; decreases as
C; decreases); w;; <0 indicates causal decrease [35].
Inference on FCM works in discrete steps, so, when a strong
positive correlation exists between the current state of a
concept and that of another concept in a preceding period, we
say that the former positively influences the latter, indicated
by a positively weighted arrow directed from the causing to
the influenced concept. By contrast, when a strong negative
correlation exists, it reveals the existence of a negative causal
relationship indicated by an arrow charged with a negative
weight. Two conceptual nodes without a direct link are,

obviously, independent. The advantage of FCMs is that they
are relatively easy to construct and parameterize and are
capable of handling the full range of system feedback
structure, including density-dependent effects.

An FCM can be described by a connection matrix and the
activation levels of its nodes can be represented as a state
vector, whereby simple vector-matrix operations allow
extension to neural or dynamical systems techniques. Once
constructed, a FCM is then solved numerically to find the
equilibrium value of variables (C;), given any fixed boundary
conditions. FCMs can be subjected to an initial stimulus in the
form of a state vector, representing the states of the system’s
variables. The outcome of the constructed map can be
determined by using matrix algebra where the vector of initial
states of variables (C) is multiplied with the adjacency matrix
W of the FCM. The value of each concept is influenced by the
values of the connected concepts with the corresponding
causal weights and by its previous value. The concept values
of nodes Cy, C,, ..., C, together represent the state vector C.
The calculation rule that was initially introduced to calculate
the value of each concept is based only on the influence of the
interconnected concepts

n
G+ =f ZCz(t)wi,- (1)
i=1
1#]
where n is the number of concepts, C;(t + 1) is the value of
concept C; at time step ¢ + 1, C;(t) is the value of concept C;
at time step t, and w;; is the weight of the causal
interconnection from concept it" toward concept j.

The transformation function, f(.), is used to confine
(clip) the weighted sum to a certain range, which is the set to
[0,1] or [-11]. The normalization hinders quantitative
analysis, but allows for comparisons between nodes, which
can be defined as active, inactive, or active to a certain
degree. Two most commonly used transformation functions,
sigmoid and hyperbolic tangent, are as follows:

1
fx) = T ix ()
e&x _ e—Ax
f(x) = tanh(Ax) = m 3

where A is a parameter used to determine proper shape of the
function [36]. Both of the transformation functions use A as a
constant for function slope (degree of fuzzification). The
FCM designer has to specify the lambda value. In general, for
large values of lambda the transformation function
approximates a discrete function; for smaller values of
lambda it approximates a linear function.

III. REPRESENTATION OF THE WEIGHT MATRIX USING
TRIANGULAR FUzzy NUMBERS

In this section, some basic definitions of fuzzy sets and
fuzzy numbers will be briefly reviewed. These basic
definitions and notations below will be used throughout the
paper until otherwise stated.

A fuzzy set A in a universe of discourse X is characterized
by a membership function pz(x) which associates with each
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element x in X a real number in the interval [0,1]. The
function value pz(x) is termed the degree of membership of
x in A. A fuzzy set A of the universe of discourse X is convex
if and only if for all x;, x, in X,

uax + (1 =Vx,) 2 Min(#ﬁ(xﬂ'#fi(xz)) 4

where A € [0, 1]. A fuzzy set A of the universe of discourse X
is called normal fuzzy set implying that 3x; € X, uz(x;) = 1.

A fuzzy number is a fuzzy subset in the universe of
discourse X that is both convex and normal. In accordance
with the theory of fuzzy sets where classical sets are included
in the superordinate class of fuzzy sets, crisp numbers can be
considered as a special case of fuzzy numbers, for they
possess all their properties. A crisp number X can be
expressed by a fuzzy number p defined through the
membership function

0, x<x,
ps(x) = {1, X=X, 4)
0, x=x.

When crisp numbers are considered as fuzzy numbers, they
are usually referred to as fuzzy singletons as illustrated in Fig.
1.

Fuzzy singleton
(crisp number)

M5 (X)

0

= >
X X
Fig. 1. Illustration of a fuzzy singleton.
A triangular fuzzy number (TFN) @ can be defined by a

triplet (a,a™,aV) . The membership function pz(x)
illustrated in Fig. 2 is defined as [37]:

0, x < ak,
L
x—a
—, a"<x<a"
_JaM—-a
ta(x) = U ()
x—a o
M —qU’ <x<a
0, x=>al.

where al < aM < aY,aland aYstand for lower and upper
values of the support of @, respectively, and a™for the modal
value.

0 -

1]
ab a’ =

Fig. 2. Illustration of a triangular fuzzy number.

Basic operational laws related to positive triangular fuzzy
numbers are given below:
a® b= (at,aM,a’) ® (b*, b™,bY)
= (at+bhaM +bM,qv + b0y ©

a ® b = (at,a™,a’) ® (b, b™,bY)

— (aLbL, aMbM, anU) (7)
A®a=21Q (at,a", a") = (Aa*, 2a™,2a¥),2 >0 ()
1/d = (1/a’,1/aM,1/a") )

Moreover, D is a fuzzy matrix, if at least an element in Disa
fuzzy number.

One of the basic concepts of the fuzzy set theory which is
used to generalize crisp mathematical concepts to fuzzy sets
is the extension principle. Let X and Y be two universes and
discourse f:X =Y be a crisp function. The extension
principle tells us how to induce a mapping f: P(X) — P(Y),
where P(X) and P(Y) are the power sets of X and Y,
respectively. The fuzzy extension principle is defined by
Zadeh as follows [38]:

We have the mapping f: X = Y, y = f(x) which induce a
function f: A > B such that

B=fA)={(usONly =fx),x €X} (10)
where
sup pz(x) if fTO) =@
ns(y) = {xer (11)
0 otherwise.

In the original FCM design, the expert first determines the
concepts, then the expert defines the causal links using
linguistic terms such as weak medium or strong. In the initial
FCM modeling these linguistic terms are mostly represented
by triangular or trapezoidal membership functions, and the
corresponding universe of discourse is either [0 1] or [-1 1]
depending on the application. Afterwards, these linguistic
terms are transformed to fuzzy singleton weights, which are
values from a closed set of weights. In this final FCM
modeling level, the linguistic terms are represented by fuzzy
singletons that are crisp numbers within the interval of [-1 1].
Indeed, the uncertainty and ambiguity in the representation of
causal links disappears because of the transformation to fuzzy
singleton weights.

In the proposed FCM design, the fuzzy singletons used for
the representation of the weights of the causal
interconnections are replaced by TFNs. Therefore, the experts
can easily represent their uncertain and vague knowledge via
TFNs without choosing a predetermined linguistic term,
which will be transformed afterwards to a fuzzy singleton
weight, from a closed set. Accordingly; the above mentioned
definitions and notations are needed to design the proposed
FCMs. With the use of the TFNs, the reasoning (inference)
algorithm of the FCM has to be revised. For this reason, the
following new reasoning approach is described step by step:
Step 1:

Check the concept initial state vector. If it is describe using
TFNs, then use a defuzzification method to obtain a fuzzy
singleton.

In this study, center of gravity (COG) defuzzification
method defined as follows is preferred:

Ueeo (x) xdx
c(t) = ] e () xdx (12)
f Héew (x) dx

Here C(t) is the defuzzified output of fuzzy set C(t), and
x is the output variable.
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Depending on the meaning of the concepts C(t) may be
defined in the interval of [0, 1] or [—1, 1].

Step 2:
The concept values are calculated as follows:
n
Ge+1) =Y 08w, 13
P

where C;(t) represents the fuzzy concept singletons, and W;;
is the weight of the causal interconnection represented by
TFNs. It is clear that the value of Q(t + 1) is still a TFN, but
the values of the triple (a%,a™,aV) may not be in the
predefined universe of discourse.

Step 3:

The value of C;(t+1)is mapped to its universe of
discourse using the transformation function. For this mapping
fuzzy extension principle has to be used. As mentioned in the
second Section, the sigmoid and the hyperbolic tangent
functions are mostly preferred as transformation functions.

Git+1) =1 (C(t+1) (14)
Step 4:

The value of C~'j(t + 1) is still represented via a TFN. This
TFN can be used for the experts to see the uncertainty
boundary defined with the upper and lower parameters of the
TFN as [al, aV], or it can be defuzzified using COG defined
in Eq. (12) to continue the iterations. After the defuzzification

the uncertainty boundary is reduced to zero, which is
therefore a crisp number.

IV. ILLUSTRATIVE EXAMPLES

In this section, a synthetic FCM with six concepts is
randomly generated. The graphical representation of the FCM
used in this study is illustrated in Fig. 3. Concept 1 (C1) and
Concept 3 (C3) are the input concepts since these nodes
influence but are not influenced by other nodes; oppositely
Concept 6 (C6) is the output concept since it is only
influenced by other nodes. Eventually, Concept 2 (C2),
Concept 4 (C4), and Concept 5 (C5) are the intermediate
concepts since these nodes are influenced by input concepts
and/or by the other intermediate concepts and also they
influence the other concepts but not input nodes. In addition,
input concept C1 only linked to three intermediate concepts,
but the second input concept C3 is linked to an intermediate
concept C4 and to the output concept. For all simulations,
hyperbolic tangent transformation functions is used, and the
value of A is chosen as 1.2. As mentioned in the previous
section, A is the parameter that determines shape of the
function. When A is chosen much larger than 1.2 the
transformation function approximates a discrete function so

FCM may lead to limit cycles, conversely for much smaller
values of lambda, transformation function approximates a
linear function, and consequently the FCM will quickly
converge to a fix point.

Fig. 3. Illustration of the Fuzzy Cognitive Map example.

To show the practicality and effectiveness of the proposed
FCM design, four simulation examples are presented using
the FCM given in Fig. 3.The codes needed for the simulations
are written in Matlab, and a small framework is developed for
FCM design using TFNs, then all of the simulations are
perform in Matlab using this framework.

Only for the first simulation the conventional FCM design
using fuzzy singletons (crisp numbers) is studied. The
randomly generated weight matrix representing the causal
interconnections is given in Table 1.

TABLEI
WEIGHT MATRIX OF THE CONVENTIONAL Fuzzy COGNITIVE MAP
¢ ¢ G G Cs Ce

¢, 0 —065 0 —060 060 0

¢, 0 0 0 065 0  —085

C; 0 0 0 -085 0 0.10

C, 0 080 0 0 —020 0

C. 0 0 0 —095 0  —0.75

Cs 0 0 0 0 0 0

For the last three simulations the same FCM with six
concepts is used but the weight matrix is enhanced to fuzzy
weight matrix having elements TFNs in order to represent the
uncertainties of causal interconnections. The weight matrix
used for the last three simulations is tabulated in Table 2. As it
is seen, the weights indicating no causality are still kept as
zero using a triple as (0,0, 0). In addition, the nonzero fuzzy
singleton weights given in Table 1 are kept as the modal
value, a, to obtain the corresponding TFN, and upper and
lower values are randomly generated so that al < a™ < aV
condition is hold.

TABLEII
WEIGHT MATRIX OF THE FUZZY COGNITIVE MAP DESIGNED USING TRIANGULAR FUZZY NUMBERS

C, c, Cs
€, (0.000.000.00) (-0.85 - 0.65 —0.10)  (0.00 0.00 0.00)
¢, (0.000.00 0.00) (0.00 0.00 0.00) (0.00 0.00 0.00)
C;  (0.000.00 0.00) (0.00 0.00 0.00) (0.00 0.00 0.00)
€, (0.000.00 0.00) (0.350.80 1.00) (0.00 0.00 0.00)
Cs  (0.000.00 0.00) (0.00 0.00 0.00) (0.00 0.00 0.00)
Cs  (0.000.00 0.00) (0.00 0.00 0.00) (0.00 0.00 0.00)

(-0.70 - 0.60 - 0.40)
(-1.00 - 0.85 - 0.70)

(-1.00 -0.95 -0.10)

C, Cs Ce
(0.10 0.60 0.70) (0.00 0.00 0.00)
(0.00 0.00 0.00) (-0.95 - 0.85 - 0.20)
(0.00 0.00 0.00) (0.00 0.10 0.25)
(-0.80 - 0.20 - 0.10) (0.00 0.00 0.00)
(0.00 0.00 0.00) (-0.95 - 0.75 - 0.70)
(0.00 0.00 0.00) (0.00 0.00 0.00)

(0.60 0.65 0.70)
(0.00 0.00 0.00)

(0.00 0.00 0.00)
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Fig. 4. The evaluation of the concepts for the first simulation.
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Fig. 5. The evaluation of the concepts for the second simulation.

A. Simulation 1

For the first simulation, the conventional FCM given in
Table 1 is used. When the FCM is simulated using the initial
concept state vector

€(0) =[0.25,0.50,—-0.30,—0.20,—0.65,—0.70]
for 20 iterations, the evaluation of the concepts illustrated in
Fig. 4 is obtained. After 20 iterations, the Concept 6 (Cg) that
is the output concept converges to a fix point. The initial
value of output concept assigned as -0.70 increases by
iterations to 0.3439 which is a crisp number. As seen, there is
no uncertainty or fuzziness, but it is possible to interpret

1

0.5

0

Concept 2

-0.5

gl N T S I T S . i
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iterations

0.5

Concept 4
)

-05

l i L N
01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iterations

0.5+

Concept 6
o

-05-

Al L L i
01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Iterations

Concept 2
o

1 i i N I T |
01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iterations

Concept 4
)

A .
01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iterations

0.5,

Concept 6
o

-0.51

gl i -
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Iterations

0.3439 using linguistic terms for example as positive small.

B. Simulation 2

As the second simulation, the FCM modelled with the
weight matrix given in Table 2 is used but the simulation is
achieved for the initial state vector

€(0) =[0.25,0.50,—-0.30,—0.20, —0.65,—0.70]
which is also used for the first simulation. Therefore, the
initial values of all concepts are kept as fuzzy singletons,
while the causal links are represented by TFNs. Since the
initial state vector is already crisp the first step of the
reasoning algorithm including COG defuzzification should be
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skipped. The results of the simulations are illustrated in Fig.
5. The uncertainty boundary of the concepts evaluated by
iteration is represented by red lined. Also, the defuzzified
value of the concepts using COG is marked as dots for 20
iterations. Because of the TFNs in the definition of the weight
matrix, the final TFN value of the output concept Cs is
(-0.3094, 0.1594, 0.2630) and the defuzzified value is
-0.0491. This fix point is much less than the result obtained in
the first simulation.

C. Simulation 3

For the third simulation, the weight matrix given in Table 2
is used, but this time, TFNs are used for the initial concepts
values of the intermediate and output concepts. It is assumed
that the input concepts are measured accurately and have no
vagueness so the C1 and C3 are kept their crisp values
constant during 20 iterations as defined in the previous two
simulations. The simulation results are given in Fig. 6 for the
following initial state vector:

C(0) =[0.25,(-0.1,0.50,0.60),—0.30, (—0.30,—0.20, 0),
(—0.70,-0.65,0), (—0.90,-0.70, 0.15)].

As seen from Fig. 6, the uncertainty boundaries for the
concepts are changes by iterations. For example, the
uncertainty boundary of the output concept Cq increase or
decreases in different simulation steps depending on the value
of the other concepts. At the end of the 20th iteration, the
output concept converges to (-0.3093, 0.1593, 0.2628) and its
defuzzified value is calculated as -0.0492. Remarkably, this is
very close to the result obtained from the second simulation.
As a special result of this simulation, the uncertainty in the
definition of the initial state vector did not change the final
value of the output concept much.

D. Simulation 4
As the last simulation, the initial state vector is taken as

Concept 1
°

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Iterations
1

0.5;

0

Concept 3

-0.5}

-1
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Iterations

1

Concept 5

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Iterations

Fig. 6. The evaluation of the concepts for the third simulation.

C(0) =[(0.15,0.25,0.80), (—0.1,0.50, 0.60),
(—0.80,—0.30,—0.25), (—0.30,—0.20, 0),
(0.70,0.65,0), (—0.90,—-0.70,0.15)]
for the FCM defined in Table 2. As seen from the initial state
vector, for this example, the initial values of the input
concepts are also represented by TFNs. This change effects
the convergence of the output concept and reduces the small
oscillations occurred in the third simulation. At the end of the
20 iterations, output concept converges to
(—0.4098,0.1544,0.2884) and its defuzzified value
is —0.0942 . From Fig. 7a, we can conclude that the
uncertainty boundary of Cg increases and its defuzzified crisp
value decreases compared to third simulation example. In
addition, the values of concepts represented by TFNs before
defuzzification are illustrated in Fig. 7b. This 3D
representation will help the designer understanding what-if
scenarios in a better way since the uncertainties represented
by TFNs are also included.

V. CONCLUSIONS

In this paper, the uncertain information representation
capacity of FCM is increased using triangular fuzzy numbers
(TFNs) for the weights. The fuzzy singletons (crisp numbers)
used in the original FCM design is enhanced to TFNs;
therefore, the experts can express their uncertain knowledge
in the causal links using TFNs. The FCM reasoning method is
enhanced for TFNs and a systematic procedure is presented.
The proposed FCM design is simulated for various initial
states and the results are compared with the conventional
FCM. It is shown via simulations that the initial values of the
concepts can be also represented by TFNs when the proposed
FCM design is used. In addition, when there is more than one
expert for the design of FCM the proposed design using TFNs
can be used and the knowledge of the experts can be
aggregated and expressed in one FCM.
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Fig. 7. The evaluation of the concepts for the fourth simulation.

In the design step a linear transformation function may also
be preferred; also in such a case if a causal link is defined as a
symmetrical TFN, that is the modal value is the mean of
lower and wupper value of the support, the COG
defuzzification will give the modal value again. Therefore,
the FCM will be evaluated as a conventional FCM. Also,
instead of COG method, the designer may choose any
plausible defuzzification method but not height method.
When height method is used for TFNs, again the modal value,
which has the maximum membership value, is obtain;
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therefore the conventional FCM is obtained.

In this study, the uncertainty in information is represented
only via triangular fuzzy numbers. As a future work, this
representation will extended to general fuzzy numbers. In
addition, the aggregation of multi-expert information will be
considered for a real-life example.

The outcomes of this simulation study shows that the
weight matrix can be represented easily by TFNs to build a
fuzzy weight matrix to represent the relations between the
concepts to include vague information of the experts.
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