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Abstract—In this paper, the conventional Fuzzy Cognitive 
Maps (FCMs), which has already achieved success in many 
fields, are extended by using triangular fuzzy numbers (TFNs). 
The advantage of FCMs is that they are relatively easy to 
construct and parameterize and are capable of handling the full 
range of system feedback structure, including 
density-dependent effects. However, it is a well-known fact that 
there are some limitations inherent in FCM, such as lack of 
adequate capability to handle uncertain information and lack of 
enough ability to aggregate the information from different 
sources. Triangular fuzzy numbers which are represented by a 
triplet has the capacity to represent the uncertain relations 
between the concepts. In this context, the weight matrix 
representing the causal relations are enhanced to a fuzzy weight 
matrix that has TFNs as element. As a result of this 
improvement, the dynamic reasoning algorithm of the 
conventional FCM is improved for the use of the proposed novel 
FCM. The proposed FCM is presented via four simulations and 
the results are discussed. The results of the simulation study 
shows how easily the uncertain information can be represented 
and interpreted by the proposed FCM design methodology. 

Keywords—Fuzzy Cognitive Maps, Triangular Fuzzy 
Numbers, Causal Links, Reasoning, Weight Matrix . 

I. INTRODUCTION 

Fuzzy Cognitive Maps (FCMs) are soft computing tools, 
which combine elements of fuzzy logic and neural networks. 
FCM theory is proposed as an extension of cognitive maps by 
applying fuzzy causal functions with real numbers in 
ሾെ1, 1ሿ	to the connections by Kosko [1]. Therefore, FCMs are 
signed directed graphs with feedbacks, and they model the 
world as a collection of concepts and causal relations between 
concepts. The nodes represent variable concepts, and edges 
represent the strength of the causal links among the concepts. 
FCMs have been initially used for planning and decision 
making in the fields of international relations, social systems 
modeling and the study of political developments in the 
context of such systems.  

One of the most useful aspects of the FCM is its potential 
for use in decision support as a prediction tool. For a given 
initial state of a system, represented by a set of values of its 
constituent concepts, an FCM can simulate its evolution over 
time to predict its future behavior [2]. For example, it may 
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infer that the system would converge to a point where a 
certain state of balance would exist, and no further changes 
would take place. This inference is arrived at through a 
process of forward chaining. While the prediction capability 
of FCMs can be useful in answering what-if questions in a 
decision support environment, little research has been done 
on the use of FCMs in goal-oriented analysis [3]. In such an 
application, the analysis starts with a desired goal, and aims to 
identify what initial state can lead to that state. One possible 
reason for the lack of reported investigation into 
goal-oriented FCM analysis is the difficulty in reversing the 
matrix multiplication and non-linear transformations 
involved in computing successive FCM states [4]. As 
mentioned in [5], there is a vast interest in FCMs and this 
interest on the part of researchers and industry is increasing, 
especially in the areas of control [4], [6], [7], business [8], [9], 
medicine [10]-[12], robotics [13], emotion modeling [14], 
environmental science [15], [16], education [17], information 
technology [16] and self-tuning controller design [19].  

After the original FCM was proposed, several extensions 
have been researched [20]–[29]. The aim of these extensions 
is to bring more values to concepts including real-valued 
concepts, nonlinear weight, and time delays. Although FCM 
has achieved success in many fields, there are some 
limitations inherent in FCM, such as lack of adequate 
capability to handle uncertain information and lack of enough 
ability to aggregate the information from different sources. 

Recently, three novel studies extended the theory and the 
application of FCMs. In [30], a FCM extension, called Fuzzy 
Grey Cognitive Maps (FGCMs) has been proposed as an 
extension of the FCMs for environments with high 
uncertainty, under discrete small and incomplete data sets. 
The relationships between nodes in FGCM are represented by 
directed edges, which model the grey causal influence of the 
causal variable on the effect variable. As a result, the weights 
between the nodes are not constants but intervals, which 
improve the representation of uncertainties in the knowledge. 

In order to bring a better approximation of the human 
decision-making model, an extension of the FCM that 
involves the degree of hesitation, which the experts may have, 
to define the relations between the concepts of the FCM is 
proposed in [31]. This is achieved by representing the causal 
relations with intuitionistic instead of conventional fuzzy 
sets, and by a properly modified reasoning algorithm. The 
intuitionistic fuzzy cognitive maps (IFCMs) are extended in 
further studies [32], [33] for other medical applications.  

Uncertain information fusion has been studied for many 
years, indicating that Dempster-Shafer theory (DS theory or 
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evidence theory) is an effective framework to represent and 
fuse uncertain information. In [34], FCM and evidential 
theory is combined and the concept of evidential cognitive 
maps, which improves the ability to represent uncertainty and 
also the way of aggregating knowledge from different 
sources, is proposed.  

Experts who are familiar with the system components 
and their relations can generate a related FCM which is a very 
convenient, simple, and powerful graphical tool to represent 
knowledge. This graphical form is represented in a 
mathematical form of a weight matrix, which contains all the 
connections, and also a state vector made of the current 
weights of the concepts in the system. Till now, the elements 
of the weight matrix and the values of the concepts are 
represented by crisp numbers (fuzzy singletons) or intervals. 
Consequently, this way of knowledge representation limited 
the description of uncertain information. In this paper, the 
causal relationships between the concepts are represented by 
triangular fuzzy numbers that has a better capacity to 
represent the uncertainty. For this purpose, the iterative 
reasoning algorithm is modified and formulated using this 
new approach. The efficiency of the proposed method is 
shown by various simulation examples. For simulations, 
Matlab environment is preferred and a small framework is 
developed.  

In Section II a brief overview of conventional FCMs is 
presented, and in Section III after giving basic definitions and 
notations for fuzzy sets and the triangular fuzzy numbers the 
proposed novel FCM design is introduced. An illustrative 
example is presented, and then the results of four simulations 
are discussed in in Section IV. Finally, conclusions are 
presented in Section IV. 

II. A BRIEF OVERVIEW OF CONVENTIONAL FUZZY 

COGNITIVE MAPS 

A Fuzzy Cognitive Map is a fuzzy diagram that describes 
the behavior of an intelligent system in terms of quantifiable 
concepts; each concept represents a variable, a state, or a 
characteristic of the system. FCM nodes are named by such 
concepts forming the set of concepts ܥ ൌ
ሼܥଵ, …,2ܥ , ,௝ܥ) ௡ሽ.Arcsܥ  ௜) are oriented and represent causalܥ
links between concepts; that is how concept ܥ௝  causes 
concept	ܥ௜. Weights of arcs are associated with a weight value 
matrix ௡ܹ௫௡ , where each element of the matrix ݓ௝௜  taking 
values in ሾെ1, 1ሿ	; thus, there are three types of weights: 
௜௝ݓ ൌ 0  indicates no causality; ݓ௜௝ ൐ 0  indicates a causal 
increase (i.e., ܥ௝ increases as ܥ௜ increases, and ܥ௝ decreases as 
௜ܥ  decreases); ݓ௜௝ ൏ 0  indicates causal decrease [35]. 
Inference on FCM works in discrete steps, so, when a strong 
positive correlation exists between the current state of a 
concept and that of another concept in a preceding period, we 
say that the former positively influences the latter, indicated 
by a positively weighted arrow directed from the causing to 
the influenced concept. By contrast, when a strong negative 
correlation exists, it reveals the existence of a negative causal 
relationship indicated by an arrow charged with a negative 
weight. Two conceptual nodes without a direct link are, 

obviously, independent. The advantage of FCMs is that they 
are relatively easy to construct and parameterize and are 
capable of handling the full range of system feedback 
structure, including density-dependent effects.  

An FCM can be described by a connection matrix and the 
activation levels of its nodes can be represented as a state 
vector, whereby simple vector-matrix operations allow 
extension to neural or dynamical systems techniques. Once 
constructed, a FCM is then solved numerically to find the 
equilibrium value of variables (ܥ௜), given any fixed boundary 
conditions. FCMs can be subjected to an initial stimulus in the 
form of a state vector, representing the states of the system’s 
variables. The outcome of the constructed map can be 
determined by using matrix algebra where the vector of initial 
states of variables (ܥ) is multiplied with the adjacency matrix 
W of the FCM. The value of each concept is influenced by the 
values of the connected concepts with the corresponding 
causal weights and by its previous value. The concept values 
of nodes ܥଵ, ,ଶܥ . . . ,  .ܥ	௡  together represent the state vectorܥ
The calculation rule that was initially introduced to calculate 
the value of each concept is based only on the influence of the 
interconnected concepts 

ݐ௝ሺܥ ൅ 1ሻ ൌ ݂൮෍ܥ௜ሺݐሻݓ௜௝

௡

௜ୀଵ
௜ஷ௝

൲ (1) 

where n is the number of concepts, ܥ௝ሺݐ ൅ 1ሻ is the value of 
concept ܥ௝ at time step ݐ ൅  ௜ܥ ሻ is the value of conceptݐ௜ሺܥ ,1
at time step ݐ , and ݓ௜௝  is the weight of the causal 
interconnection from concept ݅௧௛ toward concept ݆௧௛.  

The transformation function, ݂ሺ. ሻ , is used to confine 
(clip) the weighted sum to a certain range, which is the set to 
ሾ0, 1ሿ  or ሾെ1	1ሿ.  The normalization hinders quantitative 
analysis, but allows for comparisons between nodes, which 
can be defined as active, inactive, or active to a certain 
degree. Two most commonly used transformation functions, 
sigmoid and hyperbolic tangent, are as follows: 

݂ሺݔሻ ൌ
1

1 ൅ ݁ିఒ௫
 (2) 

݂ሺݔሻ ൌ tanhሺݔߣሻ ൌ
݁ఒ௫ െ ݁ିఒ௫

݁ఒ௫ ൅ ݁ିఒ௫
	 (3) 

where λ is a parameter used to determine proper shape of the 
function [36]. Both of the transformation functions use λ as a 
constant for function slope (degree of fuzzification). The 
FCM designer has to specify the lambda value. In general, for 
large values of lambda the transformation function 
approximates a discrete function; for smaller values of 
lambda it approximates a linear function.   

III. REPRESENTATION OF THE WEIGHT MATRIX USING 

TRIANGULAR FUZZY NUMBERS 

In this section, some basic definitions of fuzzy sets and 
fuzzy numbers will be briefly reviewed. These basic 
definitions and notations below will be used throughout the 
paper until otherwise stated.  

A fuzzy set ܣሚ in a universe of discourse ܺ is characterized 
by a membership function ߤ஺෨ሺݔሻ which associates with each 
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