
The Experimenter Environment of the NIP
Imperfection Processor

Raquel Martı́nez, José M. Cadenas, M. Carmen Garrido
Dpto. Ingenierı́a de la Información y las Comunicaciones

Facultad de Informática. University of Murcia
3071 Espinardo (Murcia). Spain

Email: raquel.m.e@um.es, jcadenas@um.es, carmengarrido@um.es

Abstract—Currently, most datasets from real-world problems
contain low-quality data. In particular, within soft computing and
data mining areas, the research and development of techniques
that can deal with this type of data has been increased recently. In
order to facilitate the design of experiments in this field and with
these data, an experimenter environment in NIP imperfection
processor software tool has been developed. This environment
allows the generation of datasets with low-quality data, allowing
the researcher to design experiments that analyze the robustness
of different techniques which utilize this type of information in
an easy and intuitive way.

Index Terms—Software tool, Data mining, Low quality data,
Softcomputing

I. INTRODUCTION

At present, different software tools in the field of Soft
Computing are available. Although most of them are com-
mercial, the number of open source software tools has been
increased considerably. In particular, “NIP Imperfection Pro-
cessor” (hereafter NIP) is an open source software tool [1]
which was developed with the aim of supporting the work in
data mining, with specific emphasis on data preprocessing in
environments with Low-Quality Data (LQD). NIP allows the
management and generation of datasets with LQD. Some of
the main advantages of this tool are:

• It facilitates the work in the field of data mining allowing
the generation of datasets with LQD. The generation of
datasets with NIP tool can serve as common framework
to carry out a comparison of the different data mining
techniques developed.

• Allows the generation of the same dataset with the
information expressed by different theories of formalizing
imprecision/uncertainty, allowing a comparison between
them.

The aim of this paper is to present a new module of the
NIP tool which includes an experimenter environment so that
researchers can design, create and execute experiments with
datasets with LQD of a more appropiate form in a oriented-
research of the LQD management.

This work is structured as follows. In Section II the ex-
perimenter environment (called ExpNIPip) of the NIP tool is
described. In Section III a case study is used to show the defi-
nition process of an experiment using ExpNIPip environment
and finally, in Section IV the main conclusions of this work
are presented.

II. EXPNIPIP ENVIRONMENT

The experimenter environment ExpNIPip is composed of
two general components: a framework for the construction of
an experiment or group of experiments and, a simple and
intuitive graphic interface developed using Java technology
and the Swing API which controls the construction of such
experiments. It is a multiplatform software. It is important to
note that throughout this document the term experiment in
ExpNIPip environment refers to the preparation of all datasets
with LQD. These datasets will be subsequently used by the
researcher to carry out their research in the field of data mining
with LQD.

ExpNIPip allows graphically designing an experiment or
group of experiments with datasets with LQD. The interface
of the experimenter environment ExpNIPip is based on data-
flow where the researcher can select functional elements of
NIP (denoted nodes) from a toolbar. Also these elements must
be connected each other (with links) in order to reflect the
sequence of them. This structure forms a graph representing
the flow of knowledge for data processing. The software
is robust detecting wrong graphs through semantic control
module whose operation will be discussed throughout the
work.

ExpNIPip facilitates the use of the NIP tool at the research
level and preparation of large-scale experiments. Its main
advantages are:

• It is a software tool developed for research purposes.
• Permits the functioning of NIP tool on large sets of

datasets in one step.
• Includes new functions which were not available in

previous NIP tool such as the imputation process, new
partition/discretization methods, etc.

• The experiments are defined graphically based on data-
flow.

• Allows the definition of several functional sequences
of datasets (branches of the same graph). Therefore, it
permits the ability to carry out similar experiments on
many datasets easily and quickly.

• Once an experiment is designed, it may be executed in
on-line mode. ExpNIPip allows parallel execution in on-
line mode of several experiments, while the user can
continue with the definition of another experiment. A log

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 2141

indicating the execution status of each experiment which
is in progress can be visualized.

• An experiment can be saved and executed in any other
time in batch mode using the script generated. Also, a
log of the experiment execution is generated.

• A saved experiment can be subsequently retrieved from
ExpNIPip to be modified. This allows green the user the
ability to obtain similar versions of the same experiment
in an quick and efficient way.

A. Main Actions and Components in the ExpNIPip Environ-
ment

When accessing the ExpNIPip environment, the user is
prompted with the screen shown in Figure 1.

Fig. 1. Interface of the ExpNIPip environment

At the top of the screen shown in Figure 1, we can find
options that allow us to incorporate the main components of
an experiment. These options display a toolbar that allows
us to set up the experiment graphically and interactively. The
central panel of the screen is the drawing panel and shows
the components of the current experiment with the flow and
relations between them.

The main actions used to carry out the creation of experi-
ments are grouped under File and Actions:

• New: Creates a new experiment.
• Open: Selects an experiment previously created and load

it into ExpNIPip for editing.
• Save: Saves the current experiment with the present name

or another (Save as). Saving the experiment, files “.exp”
and “.scr” are generated. The experiment saved may be
executed in batch mode at any time using the generated
script (file “.scr”) or retrieved later to complete or modify
its structure.

• Run: Executes the current experiment in on-line mode and
generates the corresponding datasets. ExpNIPip allows
the execution of several experiments in on-line mode
while the user continues with the definition of another
experiment.

• Links: Adds links to define the relations between the
components of the experiment at any time.

• Visualize: Displays the status of execution of the exper-
iments that are running in on-line mode. The result will
also be saved in a file “.log”.

Possible components of a graph of an experiment are:
• Datasets-Import: Configures the set of experiment’s input

datasets.
• Partition: Applies different partitioning methods of nu-

merical attributes on datasets.
• LQD-Add: Adds different kinds of LQD into the datasets.
• Imputation: Applies different imputation methods on

LQD.
• LQD-formats: Sets the output format of LQD.
• Datasets-Export: Sets the output format of the experiment

datasets.

Figure 2 shows an example of the dynamic work with
ExpNIPip and its main elements. When the user introduces
a component of any type in the graph, by clicking the right
mouse button the user can activate any component of the graph
and sets each particular properties.

Fig. 2. ExpNIPip: An illustrative window

The semantic verification of the built graph is carried out by
a semantic control module. Once we have completed the defi-
nition of an experiment and during the execution, the semantic
control module checks that there are no inconsistencies in the
definition of the experiment, showing if an error is found.
Throughout this paper we will comment on the main situations
of incoherence that this semantic control module can detects.

In general, a graph of the experiment will contain a number
of branches that start at a root node (components Datasets-
Import) and end in leaf nodes that may be components

2142

Partition or Datasets-Export. These nodes correspond to the
generation of partitions or defining output formats respectively.
This graph structure is shown in the classes diagram of Figure
3. This figure shows the simplified classes diagram on which
ExpNIPip is constructed. The diagram only shows the main
classes (omitting attributes and methods) for viewing the
branch structure of a graph of experiment.

Fig. 3. Simplified classes diagram of ExpNIPip

B. Import Datasets

A component Datasets-Import allows the incorporation of
datasets into several standard formats as well as predefined
formats determined by the user.

The available input formats are ARFF, KEEL, UCI, CSV
and Custom1.

The user can incorporate as many components Datasets-
Import as desired in an experiment. When the user adds a
component Dataset-Import to the experiment, it may be added
to that component several datasets in the format specified by
the component. Datasets with different custom formats can be
incorporated into the experiments by adding a component for
each of them.

At any time during the definition of the experiment, we can
modify the configuration of the component. Such changes are
transferred to other components of the experiment connected
to it. The semantic control module is responsible for checking
both that components Datasets-Import are always root nodes
of the various branches of the graph, and that there is at least
one node in each branch.

1To be interpreted a dataset with custom input format by ExpNIPip, a file
”.in” is needed. This file can be obtained by NIP tool.

C. Partition Methods
A component Partition allows the incorporation of the dis-

cretization of numerical attributes within a group of datasets.
This discretization or partitioning can be carried out through a
set of methods in order to provide the researcher the automatic
generation of such partitions. These partitions can be used
in data mining techniques which require a partitioning of
numerical attributes as well as the replacement of numerical
values by their corresponding linguistic labels in the datasets.
Because of this, ExpNIPip improves the task of checking what
type of partitioning is more suitable for a particular technique.

Discretization is a process in which the numerical values of
attributes in a dataset are converted into discrete or nominal
values with a finite number of intervals, establishing a cor-
respondence between each numerical value and an interval.
Once the discretization is performed, the attribute may be
considered nominal. This process is very important in certain
data mining techniques because there are techniques that
exhibit better performance when attributes are discretized
since discretization reduces the number of continuous attribute
values, enabling faster and more accurate learning [2]. Also,
some data mining techniques are designed to deal only with
nominal attributes although many real-world problems involve
information expressed with numerical attributes. All these
numerical attributes, in this case, have to be discretized.

In the literature there are a large number of discretization
techniques and diverse taxonomies of them [3]. Given the main
purpose of ExpNIPip, the feature we wish to emphasize about
discretization methods is the type of partitions generated by
distinguishing between fuzzy and crisp partitions. We consider
that the partition generated by a specific method is fuzzy when
a set of discrete or nominal values with a certain degree is
assigned to a numerical value. On the other hand, we consider
that the partition is crisp when a discrete or nominal value
is assigned to a numerical value. The first type of partition
produces a set of intervals with some overlap, while the latter
generates a set of non-overlapping intervals.

Tables I and II show the different partitioning methods
available in the tool and are classified according to the type
of partition generated. For each method the acronym used in
the tool, a reference and a brief description is shown.

TABLE I
CRISP PARTITION METHODS

Acronym Ref. Description

DT [4] Based on a Decision Tree Algorithm
CM [5] Based on C Means Algorithm
Extern – Any external crisp partition in appropiate format

In addition to automatically generating partitions through
the methods described above, the tool provides the possibility
of using a partition generated with any external method (com-
ponents Partition-Crisp-Extern or Partition-Fuzzy-Extern) if it
is provided in the appropriate format. The fuzzy partitions
allowed in this tool consist of trapezoidal fuzzy sets.

2143

TABLE II
FUZZY PARTITION METHODS

Acronym Ref. Description

OFP [4] Based on a Decision Tree and a Genetic Algorithms
BAGOFP [6] Based on a Decision Tree, Genetic Algorithm

and Bagging
GA [7] Based on a Genetic Algorithm
FCM [8] Fuzzy C Means
Extern – Any external fuzzy partition in appropiate format

The format of the file that contains a fuzzy partition for a
given dataset is shown in Figure 4. This file, for each numerical
attribute, includes different linguistic labels corresponding to
its discretization with the four values that define the trape-
zoidal membership function. In the case of a crisp partition,
the file format is the same however the first two and the last
two values of each linguistic label are equal.

Fig. 4. File with a fuzzy partition

The semantic control module of ExpNIPip is responsible
for detecting whether at least one partition is specified when
carrying out the execution of the experiment. This occurs
when the option of adding numerical imprecision is selected
(fuzzy, interval or fuzzy subsets) or if we want to express
the fuzzy/interval values using a label in the output datasets.
When there are several components Partition in a sequential
flow, the last of them will be used in components which need
a partition.

D. Add Low Quality Data

The component LQD-Add of ExpNIPip encapsulates the
functionality of introducing certain percentages of LQD in
datasets. This functionality allows the generation of the same
dataset with different types and different percentages of LQD.
This facilitates the task of generating datasets to evaluate the
robustness of those techniques with LQD treatment according
to the different types of data.

The possibilities provided by ExpNIPip are:
• Introduction of certain percentages of missing values both

into nominal and into numerical attributes. Introduction of
these values is carried out randomly, so that the missing
is of the type completely at random [9]. In this case the
distribution of the examples with missing values in an
attribute does not depend on the observed data and the

missing values. Therefore the distribution of the complete
data and the missing data is the same.

• A certain percentage of fuzzy values in numerical at-
tributes. In this case it is necessary to have a partitioning
of numerical attributes that may have been generated
automatically by the tool or be provided by the user
in the correct format. Given the partition, when a crisp
numerical value must be transformed into a fuzzy value,
that value of the fuzzy partition to which it belongs with
the highest degree is selected.

• A certain percentage of interval values in numerical
attributes. In this case, there are three options: 1) use
a crisp partition automatically generated by the tool or
provided by the user, 2) add to and subtract from a fixed
amount specified by the user to the numerical values of
the attribute, and 3) add to and subtract from a random
amount within a range specified by the user, to the
numerical values of the attribute.

• Crisp subsets in nominal attributes. If the nominal value
is replaced by a crisp subset, all other possible domain
values may be added to the current value with a proba-
bility equal to the proportion of each value in the dataset.

• Fuzzy subsets in both nominal and numerical attributes.
In the case of numerical attributes, given a fuzzy partition
of that attribute, the numerical value is replaced by the
subset of the partition labels to which this value belongs
with degree greater than 0 along with their membership
degrees. For instance, a crisp value of 45 for the nu-
merical attribute “temperature” could be replaced by the
fuzzy subset {0.1/warm,1/hot} if the value 45 belongs
to “warm” label with degree 0.1 and to “hot” label with
degree 1. In the case of nominal attributes, if the value is
replaced by a fuzzy subset, as membership degree of the
current value its proportion in the dataset is added. Also
other values are added in the same way as in the case
of crisp subsets including in this case together with the
value, its proportion in the dataset as membership degree.

• Certain percentage of noise in nominal and numerical
attributes. In the case of the numerical attributes, the noise
that we add is gaussian noise. In this kind of noise, it is
necessary to indicate in the attribute, which we want to
modify, the mean and the standard deviation. This kind
of noise is useful for simulating the existence of an error
with known distribution in data (for example, a sensor
of which the measurement accuracy is known). In the
case of the nominal attributes the percentage of specified
values will be changed randomly by another value of the
domain.

When defining the properties of these components, a list of
all datasets associated by links to that component is shown.
If we select one of them, the list of attributes in that dataset
is expanded allowing the selection of: a set of attributes, all
attributes, all numerical attributes or all nominal attributes,
depending on the type of LQD we are adding (Figure 5). The

2144

same can be done by selecting a set of datasets.

Fig. 5. Configuration of components LQD-Add

Also, the semantic control module detects that in the flow
of the experiment, there is a partition selected when interval
values, fuzzy values, or fuzzy subsets in numerical attributes
are added.

E. Imputation methods

In general, the treatment of LQD can be carried out from
two different approaches:

• Removing all those examples with some value of low
quality in some of its attributes or remove those attributes
with low quality values in a considerable percentage of
examples.

• Impute values of low quality by estimated ones. Since
in most cases the attributes are not independent of each
other, we can identify relationships between them using
predictive models to carry out the imputation of values.

NIP tool focuses on the use of imputation methods which
replace the values by other ones obtained from the dataset,
such as the attribute mean, mode, etc. Although in the litera-
ture, most imputation methods have focused on the imputation
of missing values, NIP tool facilitates the carrying out of
imputation of other values of low quality. Therefore, the
imputed values by the tool will not always be missing values
in the same way that the resulting values of the imputation
will not always be crisp values. The choice, therefore, of the
imputation method will be conditioned by the type of LQD
with which the technique of data mining is able to treat.

An important advantage of imputation methods is that they
are independent of the subsequent data mining technique
applied, but some of them may be more appropriate than
others when working with a particular technique. This is the
point where ExpNIPip provides the functionality of generating

quickly and efficiently the same dataset with the low quality
values imputed by several imputation methods.

ExpNIPip includes the replacement methods of NIP tool and
also provides new functionality incorporating methods that use
predictive models to impute values. The imputation methods
available in ExpNIPip and the type of provided value are listed
below (in parentheses, the acronym used in the tool for each
method is shown):

• To nominal missing values:
– (NotoM) The missing value is imputed by the mode

or most common value of the attribute. The provided
value is crisp.

– (NotoCM) The missing value is imputed by the
conceptual mode, i.e., the most common value of
the attribute considering only examples belonging to
the same class of example to impute. The provided
value is crisp.

– (NotoCS) The missing value is imputed by the full
set of possible values. The generated value is a set
containing all possible values of the attribute. The
set is classic because it does not assign a weight or
probability to the values.

– (NotoFS) The missing value is imputed by a fuzzy
subset that assigns to each possible value of the
attribute the proportion in which it appears in the
dataset. In this case, the value returned is a set
consisting of the possible values of the attribute,
associating a weight to each value based on its
proportion of occurrence in the dataset.

– (NoKNN) The missing value is imputed by a
crisp value, a crisp or fuzzy set depending on the
value obtained by the predictive imputation method
KM−LQD-NN [10].

• To numerical missing values:
– (NtoM) The missing value is imputed by the mean

of the attribute. The provided value is crisp.
– (NtoCM) The missing value is imputed by the con-

ceptual mean, i.e., by the mean of the attribute
considering only examples belonging to the same
class of example to impute. The provided value is
crisp.

– (NtoI) The missing value is imputed by an interval
corresponding to the entire domain of the attribute.
The value generated is a classic interval defined
between the minimum and maximum value of the
attribute in the dataset.

– (NtoF) The missing value is imputed by the fuzzy
set (µ−2σ, µ−σ, µ+σ, µ+2σ) where µ and σ are
the mean and standard deviation of the attribute. In
this case, the value generated is a trapezoidal fuzzy
set.

– (NKNN) The missing value is imputed by a
crisp, fuzzy or interval value depending on the
value obtained by the predictive imputation method
KM−LQD-NN [10].

2145

• To interval values:
– (ItoC) Impute the interval by its intermediate value.

In this case, the provided value is crisp.
– (ItoMin) Impute the interval by its minimum value.

The provided value is crisp.
– (ItoMax) Impute the interval by its maximum value.

The provided value is crisp.
• To fuzzy values:

– (FtoI) Impute the fuzzy value by the interval associ-
ated to α-cut 1. The provided value is an interval.

– (FtoCG) Impute the fuzzy value by the crisp value
corresponding to its center of gravity. The provided
value is crisp.

The possibility of imputing the same type of value for a
set of possibilities facilitates research in data mining in two
directions: 1) facilitating the analysis of which kind of value
provides the best alternative to the nature of the imperfection
that appears in the data. This is important when working with
data mining techniques that perform LQD processing in differ-
ent forms and 2) facilitating the analysis about what imputation
method generates crisp values in a more appropriate way for
a given data mining technique, in the case of techniques that
do not perform any LQD processing.

According to connections that a user does of imputation
methods in the graph of the experiment, the imputations can
be chained. The semantic control module does not verify the
absence of a particular kind of low quality values, which the
researcher wishes to impute, since in this case the imputation
is not performed.

F. Low Quality Data Formats and Export Datasets

Components LQD-Format and Datasets-Export allow the
incorporation in the experiment of the output configuration of
datasets generated in various formats of an easy and quick
way. Each branch of the graph of the experiment generates an
output which can be: 1) a partition of the attributes when the
leaf node of the branch is a component Partition or 2) a set of
datasets with a particular format if the leaf node of the branch
is a component Datasets-Export.

A component Datasets-Export sets the output format for the
datasets generated by the experiment. Output formats can be
ARFF, KEEL, UCI, CSV and Custom2.

You can specify as many output formats for datasets as
desired, indicating for each one the following options:

• Seed to be used (Seed).
• If the experiment is a cross validation, the number of

folds and repetitions must be indicated.
• If the output is required as train and test files, the

percentage of train and test examples and the number
of repetitions must be specified.

Furthermore, each one specifies the default syntax for the
different low quality values. If the user wants to modify

2To be interpreted a dataset with custom output format by ExpNIPip, a file
”.out” is needed. This file can be obtained with NIP tool.

the default format of low quality values, they can do it by
components LQD-Format.

Components LQD-Format allow the specification of each
output format of low quality values present in the different
datasets. In particular, if the output with label is selected
in the case of interval or fuzzy values, the semantic control
module checks that there is a fuzzy partition previously defined
and only the fuzzy values or intervals that are part of that
partition are printed as a label. The remaining values are
printed according to the default format of each output format.
If we want to leave the default formats, this component can
be omitted.

III. A CASE STUDY

In this section, a case study is presented as an example of
the functionality and the process necessary used when creating
an experiment using ExpNIPip enviroment.

Suppose we are performing an experimental analysis of the
classification technique FRF [11] with the following objec-
tives 1) Analyze the robustness of the FRF technique to the
existence of different types of LQD, in particular the existence
of missing data in the datasets, the existence of the interval
values, and the existence of the fuzzy values. To do that, we
want to analyze whether this technique performs better with
a dataset with a certain percentage of missing values, or the
same percentage of interval values, or the same percentage
of fuzzy values and 2) Analyze the behavior of FRF against
different imputation methods of missing data. That is, we
impute the missing values added in numerical attributes using
different imputation methods to see which method produces
better performance in classification of the technique. With the
ExpNIPip tool, we expect to help to ease the researchers’ task
of preparing the datasets required for their researches.

We want to obtain ten datasets in KEEL format [12] and in
UCI format [13] the following datasets: 1) datasets containing
missing values, 2) datasets with missing values imputed with
different methods, 3) datasets with interval values and finally,
4) datasets with fuzzy values. These datasets must be adequate
to perform a 2×3-fold cross-validation. The output format
must be the specific one that uses FRF for all datasets, in
particular, we have the output format “frf.out” (a custom
format).

Table III shows the datasets used in the experiment, in-
dicating for each one the name, the number of attributes, the
number of examples, the number of class values, if the datasets
contain LQD and the input format.

A. Designing the experiment with ExpNIPip

We start by building the graph of the experiment adding
two components Datasets-Import, one for each input format
of the datasets used in the experiment (Datasets-Import-KEEL
and Datasets-Import-UCI). To add a percentage of interval
values to the datasets, we incorporate in the graph a com-
ponent Partition-Crisp. This component should appear in the
flow graph before adding therein, the component LQD-Add-
Interval. In the same way, we create a fuzzy partition to add a

2146

TABLE III
DATASETS EMPLOYED IN THE CASE STUDY

Name #Ats #Ins #Cla lqd #Format

appendicitis 7 106 2 No KEEL
pima 8 768 2 No KEEL
glass 9 214 7 No KEEL
hepatitis 19 155 2 Yes KEEL
horse-colic 2 368 2 Yes KEEL
wine 13 178 3 No UCI
BCW 32 569 2 No UCI
iris 4 150 3 No UCI
ionosphere 34 351 2 No UCI
zoo 17 101 7 No UCI

percentage of fuzzy values to datasets. Next, we incorporate a
component to add a percentage of missing values (component
LQD-Add-Missing). Later, the missing values will be im-
puted using three different imputation methods for which we
add the components Imputation-Missing-NtoM, Imputation-
Missing-NtoCM and Imputation-Missing-NKNN. Finally, we
add a component Datasets-Export-Custom indicating the num-
ber of repetitions and size of cross-validation to generate, in
the format defined by the user “frf.out”.

The graph of Figure 6 shows the data-flow and links which
form the experiment.

Fig. 6. Graphical representation of the experiment

Nodes represent components Datasets-Import containing
sets of datasets, components Partition corresponding to obtain
crisp and fuzzy partitioning of the datasets, components LQD-
Add to add missing, interval and fuzzy values to datasets,
components Imputation corresponding to imputation methods
of missing values and finally, components Datasets-Export for
the generation datasets in an output format predefined by user.
The nodes are distinguished because they have different icons.

All parameters of the different components are set by
clicking the right mouse button when we are located on the
corresponding icon. Table IV shows the parameters used in
the configuration of each component of experiment.

TABLE IV
PARAMETERS USED IN COMPONENTS

Component Parameters

Import datasets UCI –
Import datasets KEEL –
DT Partition Seed-59, MinEx-1, %Pure-100, Thread-2,

Class attribute for all datasets
OFP Partition Seed-59, MinEx-1, %Pure-100, Thread-2,

Gene-100, Popu-20, PCross-0.9, PMut-0.2,
Class attribute for all datasets

Add missing Seed-0, 5% in all attributes
Add interval Seed-0, 10% in all numerical attributes
Add fuzzy Seed-0, 5% in all numerical attributes
Imputation missing NtoM –
Imputation missing NtoCM –
Imputation missing NKNN K value-sqrt, Thresdhold-0, Distance-F1
Export datasets Custom “frf.out”, N. folds-3, Repetitions-2, Seed-0

When we have configured the experiment, we can save it
(files “.exp” and “.scr” are generated). Then we can retrieved
later or run in batch mode. From the experiment definition
screen, we can run it in on-line mode (Actions-Run) following
its execution through a log that we can access by option
Actions-Visualize. This log will be saved in a file “.log”
describing the sequence of actions that have been carried out
in the execution of the experiment and actions that have not
been carried out by an error.

For the case study we are analyzing, Figure 7 shows a part
of the directory structure and the files generated after running
the experiment.

Fig. 7. Partial view of output generated by the experiment

Links to component Datasets-Export define the set
of datasets to generate. Thus, for each dataset DS in
the experiment were generated six directories in the di-
rectory specified by the user in component Datasets-

2147

Export: “DS KEEL OFP AddF Customfrf” contains datasets
with fuzzy values of a fuzzy partition generated by the
OFP method, “DS KEEL DT AddIP Customfrf” contains
datasets with interval values of a partition generated by the
DT method, “DS KEEL AddM Customfrf” contains datasets
with missing values, “DS KEEL AddM NtoM Customfrf”
contains datasets with missing values imputed using the
NtoM method, “DS KEEL AddM NtoCM Customfrf” con-
tains datasets with missing values imputed using the NtoCM
method and “DS KEEL AddM NKNN Customfrf” contains
datasets with missing values imputed using the NKNN method.
Each of these six directories contain the respective datasets as
an experiment 2×3-fold cross-validation. The name of each
directory describes the branch in the graph that generates it.

In addition, the crisp and fuzzy partitions that are part of
the experiment are generated in the directory specified by the
user.

A part of file “.scr” generated by experiment is shown in
Figure 8.

Fig. 8. Part of “.scr” file of the experiment

IV. REMARKS AND CONCLUSIONS

Due to the nature of the datasets from real-world problems,
it is important to include into data mining techniques the LQD
processing or develop new techniques that support this type
of data. In the same way that there are currently open source

software tools to support data mining with datasets without
LQD, in this work the functionality of the NIP imperfection
processor software tool is completed with an experimenter
environment in order to facilitate the design and generation of
large-scale datasets to conduct experiments in environments
with LQD. We have presented through a case study how an
extensive set of datasets can be generated easily and intuitively
using this module. Finally, it is important to take into account
that EXpNIPip can be easily extended adding new components
in any functionality of the tool.

ACKNOWLEDGMENT

Supported by the project TIN2011-27696-C02-02 of the
Ministry of Economy and Competitiveness of Spain. Thanks
also to “Fundación Séneca - Agencia de Ciencia y Tecnologı́a
de la Región de Murcia” (Spain) for the support given to
Raquel Martı́nez by the scholarship program FPI.

REFERENCES

[1] J.M. Cadenas, M.C. Garrido, R. Martı́nez, NIP - An Imperfection Pro-
cessor to Data Mining datasets, International Journal of Computational
Intelligence Systems, 6(1): 3-17, 2013.

[2] M. Antonelli , P. Ducange, B. Lazzerini, F. Marcelloni, Learning
knowledge bases of multi-objective evolutionary fuzzy systems by simul-
taneously optimizing accuracy, complexity and partition integrity, Soft
Computing, 15(12):2335-2354, 2010.

[3] S. Garcı́a, J. Luengo, J.A. Sáez, V. López, F. Herrera, A Survey of Dis-
cretization Techniques: Taxonomy and Empirical Analysis in Supervised
Learning, IEEE Transaction on Knowledge and Data Engineering, 25(4):
734-750, 2013.

[4] J.M. Cadenas, M.C. Garrido, R. Martı́nez, P.P. Bonissone,
OFPCLASS : a hybrid method to generate optimized fuzzy partitions
for classification, Soft Computing, 16(4): 667-682, 2012.

[5] E.W. Forgy, Cluster analysis of multivariate data: efficiency versus
interpretability of classifications, Biometrics 21: 768-769, 1965.

[6] J.M. Cadenas, M.C. Garrido, R. Martı́nez, Improving a Fuzzy Dis-
cretization Process by Bagging, International Conference on Fuzzy
Computation Theory and Application, 201-213, 2013.

[7] Y.S. Choi, B.R. Moon, Feature Selection in Genetic Fuzzy Discretization
for the Pattern Classification Problems, IEICE Trans. Inf. and Syst.,
E90-D(7): 1047-1054, 2007.

[8] J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algo-
rithms, Plenum, New York, 1981.

[9] R.J.A. Little, D.B. Rubin, Statistical analysis with missing data, Wiley
Series in Probability and Statistics, 1st edn. Wiley, New York, 1987.

[10] J.M. Cadenas, M.C. Garrido, R. Martı́nez, A. Martı́nez, Imputing missing
values from Low Quality Data by NIP tool, IEEE International Confer-
ence on Fuzzy Systems, 1166-1173, 2013.

[11] P.P. Bonissone, J.M. Cadenas, M.C. Garrido, R. A. Dı́az-Valladares, A
fuzzy random forest, International Journal of Approximate Reasoning
51(7):729-747, 2010.

[12] J. Alcalá-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. Garcı́a, L.
Sánchez, F. Herrera, KEEL Data-Mining Software Tool: Data Set Repos-
itory, Integration of Algorithms and Experimental Analysis Framework,
Journal of Multiple-Valued Logic and Soft Computing 17(2-3): 255-287,
2011.

[13] A. Frank and A. Asuncion, UCI Machine Learning Repository, Univer-
sity of California, Irvine, School of Information and Computer Sciences,
http://archive.ics.uci.edu/ml, 2010.

2148

